The Ultimate Undecidability Result for the Halpern-Shoham Logic

Jerzy Marcinkowski, Jakub Michaliszyn

Instytut Informatyki
University of Wrocław
June 24, 2011

Intervals

- Given an arbitrary total order $\langle\mathbb{D}, \leq\rangle$.
- An interval: $[a, b]$ such that $a, b \in \mathbb{D}$ and $a \leq b$.
- What relative positions of two intervals can be expressed using \leq ?

13 relative positions of intervals can be expressed using \leq

13 relative positions of intervals can be expressed using \leq

Before and after.

13 relative positions of intervals can be expressed using \leq

Meet and met by.

13 relative positions of intervals can be expressed using \leq

Overlaps and overlapped by.

13 relative positions of intervals can be expressed using \leq

Starts and finishes.

13 relative positions of intervals can be expressed using \leq

Contains and during.

13 relative positions of intervals can be expressed using \leq

Started by and finished by.

13 relative positions of intervals can be expressed using \leq

Equals.

What can we do with those relations?

Allen's algebra.

$$
\forall x y . x \text { before } y \Rightarrow \exists z . z \text { meet } y \wedge z \text { met by } x
$$

What can we do with those relations?

Halpern-Shoham logic.
\langle before $\rangle p \wedge\langle$ during $\rangle(r \wedge\langle$ after $\rangle q)$

Formally - the models

- Any total order $\mathcal{D}=\langle\mathbb{D}, \leq\rangle$
- Set of propositional variables Var
- Classic temporal logics — labeling $\gamma: \mathbb{D} \rightarrow \mathcal{P}(\mathcal{V}$ ar $)$

Formally - the models

- Any total order $\mathcal{D}=\langle\mathbb{D}, \leq\rangle$
- Set of propositional variables \mathcal{V} ar
- Classic temporal logics - labeling $\gamma: \mathbb{D} \rightarrow \mathcal{P}(\mathcal{V}$ ar $)$
- Interval temporal logics — labeling $\gamma: \mathrm{I}(\mathbb{D}) \rightarrow \mathcal{P}(\mathcal{V} a r)$,
where $\mathrm{I}(\mathbb{D})=\{[a, b] \mid a, b \in \mathbb{D} \wedge a \leq b\}$
p, s

The Halpern-Shoham Logic

- Halpern-Shoham logic contains 12 operators $A, \bar{A}, B, \bar{B}, D, \bar{D}, E, \bar{E}, L, \bar{L}, O, \bar{O}$

The Halpern-Shoham Logic

- Halpern-Shoham logic contains 12 operators $A, \bar{A}, B, \bar{B}, D, \bar{D}, E, \bar{E}, L, \bar{L}, O, \bar{O}$
- Halpern-Shoham (LICS'86) - undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".

The Halpern-Shoham Logic

- Halpern-Shoham logic contains 12 operators $A, \bar{A}, B, \bar{B}, D, \bar{D}, E, \bar{E}, L, \bar{L}, O, \bar{O}$
- Halpern-Shoham (LICS'86) - undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) - undecidability using "begins" and "ends".

The Halpern-Shoham Logic

- Halpern-Shoham logic contains 12 operators $A, \bar{A}, B, \bar{B}, D, \bar{D}, E, \bar{E}, L, \bar{L}, O, \bar{O}$
- Halpern-Shoham (LICS'86) - undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) - undecidability using "begins" and "ends".
- Further results ('07-'10) - undecidability of $O, B \bar{E}, \bar{B} \bar{E}, A \bar{A} D, \bar{A} \bar{D} \bar{B}, \ldots$.

The Halpern-Shoham Logic

- Halpern-Shoham logic contains 12 operators $A, \bar{A}, B, \bar{B}, D, \bar{D}, E, \bar{E}, L, \bar{L}, O, \bar{O}$
- Halpern-Shoham (LICS'86) - undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya (' 00) - undecidability using "begins" and "ends".
- Further results ('07-'10) - undecidability of $O, B \bar{E}, \bar{B} \bar{E}, A \bar{A} D, \bar{A} \bar{D} \bar{B}, \ldots$.
- The positive side: decidability of $B \bar{B}, A \bar{A}, A B \bar{B} \bar{L}$ (next presentation), \ldots

The Halpern-Shoham Logic

- Halpern-Shoham logic contains 12 operators $A, \bar{A}, B, \bar{B}, D, \bar{D}, E, \bar{E}, L, \bar{L}, O, \bar{O}$
- Halpern-Shoham (LICS'86) - undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya (' 00) - undecidability using "begins" and "ends".
- Further results ('07-'10) - undecidability of $O, B \bar{E}, \bar{B} \bar{E}, A \bar{A} D, \bar{A} \bar{D} \bar{B}, \ldots$.
- The positive side: decidability of $B \bar{B}, A \bar{A}, A B \bar{B} \bar{L}$ (next presentation), \ldots
- The decidability of $B \bar{B} D \bar{D} L \bar{L}$ over the class of dense structures.

The Halpern-Shoham Logic

- Halpern-Shoham logic contains 12 operators $A, \bar{A}, B, \bar{B}, D, \bar{D}, E, \bar{E}, L, \bar{L}, O, \bar{O}$
- Halpern-Shoham (LICS'86) - undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) - undecidability using "begins" and "ends".
- Further results ('07-'10) - undecidability of $O, B \bar{E}, \bar{B} \bar{E}, A \bar{A} D, \bar{A} \bar{D} \bar{B}, \ldots$.
- The positive side: decidability of $B \bar{B}, A \bar{A}, A B \bar{B} \bar{L}$ (next presentation), \ldots
- The decidability of $B \bar{B} D \bar{D} L \bar{L}$ over the class of dense structures.

The Logic of Subintervals

- The logic of subintervals contains only one operator (D):
- $\langle D\rangle \varphi$ is satisfied if φ is satisfied in some subinterval.
- $[D] \varphi$ is satisfied if φ is satisfied in all subintervals.

Logic of subintervals results

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).

Logic of subintervals results

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).

Logic of subintervals results

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).

Logic of subintervals results

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of discrete orders. Remark: No nontrivial lower bounds were known.

What can we express using the "subinterval" relation?

- "each morning I spend a while thinking of you"

What can we express using the "subinterval" relation?

- "each morning I spend a while thinking of you"
- "each nice period of my life contains an unpleasant fragment"

What can we express using the "subinterval" relation?

- "each morning I spend a while thinking of you"
- "each nice period of my life contains an unpleasant fragment"
- "there is no error while printing"

Logic of subintervals results

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of discrete orders. Remark: No nontrivial lower bounds where known.

Logic of subintervals results

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of discrete orders. Remark: No nontrivial lower bounds where known.
- Prefixes and subintervals are enough to make the HS logic undecidable over the class of discrete orders (E. Kieroński, J. Marcinkowski, J. Michaliszyn, ICALP 2010).

Logic of subintervals results

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of discrete orders. Remark: No nontrivial lower bounds where known.
- Prefixes and subintervals are enough to make the HS logic undecidable over the class of discrete orders (E. Kieroński, J. Marcinkowski, J. Michaliszyn, ICALP 2010).
- The logic of subintervals is undecidable over the class of discrete orders (this presentation).

Our undecidability result

Assumptions

Assumption	In our paper	In this presentation
Order	All discrete	All finite
Do we allow point intervals $([a, a]) ?$	Whatever	Yes
Subinterval relation or superinterval relation?	Does not matter	Subinterval

An overview of the proof

The logic of subintervals is undecidable
over the class of all finite structures.

How we imagine that - "triangle structures"

How we imagine that - "triangle structures"

How we imagine that - "triangle structures"

Problem 1 - symmetry

Problem 1 - symmetry

Our little library of formulae

- $\lambda_{0}:[D] \perp$

Our little library of formulae

- $\lambda_{0}:[D] \perp$
- $\lambda_{\leq 1}:[D] \lambda_{0}$

Our little library of formulae

- $\lambda_{0}:[D] \perp$
- $\lambda_{\leq 1}:[D] \lambda_{0}$

Our little library of formulae

- $\lambda_{0}:[D] \perp$
- $\lambda_{\leq 1}:[D] \lambda_{0}$
- $\lambda_{1}: \lambda_{\leq 1} \wedge \neg \lambda_{0}$

Problem 1 - symmetry

Now we can deal with the symmetry

Problem 1 - symmetry

Each point-interval is labeled with exactly one of s_{0}, s_{1}, s_{2}, and each interval labeled with s_{0}, s_{1}, or s_{2} is an point-interval.

$$
[D]\left(\lambda_{0} \Leftrightarrow s_{1} \vee s_{2} \vee s_{0}\right) \wedge[D] \neg\left(s_{0} \wedge s_{1}\right) \wedge[D] \neg\left(s_{1} \wedge s_{2}\right) \wedge[D] \neg\left(s_{0} \wedge s_{2}\right)
$$

Problem 1 - symmetry

Each interval with length 2 contains intervals labeled with s_{0}, s_{1}, and s_{2}.

$$
[D]\left(\lambda_{2} \Rightarrow\langle D\rangle s_{0} \wedge\langle D\rangle s_{1} \wedge\langle D\rangle s_{2}\right)
$$

Problem 1 - symmetry

Each interval with length 2 contains intervals labeled with s_{0}, s_{1}, and s_{2}.

$$
[D]\left(\lambda_{2} \Rightarrow\langle D\rangle s_{0} \wedge\langle D\rangle s_{1} \wedge\langle D\rangle s_{2}\right)
$$

Problem 1 - symmetry

Each interval with length 2 contains intervals labeled with s_{0}, s_{1}, and s_{2}.

$$
[D]\left(\lambda_{2} \Rightarrow\langle D\rangle s_{0} \wedge\langle D\rangle s_{1} \wedge\langle D\rangle s_{2}\right)
$$

Problem 1 - symmetry

Problem 1 - symmetry

Problem 1 - symmetry

Problem 1 - symmetry

The source of the undecidability

Regularity + ability to measure \geq undecidability

The source of the undecidability

Regularity + ability to measure \geq undecidability

Actually, with D we only have very limited ability to measure. One of the technical lemmas is that this limited ability already leads to the undecidability.

Second step - regularity

We can encode any finite automaton.

Second step - regularity

We can encode any finite automaton.

Second step - regularity

We can encode any finite automaton.

Third step - the cloud.

Third step - the cloud.

What remains to be explained:
(1) How to write a formula saying that a propositional variable p is a cloud.
(2) How to use this cloud.

Third step - the cloud.

- There exists an interval labeled with p.
- Intervals labeled with p do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with $\neg e$).

Third step - the cloud.

- There exists an interval labeled with p.
- Intervals labeled with p do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with $\neg e$).

Third step - the cloud.

- There exists an interval labeled with p.
- Intervals labeled with p do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with $\neg e$).

Third step - the cloud.

- There exists an interval labeled with p.
- Intervals labeled with p do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with $\neg e$).

Third step - the cloud.

- There exists an interval labeled with p.
- Intervals labeled with p do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with $\neg e$).
(1) $\langle D\rangle p$
(1) $[D](p \Rightarrow[D] \neg p)$
- $[D](\langle D\rangle p \Rightarrow\langle D\rangle(p \wedge e) \wedge\langle D\rangle(p \wedge \neg e))$

Toy example

- We already know how to encode regularity.
- Consider the regular language defined by $\left(a c^{*} b c^{*}\right)^{*}$.
- We want to force that each maximal block of c has the same length.

Toy example

- No angel can see both a and b.
- Each angel has to see a or b.

Toy example

- No angel can see both a and b.
- Each angel has to see a or b.

Toy example

- No angel can see both a and b.
- Each angel has to see a or b.

Toy example

- No angel can see both a and b.
- Each angel has to see a or b.

Summary

- The logic of subintervals is decidable over the class of dense structures.
- The logic of subintervals is undecidable over the class of discrete structures.

Summary

- The logic of subintervals is decidable over the class of dense structures.
- The logic of subintervals is undecidable over the class of discrete structures.
- Is the logic of subintervals decidable over the class of all structures? (open)

Thank you!

Thank you!

Coming next: Davide Bresolin, Angelo Montanari, Pietro Sala and Guido Sciavicco. What's decidable about Halpern and Shoham's interval logic? The maximal fragment $A B \bar{B} L$

