The Ultimate Undecidability Result for the Halpern-Shoham Logic

Jerzy Marcinkowski, Jakub Michaliszyn

Instytut Informatyki University of Wrocław

June 24, 2011

Intervals

- Given an arbitrary total order $\langle \mathbb{D}, \leq \rangle$.
- An interval: [a,b] such that $a,b\in\mathbb{D}$ and $a\leq b$.
- \bullet What relative positions of two intervals can be expressed using $\leq?$

Before and after.

Meet and met by.

Overlaps and overlapped by.

Starts and finishes.

Contains and during.

Started by and finished by.

Equals.

What can we do with those relations?

Allen's algebra.

$\forall xy.x \text{ before } y \Rightarrow \exists z.z \text{ meet } y \land z \text{ met } by x$

Jakub Michaliszyn (|| UWr, PL)

The Ultimate Undecidability Result...

What can we do with those relations?

Halpern-Shoham logic.

 $\langle before \rangle p \land \langle during \rangle (r \land \langle after \rangle q)$

Formally - the models

- Any total order $\mathcal{D}=\langle \mathbb{D},\leq
 angle$
- \bullet Set of propositional variables $\mathcal{V}\textit{ar}$
- Classic temporal logics labeling $\gamma : \mathbb{D} \to \mathcal{P}(\mathcal{V}ar)$

Formally - the models

- Any total order $\mathcal{D}=\langle \mathbb{D},\leq\rangle$
- \bullet Set of propositional variables $\mathcal{V}\textit{ar}$
- Classic temporal logics labeling $\gamma: \mathbb{D} \to \mathcal{P}(\mathcal{V}ar)$
- Interval temporal logics labeling $\gamma : I(\mathbb{D}) \to \mathcal{P}(\mathcal{V}ar)$, where $I(\mathbb{D}) = \{[a, b] | a, b \in \mathbb{D} \land a \leq b\}$

• Halpern–Shoham logic contains 12 operators $A, \overline{A}, B, \overline{B}, D, \overline{D}, E, \overline{E}, L, \overline{L}, O, \overline{O}$

- Halpern–Shoham logic contains 12 operators $A, \overline{A}, B, \overline{B}, D, \overline{D}, E, \overline{E}, L, \overline{L}, O, \overline{O}$
- Halpern-Shoham (LICS'86) undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".

- Halpern–Shoham logic contains 12 operators A, Ā, B, B, D, D, E, Ē, L, L, O, Ō
- Halpern-Shoham (LICS'86) undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) undecidability using "begins" and "ends".

- Halpern-Shoham logic contains 12 operators A, Ā, B, B, D, D, E, E, L, L, O, O
- Halpern-Shoham (LICS'86) undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) undecidability using "begins" and "ends".
- Further results ('07-'10) undecidability of O, BĒ, BĒ, AĀD, ĀDB,

- Halpern–Shoham logic contains 12 operators A, Ā, B, B, D, D, E, Ē, L, L, O, Ō
- Halpern-Shoham (LICS'86) undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) undecidability using "begins" and "ends".
- Further results ('07-'10) undecidability of O, BĒ, BĒ, AĀD, ĀDB,
- The positive side: decidability of $B\overline{B}$, $A\overline{A}$, $AB\overline{B}\overline{L}$ (next presentation), ...

- Halpern–Shoham logic contains 12 operators A, Ā, B, B, D, D, E, Ē, L, L, O, Ō
- Halpern-Shoham (LICS'86) undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) undecidability using "begins" and "ends".
- Further results ('07-'10) undecidability of O, BĒ, BĒ, AĀD, ĀDB,
- The positive side: decidability of $B\overline{B}$, $A\overline{A}$, $AB\overline{B}\overline{L}$ (next presentation), ...
- The decidability of *BBDDLL* over the class of dense structures.

- Halpern–Shoham logic contains 12 operators A, Ā, B, B, D, D, E, Ē, L, L, O, Ō
- Halpern-Shoham (LICS'86) undecidability (of the satisfiability problem for the formulae of the HS logic) using "after", "begins" and "ends".
- Lodaya ('00) undecidability using "begins" and "ends".
- Further results ('07-'10) undecidability of O, BĒ, BĒ, AĀD, ĀDB,
- The positive side: decidability of $B\overline{B}$, $A\overline{A}$, $AB\overline{B}\overline{L}$ (next presentation), ...
- The decidability of *BBDDLL* over the class of dense structures.

The Logic of Subintervals

- The logic of subintervals contains only one operator (D):
- $\langle D \rangle \varphi$ is satisfied if φ is satisfied in some subinterval.
- $[D]\varphi$ is satisfied if φ is satisfied in all subintervals.

• The logic of subintervals is PSPACE-complete over the class of **dense** orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).

- The logic of subintervals is PSPACE-complete over the class of **dense** orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of **reflexive** subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).

- The logic of subintervals is PSPACE-complete over the class of **dense** orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of **reflexive** subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to **remove** intervals from models (follows from T. Schwentick, T. Zeume, 2010).

- The logic of subintervals is PSPACE-complete over the class of **dense** orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of **reflexive** subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to **remove** intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of **discrete** orders. Remark: No nontrivial lower bounds were known.

What can we express using the "subinterval" relation?

• "each morning I spend a while thinking of you"

What can we express using the "subinterval" relation?

- "each morning I spend a while thinking of you"
- "each nice period of my life contains an unpleasant fragment"

What can we express using the "subinterval" relation?

- "each morning I spend a while thinking of you"
- "each nice period of my life contains an unpleasant fragment"
- "there is no error while printing"

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of discrete orders. Remark: No nontrivial lower bounds where known.

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of discrete orders. Remark: No nontrivial lower bounds where known.
- Prefixes and subintervals are enough to make the HS logic undecidable over the class of discrete orders (E. Kieroński, J. Marcinkowski, J. Michaliszyn, ICALP 2010).

- The logic of subintervals is PSPACE-complete over the class of dense orders (D. Bresolin, V. Goranko, A. Montanari, P. Sala, 2007).
- The logic of reflexive subintervals is PSPACE-complete over the class of (finite) discrete orders (A. Montanari, I. Pratt-Hartmann, P. Sala, 2010).
- The logic of subintervals is in EXPSPACE over the class of discrete orders if we allow to remove intervals from models (follows from T. Schwentick, T. Zeume, 2010).
- The problem they left open: the complexity of the logic of subintervals over the class of discrete orders. Remark: No nontrivial lower bounds where known.
- Prefixes and subintervals are enough to make the HS logic undecidable over the class of discrete orders (E. Kieroński, J. Marcinkowski, J. Michaliszyn, ICALP 2010).
- The logic of subintervals is **undecidable** over the class of discrete orders (this presentation).

Our undecidability result

Assumptions

Assumption	In our paper	In this presentation
Order	All discrete	All finite
Do we allow point intervals $([a, a])$?	Whatever	Yes
Subinterval relation or superinterval relation?	Does not matter	Subinterval

An overview of the proof

The logic of subintervals is **undecidable**

over the class of all finite structures.

How we imagine that — "triangle structures"

How we imagine that — "triangle structures"

How we imagine that — "triangle structures"

• $\lambda_0: [D] \perp$

- λ_0 : $[D] \perp$
- $\lambda_{\leq 1}$: $[D]\lambda_0$

- λ_0 : $[D] \perp$
- $\lambda_{\leq 1}$: $[D]\lambda_0$

- $\lambda_0: [D] \perp$
- $\lambda_{\leq 1}$: $[D]\lambda_0$
- $\lambda_1: \ \lambda_{\leq 1} \land \neg \lambda_0$

Now we can deal with the symmetry

Each point-interval is labeled with exactly one of s_0, s_1, s_2 , and each interval labeled with s_0, s_1 , or s_2 is an point-interval.

$$[D](\lambda_0 \Leftrightarrow s_1 \lor s_2 \lor s_0) \land [D] \neg (s_0 \land s_1) \land [D] \neg (s_1 \land s_2) \land [D] \neg (s_0 \land s_2)$$

Jakub Michaliszyn (II UWr, PL)

Each interval with length 2 contains intervals labeled with s_0 , s_1 , and s_2 .

$$[D](\lambda_2 \Rightarrow \langle D \rangle s_0 \land \langle D \rangle s_1 \land \langle D \rangle s_2)$$

Each interval with length 2 contains intervals labeled with s_0 , s_1 , and s_2 .

$$[D](\lambda_2 \Rightarrow \langle D \rangle s_0 \land \langle D \rangle s_1 \land \langle D \rangle s_2)$$

Each interval with length 2 contains intervals labeled with s_0 , s_1 , and s_2 .

$$[D](\lambda_2 \Rightarrow \langle D \rangle s_0 \land \langle D \rangle s_1 \land \langle D \rangle s_2)$$

The source of the undecidability

Regularity + ability to measure \geq undecidability

The source of the undecidability

Regularity + ability to measure \geq undecidability

Actually, with D we only have very limited ability to measure. One of the technical lemmas is that this limited ability already leads to the undecidability.

Second step – regularity

We can encode any finite automaton.

Second step – regularity

We can encode any finite automaton.

Second step – regularity

We can encode any finite automaton.

What remains to be explained:How to write a formula saying that a propositional variable p is a cloud.

How to use this cloud. 2

- There exists an interval labeled with p.
- Intervals labeled with *p* do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with ¬e).

- There exists an interval labeled with *p*.
- Intervals labeled with *p* do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with ¬e).

- There exists an interval labeled with p.
- Intervals labeled with *p* do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with ¬e).

- There exists an interval labeled with p.
- Intervals labeled with *p* do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with ¬e).

- There exists an interval labeled with p.
- Intervals labeled with p do not contain each other.
- Any interval that contains an interval with p, contains two such intervals (one with e and one with ¬e).
- (1) $\langle D \rangle p$
- $[D](p \Rightarrow [D] \neg p)$

- We already know how to encode regularity.
- Consider the regular language defined by $(ac^*bc^*)^*$.
- We want to force that each maximal block of c has the same length.

- No angel can see both *a* and *b*.
- Each angel has to see *a* or *b*.

- No angel can see both *a* and *b*.
- Each angel has to see *a* or *b*.

- No angel can see both *a* and *b*.
- Each angel has to see *a* or *b*.

- No angel can see both *a* and *b*.
- Each angel has to see *a* or *b*.

- The logic of subintervals is decidable over the class of dense structures.
- The logic of subintervals is **undecidable** over the class of **discrete** structures.

- The logic of subintervals is decidable over the class of dense structures.
- The logic of subintervals is undecidable over the class of discrete structures.
- Is the logic of subintervals decidable over the class of all structures? (open)

Thank you!

Thank you!

Coming next: Davide Bresolin, Angelo Montanari, Pietro Sala and Guido Sciavicco. What's

decidable about Halpern and Shoham's interval logic? The maximal fragment ABBL