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Abstract. We consider the satisfiability and finite satisfiability problems for extensions of the
two-variable fragment of first-order logic in which an equivalence closure operator can be applied
to a fixed number of binary predicates. We show that the satisfiability problem for two-variable,
first-order logic with equivalence closure applied to two binary predicates is in 2-NExpTime, and we
obtain a matching lower bound by showing that the satisfiability problem for two-variable first-order
logic in the presence of two equivalence relations is 2-NExpTime-hard. The logics in question lack the
finite model property; however, we show that the same complexity bounds hold for the corresponding
finite satisfiability problems. We further show that the satisfiability (=finite satisfiability) problem
for the two-variable fragment of first-order logic with equivalence closure applied to a single binary
predicate is NExpTime-complete.
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1. Introduction. We investigate extensions of the two-variable fragment of first-
order logic in which certain distinguished binary predicates are declared to be equiv-
alences, or in which an operation of ‘equivalence closure’ can be applied to these
predicates. (The equivalence closure of a binary relation is the smallest equivalence
that includes it.) Denoting the two-variable fragment of first-order logic with equality
by FO2, let EQ2

k be the extension of FO2 in which k distinguished binary predicates
are interpreted as equivalences; and let EC2

k be the extension of FO2 in which we can
take the equivalence closure of any of k distinguished binary predicates. We determine
the computational complexity of the satisfiability and finite satisfiability problems for
EQ2

k and EC2
k.

As is well-known, FO2 enjoys the finite model property [25], and its satisfiability
(= finite satisfiability) problem is NExpTime-complete [8]. It was shown in [20] that
EQ2

1 also has the finite model property, with satisfiability again NExpTime-complete.
However, the same paper showed that the finite model property fails for EQ2

2, and
that its satisfiability problem is in 3-NExpTime. An identical upper bound for the
finite satisfiability problem was later obtained in [22]. The best currently known
corresponding lower bound for these problems is 2-ExpTime, obtained from the two-
variable guarded fragment with equivalence relations [16] (discussed below). It was
further shown in [20] that the satisfiability and finite satisfiability problems for EQ2

3

are undecidable.
In this paper we show: (i) EC2

1 retains the finite model property, and its satisfi-
ability problem remains in NExpTime; (ii) the satisfiability and finite satisfiability
problems for EC2

2 are both in 2-NExpTime; (iii) the satisfiability and finite satisfia-
bility problems for EQ2

2 are both 2-NExpTime-hard. Taking into account the above-
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mentioned results, this settles, for all k ≥ 1, the complexity of satisfiability and finite
satisfiability for both EC2

k and EQ2
k: all these problems are NExpTime-complete if

k = 1, 2-NExpTime-complete if k = 2, and undecidable if k ≥ 3. Thus, in this paper,
we close the existing gap for EQ2

2, and extend the complexity bounds for EQ2
k to the

more expressive logic EC2
k, for k = 1, 2. Additionally, we show that the satisfiability

and finite satisfiability problems for FO2 with one equivalence and one transitive re-
lation (without equality or any other binary relations) are both undecidable. This is
a slight strengthening of a result announced in [22], which in turn sharpens an earlier
result that FO2 with two transitive relations is undecidable [13, 16].

The most significant of these new results is the upper complexity bound of 2-
NExpTime for EC2

2. Our strategy involves a non-deterministic reduction from the
(finite) satisfiability problem for EC2

2 to the problem of determining the existence of a
(finite) edge-coloured bipartite graph subject to constraints on the numbers of edges of
each colour incident to its vertices. This reduction runs in doubly-exponential time,
and produces a set of constraints doubly-exponential in the size of the given EC2

2-
formula. We then show that this latter problem is in NPTime, by non-deterministic
reduction to integer programming. Crucial to our argument is a ‘Carathéodory-type’
result on integer programming due to [5].

The logic FO2 embeds, via the standard translation, multi-modal propositional
logic, whose good algorithmic and model-theoretic behaviour is characteristically ro-
bust both with respect to extensions of its logical syntax (for example, by fixed point
operations) and also with respect to restrictions on the class of structures over which
it is interpreted (for example, in the form of conditions on the modal accessibility rela-
tions). Furthermore, many varieties of description logic [2]—now a standard paradigm
in industrial applications—can be embedded in FO2 or its various extensions.

In respect of robustness under syntactic extensions, FO2 appears, by contrast, less
attractive: with the notable exception of the counting extension [10, 27, 29], most of its
syntactic extensions are undecidable [9, 11]. In respect of restrictions on the structures
over which it is interpreted, however, the behaviour of FO2 is more mixed, and to some
extent less well-understood. The most salient such restrictions are those featuring (i)
linear orders, (ii) transitive relations and (iii) equivalences. In the presence of a
single linear order, the satisfiability and finite satisfiability problems for FO2 remain
NExpTime-complete [26]. For two linear orders, ExpSpace-completeness of finite
satisfiability is shown, subject to certain restrictions on signatures, in [30]. (The case
of unrestricted signatures, and decidability of the general satisfiability problem are
currently open.) For three linear orders, both satisfiability and finite satisfiability
are undecidable [17, 26]. Turning to transitive relations, the satisfiability problem for
FO2 in the presence of a single transitive relation has recently been shown to be in
2-NExpTime [33]. (The corresponding finite satisfiability problem is still open.) As
mentioned above, both satisfiability and finite satisfiability of FO2 are undecidable
in the presence of two transitive relations. Restricting attention to interpretations
involving equivalences yields the logics EQ2

k, discussed in this paper.

Closely related to these logics are extensions of FO2 in which the operations
of transitive closure or equivalence closure can be applied to one or more binary
predicates. Such operators can be used to express non-first-order notions such as
reachability or connectedness in (directed or undirected) graphs—notions which arise
naturally in a wide range of contexts, perhaps most notably in static program analysis.
Fragments of first-order logic augmented with an operation of transitive closure for
which decidability has been shown are actually rather rare. One case is the logic
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∃∀(DTC+[E]), involving the deterministic transitive closure operator, which has an
exponential-size model property [12]. Another is the logic obtained by extending
the two-variable guarded fragment [1] with a transitive closure operator applied to
binary symbols appearing only in guards; the satisfiability problem for this logic is 2-
ExpTime-complete [24]. It has recently been shown that satisfiability of the fragment
∃∗∀2 with transitive closure of one binary relation is decidable in 2-NExpTime [18].
The decidability of satisfiability and finite satisfiability for FO2 with transitive closure
applied to a single binary relation are both still open. Adding equivalence closure
operators to FO2 yields the logics EC2

k, discussed in this paper.

It is instructive to consider the relation of the above logics to the well-known
guarded fragment—the subset of first-order logic in which all quantifiers are rela-
tivised by atoms [1]. By the two-variable guarded fragment, denoted GF2, we un-
derstand the intersection of the guarded fragment with FO2. It was shown in [7]
that GF2 has the finite model property, and that satisfiability is ExpTime-complete.
As with FO2, so too with GF2, we can consider extensions in which certain distin-
guished binary predicates are required to denote transitive relations or equivalences,
or in which corresponding closure operations can be applied to these predicates. The
complexity bounds for such extensions of FO2 and GF2 are in many cases identical,
a notable exception (mentioned above) being the case of two equivalences, which, for
GF2 yields a 2-ExpTime-complete logic [16], and for FO2—as shown in this paper—a
2-NExpTime-complete logic. For GF2, it also makes sense to study variants in which
the distinguished predicates may appear only in guards [6]. In this case, GF2 with
any number of equivalences appearing only as guards remains NExpTime-complete
[16], while GF2 with any number of transitive relations appearing only as guards is
2-ExpTime-complete [32, 15]. Table 1.1 summarizes the above results.

The paper is organized as follows. In Sec. 2, we define the logics EC2
k, in which

the distinguished binary predicates r1, . . . , rk are paired with the corresponding pred-
icates r#

1 , . . . , r
#

k , representing their respective equivalence closures. In Sec. 3 we
establish a ‘Scott-type’ normal form for EC2

2, allowing us to restrict the nesting of
quantifiers to depth two, and then show how this normal form can be transformed into
so-called reduced normal form, producing a syntactically simpler formula at the cost
of an exponential increase in size. In Sec. 4 we recall a small substructure property for
FO2 [20], allowing us to replace an arbitrary substructure in a model of some FO2-
formula ϕ with one whose size is exponentially bounded in the size of ϕ’s signature.
Then we prove a technical lemma, adjusting the above to our current purposes, which
then will be used in the upper complexity bound for EC2

2 obtained in Sec. 6. As a
by-product, we obtain the finite model property for EC2

1 along with a NExpTime
upper bound on the complexity of satisfiability. In Sec. 5, we define two problems
concerning bipartite graphs with coloured edges: the graph existence problem and
finite graph existence problem. We show that both problems are in NPTime, by non-
deterministic polynomial-time reduction to integer programming. (This is the most
labour-intensive part of the entire proof.) Sec. 6 is then able to establish that the
(finite) satisfiability problem for EC2

2 is in 2-NExpTime via a non-deterministic dou-
bly exponential-time reduction to the (finite) graph existence problem. Sec. 7 shows,
using the familiar apparatus of tiling systems, that the satisfiability and finite satis-
fiability problems for EQ2

2 are 2-NExpTime-hard. These matching bounds establish
the 2-NExpTime-completeness of satisfiability and finite satisfiability for both EC2

2

and EQ2
2. In the last section we show that when, instead of EQ2

2, we consider FO2

with one equivalence and one transitive relation (or one equivalence and one partial
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Logic Special symbols Number of special symbols in the signature
1 2 3 or more

GF2
Transitivity 2-ExpTime∗) undecidable undecidable

[16] [16, 13] [6]
FMP

ExpTime Linear order NExpTime∗∗) ExpSpace∗∗) ∗∗∗) undecidable
[7] [26] [30] [26, 17]

Equivalence FMP, NExpTime 2-ExpTime∗) undecidable
[20] [16] [20]

FO2
Transitivity in 2-NExpTime∗) undecidable undecidable

[33] [16, 13] [11]
FMP [25]

NExpTime Linear order NExpTime ExpSpace∗∗∗) undecidable
[8] [26] [30] [26, 17]

Equivalence FMP, NExpTime in 3-NExpTime undecidable
[20] [20, 22] [20]

2-NExpTime
this paper

Equivalence FMP, NExpTime 2-NExpTime undecidable
Closure this paper this paper [20]

Table 1.1: Overview of two variable logics over special classes of structures. FMP
stands for Finite Model Property. Unless indicated otherwise, the complexity bounds
are tight. Key to symbols: ∗) only general satisfiability; ∗∗) follows from the results on
FO2, as any pair of elements is guarded by a linear order; ∗∗∗) only finite satisfiability
and subject to certain restrictions on signatures.

order), both the satisfiability and finite satisfiability problems become undecidable,
even when we do not allow equality in the logic. Sections 7 and 8 (containing lower
bounds) can be read immediately after the definitions of our logics from Section 2,
independently of the intervening material.

2. Preliminaries. We employ standard terminology and notational from model
theory throughout this paper (see, e.g. [4]). In particular, we refer to structures using
Gothic capital letters, and their domains using the corresponding Roman capitals. We
denote by FO2 the two-variable fragment of first-order logic (with equality), without
loss of generality restricting attention to signatures of unary and binary predicates.
We denote by EC2

k the set of FO2-formulas over any signature τ = τ0 ∪{r1, . . . , rk}∪
{r#

1 , . . . , r
#

k }, where τ0 is an arbitrary set containing unary and binary predicates, and
r1, . . . , rk, r#

1 , . . . , r
#

k are distinguished binary predicates. In the sequel, any signature
τ is assumed to be of the above form (for some appropriate value of k). We denote
by EQ2

k the set of EC2
k-formulas in which the predicates r#

1 , . . . , r
#

k do not occur.

The semantics for EC2
k are as for FO2, subject to the restriction that r#

i is al-
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ways interpreted as the equivalence closure of ri. More precisely: we consider only
structures A in which, for all i (1 ≤ i ≤ k), (r#

i )A is the smallest reflexive, symmetric
and transitive relation including rAi . The semantics for EQ2

k are likewise as for FO2,
but subject to the restriction that ri is always interpreted as an equivalence. Where
a structure is clear from context, we may equivocate between predicates and their
extensions, writing, for example, ri and r#

i in place of the technically correct rAi and
(r#

i )A. To see that EC2
k is more expressive than its sub-fragment EQ2

k, observe that
the EC2

1-formula ∀x∀y.r#

1 (x, y) expresses graph connectivity. As this property can be
shown not to be expressible in first-order logic (using a standard compactness argu-
ment, e.g. cf. Proposition 3.1 in [23]), it follows that it cannot be expressed in any of
the logics EQ2

k.

Let A be a structure over τ . We say that there is an ri-edge between a and a′ ∈ A
if A |= ri[a, a

′] or A |= ri[a
′, a]. Distinct elements a, a′ ∈ A are ri-connected if there

exists a sequence a = a0, a1, . . . , ak−1, ak = a′ in A such that for all j (0 ≤ j < k)
there is an ri-edge between aj and aj+1. Such a sequence is called an ri-path from a
to a′. Thus, A |= r#

i [a, a′] if and only if a and a′ are ri-connected. A subset B of A
is called ri-connected if every pair of distinct elements of B is ri-connected. Maximal
ri-connected subsets of A are equivalence classes of r#

i , and are called r#

i -classes. We
also say that elements a, a′ ∈ A are in free position in A if they are not ri-connected,
for any i ∈ {1, . . . , k}. Similarly, subsets B and B′ of A are in free position in A if
every two elements b ∈ B and b′ ∈ B′ are in free position in A.

We mostly work with the logic EC2
2. In any structure A, the relation r#

1 ∩ r
#

2 is
also an equivalence, and we refer to its equivalence classes, simply, as intersections.
Thus, an intersection is a maximal set that is both r1- and r2-connected. When
discussing induced substructures, a subtlety arises regarding the interpretation of the
closure operations. If B ⊆ A, we take it that, in the structure B induced by B,
the interpretation of r#

i is given by simple restriction: (r#

i )B = (r#

i )A ∩ B2. This
means that, while (r#

i )B is certainly an equivalence including rBi , it may not be the
smallest, since, for some a, a′ ∈ B, an ri-path connecting a and a′ in A may contain
elements which are not members of B. (Such a situation may arise even when B
is an intersection.) To reduce notational clutter, we use the (possibly decorated)
letter A to denote ‘full’ structures in which we are guaranteed that (r#

i )A is the
equivalence closure of rAi . For structures denoted by other letters, B, C, . . . (again,
possibly decorated), no such guarantee applies. Typically, but not always, these latter
structures will be induced substructures. Also, when the domain of some structure A
consists of several disjoint sets, we often emphasize the fact by writing A = B ∪̇ C,
etc.

An (atomic) 1-type (over a given signature) is a maximal satisfiable set of atoms
or negated atoms with free variable x. Similarly, an (atomic) 2-type is a maximal
satisfiable set of atoms and negated atoms with free variables x, y. Note that the
numbers of 1-types and 2-types are bounded exponentially in the size of the signature.
We often identify a type with the conjunction of all its elements.

For a given τ -structure A, we denote by tpA(a) the 1-type realized by a, i.e. the
1-type α such that A |= α[a]. Similarly, for distinct a, b ∈ A, we denote by tpA(a, b)
the 2-type realized by the pair a, b, i.e. the 2-type β such that A |= β[a, b]. We denote
by α[A] the set of all 1-types realized in A, and by β[A] the set of all 2-types realized
in A. For S ⊆ A, we denote by α[S] the set of all 1-types realized in S, and similarly
for β[S]. For S1, S2 ⊆ A, we denote by β[S1, S2] the set of all 2-types tpA(a1, a2)
with ai ∈ Si, for i = 1, 2; we write β[a, S2] in preference to β[{a}, S2].
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s, p q p q p

r1 r2 r1 r2 r1
· · ·

Figure 2.1: Model of an EQ2
2-formula forcing infinitely many equivalence classes.

We conclude this section with an illustration of the expressive power of the logic
EQ2

2. Specifically, we exhibit a satisfiable formula in all of whose models the equiv-
alences r1 and r2 both have infinitely many equivalence classes. This demonstrates
the failure of the finite model property for both EQ2

2 and EC2
2. (Recall that, by con-

trast, FO2 has the finite model property.) Let p, q and s be unary predicates in the
signature τ0. The EQ2

2-formula

∀x∀y(r2(x, y) ∧ p(x) ∧ p(y)→ x = y)

states that each r2-class contains at most one element satisfying p. Thus, we can
evidently write an an EQ2

2-formula ϕ expressing the following conditions:
(i) some element satisfies both s and p;
(ii) every element satisfying p is r1-equivalent to one satisfying q; every element

satisfying q is r2-equivalent to one satisfying p;
(iii) p and q are disjoint and each r2-class contains at most one element satisfying p

and one satisfying q; analogously for r1-classes; the r2-class of any element of s
is trivial (a singleton);

The structure illustrated in Fig. 2.1 satisfies ϕ. Conversely, every model of ϕ contains
an infinite chain of this form: choose some element of s ∩ p by (i); one then finds
new elements in q and p along r1- and r2-links in an alternating fashion by appeal
to condition (ii); these always have to be fresh elements, i.e., distinct from previous
elements in the chain, on pain of violating (iii). A slightly more elaborate construction
shows that EQ2

2 can even force equivalence-classes to be infinite. The interested reader
is referred to [16, 21] for more examples.

3. Normal Forms. In the sequel, we take the (possibly decorated) letter p
to range over unary predicates, and the (possibly decorated) letter θ to range over
quantifier-free (but not necessarily equality-free) FO2-formulas. If ϕ is a formula, we
write ¬0ϕ for ϕ and ¬1ϕ for ¬ϕ. A normal form EC2

2-formula is a sentence

ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ψ11, (3.1)

where χ is of the form ∀x∀y.θ and, for s, t ∈ {0, 1}, ψst is a conjunction
∧
i∈I ∀x(pi(x)→

∃y(¬sr#

1 (x, y) ∧ ¬tr#

2 (x, y) ∧ θi)) (with index set I depending on s and t).

Lemma 3.1. Let ϕ be an EC2
2-formula over a signature τ . We can compute,

in polynomial time, a normal-form EC2
2-formula ϕ′ over a signature τ ′ such that ϕ

and ϕ′ are satisfiable over the same domains, and τ ′ consists of τ together with some
additional unary predicates.

Proof. It was shown in [31] that we may compute, in polynomial time, an FO2-
formula ϕ′′ = ∀x∀y.χ ∧

∧
i∈I ∀x∃y.θi, with the following properties: (i) ϕ′′ |= ϕ; (ii)

any model A |= ϕ may be expanded to a model A′ |= ϕ′′ by interpreting additional
unary predicates. Having computed ϕ′′, take fresh unary predicates pi,s,t, for all i ∈ I
and all s, t ∈ {0, 1}; now let ϕ′ be the result of replacing each conjunct ∀x∃y.θi in ϕ′′
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by ∧
s,t∈{0,1}

∀x
(
pi,s,t(x)→ ∃y(¬sr#

1 (x, y) ∧ ¬tr#

2 (x, y) ∧ θi)
)
,

and adding the corresponding conjunct ∀x(
∨
s,t∈{0,1} pi,s,t(x)). Reorganizing con-

juncts and indices if necessary, ϕ′ has the properties required by the lemma.
The normal form (3.1) is an elaboration of the normal form for FO2 presented

in [31]. The four conjuncts ψst allow us to separate out the role of 2-types involving
different combinations of the distinguished relations r#

1 and r#

2 . However, it turns
out that slightly simpler formulas suffice for this purpose. A reduced normal form
EC2

2-formula is a sentence

ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ω, (3.2)

where χ and the ψst are as in (3.1), and ω is a conjunction
∧
i∈I ∃x.pi(x) for some

index set I. Formulas in reduced normal form lack the ψ11 conjunct, and feature
instead the conjunct ω, whose satisfaction depends only on the set of realized 1-types.
As all conjuncts in the formulas ψ00, ψ10, and ψ01 are guarded, eliminating the (non-
guarded) conjunct ψ11 simplifies the process of model construction. The following
lemma shows that the reduced normal form is general enough for our purposes.

Lemma 3.2. Given any EC2
2-formula ϕ over a signature τ , we can compute, in

exponential time, an EC2
2-formula ϕ′ in reduced normal form over a signature τ ′, such

that: (i) |τ ′| is bounded polynomially in |ϕ|; and (ii) ϕ and ϕ′ are satisfiable over the
same domains of cardinality greater than f(|ϕ|) for a fixed exponential function f .

The rest of this section is devoted to proving Lemma 3.2. We first fix a normal-
form EC2

2-sentence, ϕ, as in (3.1), over a signature τ . Write

ψ11 =
∧
i∈I
∀x(pi(x)→ ∃y(¬r#

1 (x, y) ∧ ¬r#

2 (x, y) ∧ θi(x, y))) (3.3)

where I = {1, . . . ,m}. The following terminology will be useful. If A |= ϕ and a ∈ A,
then any element b ∈ A such that A |= ¬r#

1 [a, b] ∧ ¬r#

2 [a, b] ∧ θi[a, b] is called an ith
free witness (or simply a free witness) for a (in A). Such an ith free witness certainly
exists if A |= pi[a].

Lemma 3.3. Suppose A |= ϕ, where ϕ is a normal-form EC2
2-formula (3.1) over

τ , with ψ11 as in (3.3), and m = |I|. Then there is a τ -structure A′ |= ϕ over the
same domain, A, with the following property: there exists B ⊆ A, of cardinality at
most Z = 2m(m+ 2)(3m+ 5)(1 +m+m2)2|τ | such that, if any a ∈ A has an ith free
witness (for any 1 ≤ i ≤ m), then a has an ith free witness in B.

Proof. If α ∈ α[A], let Aα be the set of elements of A realizing the 1-type α in
A. Our strategy is to define, for each α ∈ α[A], a subset Bα ⊆ Aα of cardinality at
most 2m(m + 2)(3m + 5), and to show that, for every ` ≤ m and every a ∈ A, if a
has ` distinct free witnesses in Aα, then a is in free position with respect to at least
` elements of Bα.

Fixing α, denote by si the restriction of r#

i to Aα. Thus, s1, s2 and s1 ∩ s2 are
equivalence relations on Aα: in the remainder of this proof, we refer to the equiv-
alence classes of s1 ∩ s2 as intersections, since no confusion will result. We call an
si-equivalence class comprising more than one intersection an si-clique; we call an in-
tersection which is both an s1-class and an s2-class a loner; and we use the term unit
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to refer to either an s1-clique or an s2-clique or a loner. Thus, the collection of units
forms a cover of Aα. Evidently: an s1- and an s2-clique have at most one intersection
in common; no two different si-cliques have any elements (and so intersections) in
common; and no si-clique includes any loner. If a ∈ A is r#

i -related to any element
in an intersection, I, then it is r#

i -related to every element in I: we simply say that
a is r#

i -related to I. The following facts are again obvious: if a is r#

i -related to (any
element of) any intersection in an si-clique, then a is r#

i -related to every intersection
in that si-clique; if distinct units C and C ′ are si-equivalence classes, then a cannot
be simultaneously r#

i -related to an intersection in C and also to an intersection in
C ′; and a is r#

1 -related to at most one intersection in any s2-clique, whence there is
at least one intersection in that s2-clique to which a is not r#

1 -related (and similarly
with indices exchanged).

To define Bα, select 2(m + 2) distinct units in A. (If A has fewer units, select
them all). Each selected unit C thus contains at most 2(m+2) intersections belonging
to any other selected unit: select all of these intersections, and, in addition, select
(m+ 1) further intersections in C if possible. (If this is not possible, then C contains
fewer than 3m + 5 intersections in total, so select them all). Finally, in any selected
intersection I, select up to m elements. (If I contains fewer than m elements, select
them all). The set Bα of selected elements in selected intersections in selected units
satisfies |Bα| ≤ 2m(m+ 2)(3m+ 5).

We show that, for every a ∈ A, if a has ` ≤ m distinct free witnesses in Aα, then
a is in free position with respect to at least ` elements of Bα. Observe first that, if
Aα has 2(m+ 2) or more units, then there are m+ 2 selected si-cliques or loners for
some i ∈ {1, 2}. Say, i = 1. Then, fix a ∈ A. At least m + 1 of these m + 2 selected
units are such that a is not r#

1 -related to them, and at least m of these m+ 1 are not
loners to which a is r#

2 -related. Each of these m remaining units therefore contains
at least one intersection to which a is in free position. And since distinct s1-cliques
are disjoint, we may choose one element from each, thus obtaining m ≥ ` elements of
Bα in free position with respect to a. Henceforth, then, we assume that Aα has fewer
than 2(m + 2) units; and therefore that all units are selected. Again, fix a ∈ A, and
suppose first that a ∈ A has free witnesses in some non-selected intersection. Then
that intersection lies in a unit, C, containing at least m+ 1 selected intersections not
belonging to any other unit. Without loss of generality, suppose C is an s1-clique.
Then a cannot be r#

1 -related to any intersection in C, and can be r#

2 -related to at
most one intersection in C, whence we may find at least m selected intersections in C
standing in free position to a. Since distinct intersections are disjoint, we may choose
one element from each of these intersections, again obtaining m ≥ ` elements of Bα
in free position with respect to a. On the other hand, if all of a’s free witnesses lie in
selected intersections, then we can obviously replace any non-selected free witness by
one of the m selected elements in the same intersection, thus obtaining ` elements of
Bα in free position with respect to a.

By carrying out this procedure for every 1-type α, we obtain a collection of at
most 2m(m + 2)(3m + 5)|α[A]| potential free witnesses. Call this set B1; let B2

be a set containing the required free witnesses for all elements of B1; let B3 be a set
containing the required free witnesses for all elements of B2; and let B = B1∪B2∪B3.
Thus, |B| ≤ Z. We now change the binary predicates of A to obtain a structure A′ as
follows. Fix any a ∈ A \ (B1 ∪B2). For all i (1 ≤ i ≤ m), if a has an ith free witness,
then pick one such witness; and let the (distinct) elements obtained in this way be,
in some order, b1, . . . , b`. Now let b′1, . . . , b

′
` be distinct elements of B1 in free position
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with respect to a, with tpA′ [b′h] = tpA[bh] for all h (1 ≤ h ≤ `). By construction of
B1, this is clearly possible. Now set

tpA′ [a, b′h] = tpA[a, bh] (3.4)

for all h (1 ≤ h ≤ `). If b ∈ B1, then any required free witnesses for b lie in B2, and
so cannot have been disturbed by the re-assignments (3.4) (because a 6∈ B1 ∪ B2).
If b ∈ (B2 \ B1), then b cannot be the element a in any instance of (3.4) (because
a 6∈ B2), and equally cannot be the element bh, (because bh ∈ B1). Thus, required
witnesses for elements of B1 ∪ B2 are unaffected by the changes in (3.4), and are,
by definition in B2 ∪ B3 ⊆ B. That is: in the construction of A′, all elements of
B1 ∪ B2 retain their former i-witnesses in B, while all elements of B \ (B1 ∪ B2)
acquire (possibly new) i-witnesses in B1 ⊆ B. Furthermore β[A′] ⊆ β[A]. It follows
that we have A′ |= ϕ, so that A′ and B are as required.

Now we can carry out the main task of this section, namely to prove Lemma 3.2.
Proof. [Lemma 3.2] Let ϕ be as in (3.1), and τ the signature of ϕ. As before, we

write ψ11 =
∧
I ∀x(pi(x)→ ∃y(¬r#

1 (x, y)∧¬r#

2 (x, y)∧θi(x, y))), where I = {1, . . . ,m}.
We proceed to eliminate the conjuncts of ψ11. Let Z be as in Lemma 3.3, and
write z = dlog(Z + 1)e (so that z is bounded by a fixed polynomial function of
|ϕ|). Now take mz new unary predicates pi,1, . . . , pi,z (1 ≤ i ≤ m), and a further
z unary predicates q1, . . . , qz. For all j (0 ≤ j < Z), denote by p̄i,j(x) the formula
¬j[1]pi,1(x) ∧ · · · ∧ ¬j[z]pi,z(x), where j[h] is the hth digit in the z-bit representation
of j; define q̄j similarly, for all j (0 ≤ j ≤ Z). As an aid to intuition, when j < Z,
read p̄i,j(x) as “the ith free witness for x is the jth element of a special set” and read
q̄j(x) as “x is the jth element of the special set”; read q̄Z(x) as “x is not in the special
set”. The following sentence states that, for all i (1 ≤ i ≤ m), every element satisfies
p̄i,j(x) for some j (0 ≤ j < Z):

χa = ∀x
m∧
i=1

Z−1∨
j=0

pi,j(x).

The following sentence states that, for any pair of elements satisfying, respectively,
p̄i,j and q̄j , the second is an ith free witness for the first (if such a free witness exists):

χb = ∀x∀y
m∧
i=1

Z−1∧
j=0

((pi(x) ∧ pi,j(x) ∧ qj(y))→ (¬r#

1 (x, y) ∧ ¬r#

2 (x, y) ∧ θi)).

Let χ′ = χa ∧ χb ∧ χ. Observe that all quantification in χ′ is universal. Finally, the
following sentence states that, for all j (0 ≤ j < Z), there is an element satisfying
q̄j(x):

ω =
∧Z−1
j=0 ∃xq̄j(x).

Note that |χ′| and |ω| are bounded by an exponential function of |ϕ|. We claim that ϕ
and ϕ′ = χ′∧ψ00∧ψ01∧ψ10∧ω are satisfiable over the same domains of cardinality at
least Z. On the one hand, ϕ′ evidently entails ψ11, and hence ϕ. On the other hand,
suppose A |= ϕ, with |A| ≥ Z. Let A′ and the set B have the properties guaranteed
by Lemma 3.3, and let {b0, . . . , bZ−1} ⊆ A′ include B. We expand A′ to a structure
A′′ interpreting the predicates pi,h and qh as follows: for all i (1 ≤ i ≤ m) and a ∈ A,
if the ith free witness for a exists and is equal to bj , ensure A′′ |= p̄i,j [a]; for all j
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(0 ≤ j ≤ Z − 1), ensure A′′ |= q̄j [bj ] (note that for this we need b0, . . . , bZ−1 to be
distinct); for all a 6∈ {b0, . . . , bZ−1}, ensure A′′ |= q̄Z [a]. It is then easy to see that
A′′ |= χ′ ∧ ω.

4. Small Intersection Property for EC2
2. In [21] (Proposition 4), it was

proved that, for any structure A with substructure B, one may replace B by an
‘equivalent’ structure B′ of bounded size, in such a way as to preserve certain rela-
tions between various parts of A:

Lemma 4.1. Let A be a structure interpreting a signature of unary and binary
predicates, let B be a subset of A such that α[B] = {α} for some 1-type α, and let
C = A \B. Then there is a τ -structure A′ with domain A′ = B′ ∪̇C for some set B′

of size bounded by 3|β[A]|3, such that:
(i) A′�C = A�C;

(ii) α[B′] = α[B] = {α}, whence α[A′] = α[A];
(iii) β[B′] = β[B] and β[B′, C] = β[B,C], whence β[A′] = β[A];
(iv) for each b′ ∈ B′ there is some b ∈ B with β[b′, A′] ⊇ β[b, A];
(v) for each a ∈ C: β[a,B′] ⊇ β[a,B].

(vi) for each b′ ∈ B′ we have β[b′, B′] = β[B].
Conditions (i)-(vi) of the above Lemma ensure that any prenex ∀∀- or ∀∃-formula

of FO2 satisfied in A is also satisfied in A′. This result was used in [21] to show that
in models of EQ2

1-sentences equivalence classes can be replaced by classes of bounded
size. (Actually, we have modified the published result in [21] slightly: the restriction
that the elements of B all have the same 1-type in A, as well as Condition (vi) and
the size-bound on B′, were absent from the original. However, these modifications
require no change to the original proof.)

It is important to stress that the structures considered in Lemma 4.1 make no
special provision regarding the predicates r#

1 , r
#

2 , . . . . In particular, even if r#

i is
interpreted as the equivalence closure of ri in A, there is no guarantee that this will
be so in A′. The main task of this section is to prove a variant of Lemma 4.1 in
which this requirement can be imposed. Since, as we saw at the end of Sec. 2, EQ2

2-
sentences can force models to have infinitely many equivalence classes, and indeed to
have infinite equivalence classes, this task is non-trivial.

This variant will be then used to prove the following lemma, were, as usual in
this paper, r#

i is always required to be interpreted as the transitive closure of ri:
Lemma 4.2. Let ϕ be a satisfiable EC2

2-sentence in normal or in reduced normal
form, over a signature τ . Then there exists a model of ϕ in which the size of each
intersection is bounded by K(|τ |), for a fixed exponential function K.

We begin with the advertised variant of Lemma 4.1 allowing us to bound the size
of a fragment of an intersection consisting of realizations of a single 1-type.

Lemma 4.3. Let A be a τ -structure, D1 be an r#

1 -class, D2 be an r#

2 -class, α be a
1-type, and B be the set of all the elements of 1-type α from the intersection D1∩D2.
Then there is a τ -structure A′′ with domain A′′ = B′′ ∪̇C, where C = A \B and B′′

is some set of realizations of α with |B′′| ≤ 45|β[A]|6, such that:
(i) A′′�C = A�C;

(ii) α[B′′] = α[B] = {α}, whence α[A′′] = α[A];
(iii) β[B′′] = β[B] and β[B′′, C] = β[B,C], whence β[A′′] = β[A];
(iv) for each b′′ ∈ B′′, there is some b ∈ B with β[b′′, A′′] ⊇ β[b, A];
(v) for each a ∈ C, β[a,B′′] ⊇ β[a,B];

(vi) B′′ ∪ (D1 \B) is an r#

1 -class and B′′ ∪ (D2 \B) an r#

2 -class.
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B1 B2

B3

B4

B0

Figure 4.1: Making B′′ r1- and r2-connected. A solid (dashed) line between Bi and
Bj means that each element from Bi has an r1-edge (r2-edge) to each element from
Bj .

Proof. If |B| ≤ 1, then we simply put B′′ = B and we are done. Otherwise, our
first step is a simple application of Lemma 4.1. Let p1, p2 be fresh unary predicates.
Let Ā be the expansion of A obtained by setting p1, p2 true for all elements of D1,
resp. D2. Let the result of the application of Lemma 4.1 to Ā and the substructure
induced by B be a structure Ā′, in which B′ is the replacement of B. By A′ we denote
the restriction of Ā′ to the original signature, i.e. the structure obtained from Ā′ by
dropping the interpretations of p1 and p2. Thus, A′ is a structure with domain C ∪B′
and |B′| is exponentially bounded in the signature.

Let D′i = B′∪(Di \B) (i = 1, 2). By the second equality from part (iii) of Lemma
4.1 and by our strategy of marking elements of Di with the auxiliary predicate pi,
it follows that any pair of elements from D′i is joined by r#

i . However it is not
guaranteed that D′i is ri-connected, and we need to repair this defect. To do so,
we employ an additional combinatorial construction, yielding a structure A′′ whose
domain is C∪̇B′′. The restrictions of the structures A, A′, and A′′ to C are equal. We
denote D′′i = B′′ ∪ (Di \B) (i = 1, 2). The main goal of the construction of A′′ is to
make B′′ r1- and r2-connected, which, due to part (v) of Lemma 4.1, will also make
D′′1 r1-connected, and D′′2 r2-connected. We consider three cases. We first present
the constructions required in all cases and after that we prove correctness of each of
them.

Case 1: There is a pair of distinct elements s, t ∈ B such that A |= r1[s, t], and there
is a pair of distinct elements u,w ∈ B such that A |= r2[u,w].

We build B′′ from five pairwise disjoint sets B0, . . . , B4. In A′′, we define the
substructures Bi as copies of B′, and we make the substructures induced by C ∪
Bi isomorphic to A′. It remains to set the connections (i.e. 2-types) among the
Bi’s. For i = 0, . . . , 4, and for every pair of elements b1 ∈ Bi, b2 ∈ B(i+1)mod 5, set

tpA′′(b1, b2) := tpA(s, t). For every pair of elements b1 ∈ Bi, b2 ∈ B(i+2)mod 5, set

tpA′′(b1, b2) := tpA(u,w). See Fig. 4.1. Note that this fully defines A′′.

Case 2: For every pair of distinct elements s, t ∈ B we have A |= ¬r1[s, t] ∧ ¬r2[s, t].
Let S1

i , . . . , S
ki
i (i = 1, 2), be the partition of D′i in A′ into maximal ri-connected

subsets. Let us first observe that each Ski contains at least one element from B′.
Indeed, Ski \B′ is a subset of Di, from which there are no ri-edges to Di\(B∪(Ski \B′))
in A, since otherwise, such an edge would be retained in A′ and Ski would not be
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B1 D′1D1

B′B

B2

S1
1 S2

1 S3
1S1

1\B′ S2
1\B′ S3

1\B′

D′′1

a1

a2

a3

a4

a1

a2

a3

a4

d e

e′

d′

Figure 4.2: Making D′′1 r1-connected in Case 2, by means of B1. Note that D′1 \
B′ = D1 \ B. Solid lines represent direct r1-connections, dashed lines represent r1-
paths. Elements a1 and a4 are not necessarily r1-connected in A′ but they become
r1-connected in A′′ by a path going through d′ and e′.

maximal. Thus, since Di is ri-connected in A, there must be an element a ∈ Ski \B′,
with an ri-edge to some b ∈ B in A. Now, property (v) of Lemma 4.1 guarantees that
there exists b′ ∈ B′ with tpA′(a, b′) = tpA(a, b), so b′ has an ri-edge to a, and thus
b′ ∈ Ski . This observation implies that the number of maximal ri-connected subsets
of D′i in A′ is bounded by |B′|, i.e. exponentially in the signature (i = 1, 2).

We build B′′ from B′ and two sets B1 and B2 containing new elements of type
α constructed as described below. We define A′′�C ∪ B′ to be equal to A′. We say
that Ski and Sli are connected by B through an element d ∈ B in A if and only if
there are a1 ∈ Ski \ B′, a2 ∈ Sli \ B′, such that a1, d, a2 is an ri-path in A (see D1

in Fig. 4.2). For Ski and Sli connected by B through some element, we choose one
such connecting element d and add a fresh element d′ to Bi. For every c ∈ C, we set
tpA′′(d′, c) := tpA(d, c). The 2-types between d′ and B′ are set in such a way that
β[d,B] = β[d′, B′]; by part (vi) of Lemma 4.1 we always have enough elements in B′

to secure this property (recall also that B contains at least two realizations of α, so
we have some patterns which can be used for setting the connections between d′ and
B′). The 2-types inside B1 ∪B2 are set as arbitrary 2-types used in B.

Case 3: There exists a pair of distinct elements s, t ∈ B such that A |= r1[s, t], but
for all pairs of distinct elements u, v ∈ B, we have A |= ¬r2[u, v]. (Or symmetrically,
exchanging r1 and r2.)

This construction is a combination of the previous two. We build B′′ from three
disjoint sets B0, B1, B

2 of realizations of α. The role of the sets B0 and B1 is similar
to the role of the sets B0, . . . , B4 from Case 1, while the role of B2 is similar to the
role of B2 from Case 2.

In A′′ we define the substructures Bi as copies of B′ and we make the substruc-
tures induced by C ∪ Bi (i = 0, 1) isomorphic to A′. For every pair of elements
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b1 ∈ B0, b2 ∈ B1 we set tpA′′(b1, b2) := tpA(s, t).
Let S1

2 , . . . , S
k2
2 be the partition of D′2 in A′ into maximal r2-connected subsets.

As in Case 2, each Sk2 contains at least one element from B′. This implies that the
number of r2-connected subsets of D′2 is again bounded by |B′|. Recall that Sk2 and
Sl2 are connected by B through d ∈ B if there are a1 ∈ Ski \ B′, a2 ∈ Sl2 \ B′ such
that a1, d, a2 is an r2-path in A. If Sk2 and Sl2 are connected by B through some
element, we choose one such connecting element d ∈ B, and add a fresh element d′ to
B2. For every c ∈ C, we set tpA′′(d′, c) := tpA(d, c). The 2-types between d′ and Bi
(i = 0, 1) are set in such a way that β[d,B] = β[d′, Bi]. The 2-types inside B2 are
set as arbitrary 2-types used in B.

Finally, for every pair of elements b1 ∈ B2, b2 ∈ B0 ∪ B1 we set tpA′′(b1, b2) :=
tpA(s, t). This makes B2 r1-connected to the remaining part of D′′1 .

Now we argue that A′′ and B′′ are as required. It should be clear that properties
(i)-(v) are fulfilled and that the size of B′′ is not greater than 5|B′|2, which, by the
bound on B′ from Lemma 4.1 is not greater than 45|β[A]|6. Now we show that
property (vi) also holds.

Case 1: First, note that our strategy of connecting Bi-s ensures that B′′ = B0∪. . .∪B4

is both r1- and r2-connected. We show now that, for any i and a ∈ Di\B (= D′′i \B′′ =
D′i \B′) there is an ri-path in A′′ between a and some element b′′ ∈ B′′. As Di is ri-
connected there must be a path in A from a to some b ∈ B. Let a = a0, . . . , ak = b be
such a path, with aj 6∈ B for all j < k. Obviously, a0 and ak−1 are ri-connected in A′′

as both are members of C, and the structure of C is copied to A′′. We show that ak−1

is connected to some element in B′′. Indeed, property (v) of Lemma 4.1 guarantees
that there is an ri-edge between ak−1 and some element b′ of 1-type α∪{p1(x), p2(x)}
in Ā′, and property (i) of the same lemma guarantees that there are no such elements
outside B′. By our construction, in A′′ there is also an edge between ak−1 and b′′ -
the copy of b′ in B0. Therefore, D′′i is ri-connected for i ∈ {1, 2}. By property (iii)
of Lemma 4.1, there are no ri-connections from B′ to elements that do not satisfy pi
(i.e. elements from C \Di), and therefore D′′i is a maximal ri-connected set.

Case 2: Recall that D′′i = B′′ ∪ (Di \ B) and B′′ = B′ ∪ B1 ∪ B2, so D′′i = (B′ ∪
(Di \ B)) ∪ B1 ∪ B2 = D′i ∪ B1 ∪ B2. Let us first observe that D′i is ri-connected
(i = 1, 2) in A′′. If a, b ∈ Sli for some l then a, b are ri-connected by the definition of
Sli. If a ∈ Sli, b ∈ Ski and Sli, S

k
i are connected by B through some d then, by our

construction, there is an ri-path a′, d′, b′ for some a′ ∈ Sli, b′ ∈ Ski and d′ ∈ Bi. This
path can be extended by a path from a to a′ and a path from b′ to b. Thus a and b are
ri-connected in A′′. This argument can be inductively extended to cover the case of
arbitrary a, b: without loss of generality, we assume that a, b 6∈ B′ (since any element
from B′ must have an ri-edge to D′i\B′ by part (iv) of Lemma 4.1, Di is ri-connected,
and there are no ri-edges inside B). In A there is an ri-path from a to b. This path
can be split into fragments consisting of elements belonging to some Ski \ B and a
single element from B (with the exception of the last fragment which does not contain
an element from B). The Ski -s which are neighbours in this path are thus connected
by B. This guarantees an Ri-path from a to b in A′′. The set Bi is ri-connected to D′i
since, by our construction, any element from Bi has ri-edges to at least two elements
from D′i. It remains to show that B2 is r1-connected to the remaining part of D′′1 ,
and, symmetrically that B1 is r2-connected to the remaining part of D′′2 . Consider
the case of B2 and r1-connections. Let b′′ be an element from B2. The element b′′

was added to B2 as a copy of some element b from B. In particular its connections
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to D′1 \ B′ in A′′ were copied from A (recall that D′2 \ B′′ = D′1 \ B′ = D1 \ B). As
there are no r1-edges inside B, and B is r1-connected, there must be an edge from b
to some element of D1 \ B in A. Thus there is an r1-edge from b′′ to D′1 \ B′ in A′′.
Analogously for B1 and r2-connections.

Case 3: Here the proof is a combination of the arguments from the two previous cases.
Consider the case in which B contains an r1-edge but has no r2-edges (the symmetric
case can be treated analogously). First, note that our strategy of connecting elements
ensures that B0 ∪ B1 is r1-connected. Exactly as in Case 1 we can show that any
element of D′1 \ B′ is r1-connected to B0. The final step of our construction ensures
that also B2 is r1-connected to B0. This shows thatD′′1 is r1-connected. The argument
that D′′2 is r2-connected goes as in Case 2: first see that (D′2\B′)∪B2 is r2-connected,
and then note that every element from B0∪B1 must have an r2-edge to the remaining
part of D′′2 .

Now we are ready to prove Lemma 4.2.

Proof. [Lemma 4.2] We first argue that the structure obtained as an application
of Lemma 4.3 satisfies the same normal form formulas over τ as the original structure.
Let ϕ = χ ∧ ψ00 ∧ ψ01 ∧ ψ10 ∧ ψ11 be a formula in normal form over τ , as in (3.1).
Supposing ϕ to be satisfiable, let A |= ϕ, let B ⊆ A be a maximal set that is r1-
and r2-connected and such that α[B] = {α} is a singleton set, let Di be the r#

i -class
including B (i = 1, 2), let C = A \ B, and let A′′ be the structure (with domain
A′′ = B′′ ∪̇C) obtained by applying Lemma 4.3.

Formula χ is satisfied in A′′ thanks to property (iii) of Lemma 4.3. For any c ∈ C,
properties (i) and (v) guarantee that c has all required witnesses. For any b ∈ B′′,
the same thing is guaranteed by property (iv).

Now, to find a small replacement of a whole intersection, we apply Lemma 4.3
iteratively to all 1-types realized in this intersection. Property (vi) guarantees that
the obtained substructure is a maximal r1- and r2-connected set, so indeed it is an
intersection in the new model.

The proof of the Löwenheim-Skolem theorem (every satisfiable formula is satis-
fiable in a countable model) can easily be extended to EC2; thus we may restrict
our attention to countable structures. Let I1, I2, . . . be a (possibly infinite) sequence
of all intersections in a A, let A0 = A, and let Aj+1 be the structure Aj modified
by replacing intersection Ij+1 by its small replacement I ′j+1 as described above. We
define the limit structure A∞ with the domain I ′1 ∪ I ′2, . . . such that for all k < l the
connections (i.e. 2-types) between I ′k and I ′l are defined in the same way as in Al. It is
easy to see that A∞ satisfies ϕ and all intersections in A∞ are bounded exponentially
in |τ |.

The described construction works also for formulas in reduced normal form be-
cause the conjunct ω is satisfied due to property (ii) of Lemma 4.3.

A Note on EC2
1. We can now easily get the following exponential classes property

for EC2
1.

Lemma 4.4. Let ϕ be a satisfiable (reduced) normal form EC2
1 formula. Then ϕ

is satisfiable in a model in which all r#

1 -classes are bounded exponentially.

Proof. Consider the EC2
2 formula ϕ′ = ϕ ∧ ∀x∀y.r2(x, y). Clearly, it is satisfiable

(take a model of ϕ and interpret r2 as the total relation). We apply Lemma 4.2 to ϕ′

obtaining a structure A′ with small intersections. After dropping the interpretation
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of r2 in A′ we get a structure A which is a model of ϕ. It has appropriately bounded
r#

1 -classes as they correspond to intersections of A′.

Lemma 4.4 generalizes the small classes property for FO2 with one equivalence
relation from [21]. We can now repeat the construction from [21] (p. 738, 4.1.2. Few
classes) to show:

Theorem 4.5. Let ϕ be a satisfiable EC2
1 formula. Then ϕ is satisfiable in a

model of at most exponential size. Thus the satisfiability problem (= finite satisfiability
problem) is NExpTime-complete.

5. The Graph Existence Problem. Let A be any countable EC2
2-structure

over some fixed signature, all of whose intersections are subject to some fixed size
bound. Then there is a finite collection ∆ of isomorphism types of intersections that
A can possibly realize. Now let U be the set of r#

1 -classes occurring in A, and V ,
the set of r#

2 -classes. Of course, each r#

1 -class u ∈ U is a union of intersections, and
similarly for each r#

2 -class v ∈ V . As we observed in the proof of Lemma 3.3, A
may contain ‘loners’—that is, intersections which are both r#

1 -classes and r#

2 -classes,
and which are thus elements of both U and V . Since, in the sequel, we shall want
to regard U and V as disjoint sets, we count loners twice: once as an element of U
and once as an element of V . (Technically, we need to create isomorphic copies of
intersections to represent the elements of V ; however, to avoid presentational clutter,
we continue to speak of elements of V as intersections from A without qualification.)
Now we may construct a (possibly infinite) bipartite graph on the vertex sets U and
V by taking (u, v) to be an edge just in case u and v share some intersection. In
fact, since any r#

1 -class u ∈ U may share at most one intersection with any r#

2 -class
v ∈ V , we may take the edge (u, v) to be coloured by the isomorphism type of the
intersection in question, i.e. by some colour δ ∈ ∆. In this section, we define two
problems concerning bipartite graphs with coloured edges, and show (Theorem 5.10)
that they are NPTime-complete. We use this fact in Sec. 6 to establish our upper
complexity bounds for EC2

2.

We make extensive use of results on linear programming and integer programming.
A linear equation (inequality) is always an expression t1 = t2 (t1 ≥ t2) where t1 and
t2 are linear terms with coefficients in N. Given a system E of linear equations and
inequalities, we take the size of E , denoted ‖E‖, to be the total number of bits required
to write E in standard notation; notice that ‖E‖ may be much larger than |E|, the
number of equations and inequalities in E . The problem linear programming is as
follows:

Given: a system E of linear equations and inequalities.
Output: Yes, if E has a solution over Q; No, otherwise.

The problem integer programming is as follows:

Given: a system E of linear equations and inequalities.
Output: Yes, if E has a solution over N; No otherwise.

Denote by N∗ the set N ∪ {ℵ0}. We interpret the arithmetic operations + and · as
well as the ordering < over N∗ as expected. Specifically: ℵ0 + n = ℵ0 + ℵ0 = ℵ0 for
all n ∈ N; ℵ0 · 0 = 0, and ℵ0 ·m = ℵ0 · ℵ0 = ℵ0 for all non-zero m ∈ N; and n < ℵ0

for all n ∈ N. The problem extended integer programming is as follows:



16 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann and L. Tendera

Given: a system E of linear equations and inequalities.
Output: Yes, if E has a solution over N∗; No, otherwise.

Thus, for example, the system E given by

x1 ≥ x2 + 1 x2 ≥ x1 + 1

has no solution over N—or indeed over Q—but does have a solution over N∗, namely
x1 = x2 = ℵ0. Observe that the coefficients in E are, in all cases, required to be in N.

The following results on linear and integer programming are well-known.

Proposition 5.1 ([14], Theorem 1). The problem linear programming is in
PTime.

Proposition 5.2 ([5], Theorem 1). Let E be a system of linear equations and
inequalities with coefficients in N, and let k > 0. If each coefficient in E has at most
k bits, and E has a solution over N, then it has a solution over N in which the number
of non-zero values is bounded by p(k|E|), where p is a fixed polynomial.

Proposition 5.3 ([3], Theorem 2). Let E be a system of linear equations and
inequalities with coefficients in N. If E has a solution over N, then it has a solution
over N in which all values are bounded by 2p(‖E‖), where p is a fixed polynomial.
Hence, integer programming is in NPTime.

Proposition 5.2 is a Carathéodory-type result for integer programming: if an in-
teger vector is in the positive integral cone of some large set of integer vectors, then
it is in the positive integral cone of a small subset of them. We may extend both
Proposition 5.2 and Proposition 5.3 to solutions over N∗ in the obvious way:

Corollary 5.4. Let E be a system of linear equations and inequalities with
coefficients in N, and let k > 0. If each coefficient in E has at most k bits, and E has
a solution over N∗, then it has a solution over N∗ in which the number of non-zero
values is bounded by p(k|E|), where p is a fixed polynomial.

Proof. Fix some solution ā over N∗, let E ′ be the collection of all equations and
inequalities in E whose left- and right-hand sides are finite under this solution, and let
E ′′ = E \E ′. Thus, ignoring terms with zero-coefficients, E ′ features no variables whose
value in ā is infinite. Choose a solution b̄ of E ′ over N with at most p′(k|E ′|) non-zero
values, where p′ is the polynomial guaranteed by Proposition 5.2. Now choose, for
each element of E ′′, at most two variables such that making these infinite is sufficient
to render the left- or right-hand sides infinite, as determined by ā. Make all other
variables zero. We thus obtain a solution with at most p′(k|E ′|) + 2|E ′′| non-zero
values.

Corollary 5.5. Let E be a system of linear equations and inequalities with
coefficients in N. If E has a solution over N∗, then it has a solution over N in which
all finite values are bounded by 2p(‖E‖), where p is a fixed polynomial. Hence, extended
integer programming is in NPTime.

Proof. Similar to proof of Corollary 5.4.

5.1. Bipartite graph existence. Let ∆ be a finite, non-empty set. A ∆-graph
is a triple H = (U, V,E∆), where U , V are disjoint, countable (possibly finite, or even
empty) sets, and E∆ is a collection of pairwise disjoint subsets Eδ ⊆ U × V , indexed
by the elements of ∆. We call the elements of W = U ∪ V vertices, and the elements
of Eδ, δ-edges; and we say that H is finite if U ∪V is finite. It helps to think of E∆ as
the result of colouring the edges of the bipartite graph (U, V,E), where E =

⋃
δ∈∆Eδ
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is a set of edges from U to V , using the colours in ∆. For any w ∈ W , we define the
function ordHw : ∆→ N∗, called the order of w, by

ordHu (δ) = |{v ∈W : (u, v) ∈ Eδ} (u ∈ U)

ordHv (δ) = |{u ∈W : (u, v) ∈ Eδ} (v ∈ V ).

Thus, ordHw tells us, for each colour δ, how many δ-edges w is incident to in H. We now
proceed to define the problem BGE (“bipartite graph existence”). A BGE-instance
is a quadruple P = (∆,∆0, F,G), where ∆ is a finite, non-empty set, ∆0 ⊆ ∆, and
F and G are sets of functions ∆ → N. A solution of P is a ∆-graph H = (U, V,E∆)
such that:

for all δ ∈ ∆0, Eδ is non-empty; (G1)

for all u ∈ U , ordHu ∈ F ; (G2)

for all v ∈ V , ordHv ∈ G. (G3)

The problem BGE is as follows:

Given: a BGE-instance P.
Output: Yes, if P has a solution; No, otherwise.

The problem finite BGE is as follows:

Given: a BGE-instance P.
Output: Yes, if P has a finite solution; No, otherwise.

That is: given ∆0 ⊆ ∆ and sets of order-functions F , G over ∆, we wish to know
whether there exists a (finite) ∆-graph (U, V,E∆) in which the vertices in U realize
only those order-functions in F , the vertices in V realize only those order-functions
in G, and each of the colours in ∆0 is represented by at least one edge. Notice that,
even though the bipartite graphs in question may be infinite, the orders in F and G
are assumed to have finite values.

Before proceeding, we obtain a simple complexity bound for BGE. This result il-
lustrates the basic approach taken in the sequel, while avoiding much of the distracting
detail.

Lemma 5.6. Let F , G be finite sets of functions ∆→ N, and suppose there exist
natural numbers xf (for all f ∈ F ) and yg (for all g ∈ G) such that, for all δ ∈ ∆,∑

f∈F

f(δ) · xf =
∑
g∈G

g(δ) · yg.

Then there exists a finite ∆-graph (U, V,E∆) and a positive integer k such that: (i)
for all functions f : ∆→ N, the number of vertices in U with order f is given by{

k · xf if f ∈ F
0 otherwise;

(ii) for all functions g : ∆→ N, the number of vertices in V with order g is given by{
k · yg if g ∈ G
0 otherwise.
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Proof. We proceed by induction on the quantity

Q =
∑
δ∈∆

∑
f∈F

f(δ) · xf =
∑
δ∈∆

∑
g∈G

g(δ) · yg.

Suppose first Q = 0. Denoting by 0 the function uniformly mapping every element of
∆ to 0, and bearing in mind that Q = 0, we see that f ∈ F and xf > 0 implies f = 0;
and similarly, g ∈ G and yg > 0 implies g = 0. If 0 6∈ F , define x0 = 0; and if 0 6∈ G,
define y0 = 0. Let U , V be disjoint sets of cardinalities x0 and y0, respectively; and
set Eδ = ∅ for all δ ∈ ∆. Thus, in the ∆-graph H = (U, V,E∆), every vertex has order
0. It is then immediate that H and k = 1 satisfy the requirements of the lemma.

Suppose, now Q > 0. Thus, xf > 0, f(δ) > 0, yg > 0 and g(δ) > 0 for some
f ∈ F , g ∈ G and δ ∈ ∆. Let f0, g0 and δ0 be such any values. We may think
each number xf as giving the multiplicity of f in a multiset of functions ∆ → N;
and similarly for the numbers yg. We proceed by taking one instance of f0, and
decrementing its value at δ0; likewise, we take one instance of g0, and decrement its
value at δ0. Formally, define

f ′(δ) =

{
f0(δ)− 1 if δ = δ0

f0(δ) otherwise.
g′(δ) =

{
g0(δ)− 1 if δ = δ0

g0(δ) otherwise.

If f ′ 6∈ F , set xf ′ = 0, and if g′ 6∈ G, set yg′ = 0. Let F ′ = F ∪{f ′} and G′ = G∪{g′}.
Now let

x′f =


xf − 1 if f = f0

xf + 1 if f = f ′

xf otherwise

y′g =


yg − 1 if g = g0

yg + 1 if g = g′

yg otherwise

Thus, ∑
f∈F ′

f(δ0) · x′f =
∑
f∈F

f(δ0) · x′f − 1

∑
g∈G′

g(δ0) · y′f =
∑
g∈G

g(δ0) · y′f − 1.

Since we have merely decremented the value of one instance of f0 at the point δ0, and
done the same for one instance of g0, it is obvious that, for all δ ∈ ∆,∑

f∈F ′
f(δ) · x′f =

∑
g∈G′

g(δ) · y′f ;

and, moreover,
∑
δ∈∆

∑
f∈F ′ f(δ) · x′f = Q− 1.

By inductive hypothesis, let the finite ∆-graph H ′ = (U ′, V ′,E′∆) and the positive
integer k′ satisfy the lemma for the sets of functions F ′ and G′, and the various natural
numbers x′f and y′g. Note that U ′ contains k′ · x′f ′ ≥ k′ vertices having order f ′; let
U ′0 be a subset of these with cardinality k′. Similarly, V ′ contains k′ · y′g′ ≥ k′ vertices
having order g′; let V ′0 be a subset of these with cardinality k′. Take an isomorphic
copy H ′′ = (U ′′, V ′′,E′′∆) of H ′, and let U ′′0 and V ′′0 be the copies of U ′0 and V ′0 under
this isomorphism. Let H∗ = (U, V,E∗∆) be the disjoint union of H ′ and H ′′ (i.e.
U = U ′ ∪ U ′′, V = V ′ ∪ V ′′ and E∗δ = E′δ ∪ E′′δ for all δ ∈ ∆). Finally, let H be
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obtained from H∗ by adding δ0-coloured edges so as to pair up the the vertices of
U ′0 and V ′′0 , and by adding δ0-coloured edges so as to pair up the the vertices of U ′′0
and V ′0 . Note that these edges cannot occur in H∗. For all u ∈ U ′0 ∪ U ′′0 , we have

ordH
∗

u = f ′ and ordHu = f0; similarly, for all v ∈ V ′0 ∪ V ′′0 , we have ordH
∗

v = g′ and
ordHg = g0. Let k = 2k′. Continuing to write xf ′ = 0 if f ′ 6∈ F , consider any f ∈ F ′.
By inductive hypothesis, there are exactly k′ ·x′f vertices u ∈ U ′ such that ordH

′

u = f .

Now let us calculate the number of vertices u ∈ U such that ordHu = f .

For f = f0, we must count all the vertices having order f0 in H ′ and H ′′ together
with all the vertices of U ′0 and U ′′0 . This yields 2k′ · x′f0 + 2k′ = k · xf0 vertices.

For f = f ′, we must count all the vertices having order f ′ in H ′ and H ′′, but ignoring
the vertices of U ′0 and U ′′0 . This yields 2k′ · x′f ′ − 2k′ = k · xf ′ vertices.

For all other f ∈ F ′, we simply count the number of vertices of U ′ and U ′′ together
having order f . This yields 2k′ · x′f = k · xf vertices.

Thus, for all f ∈ F , the number of vertices in u ∈ U such that ordHu = f is k · xf as
required. A similar argument establishes the symmetric condition for the vertices in
V .

Proposition 5.7. The problems BGE and finite BGE are in PTime.

Proof. We reduce finite BGE to linear programming. Consider any BGE-instance
P = (∆,∆0, F,G). We claim that P has a finite solution if and only if the system of
equations and inequalities

∑
f∈F

f(δ) · xf =
∑
g∈G

g(δ) · yf (δ ∈ ∆) (5.1)

∑
f∈F

f(δ) · xf > 0 (δ ∈ ∆0) (5.2)

involving the variables {xf}f∈F and {xg}g∈G, has a solution over N. For the only-if
direction, suppose (U, V,E∆) is a finite solution of P. For all f ∈ F , let xf be the
number of elements of U having order f ; and for all g ∈ G, let yg be the number of
elements of V having order g. Then the number of δ-coloured edges is given by both
the right- and left-hand side of (5.1), thus securing (5.1) and (5.2). The if-direction
follows from Lemma 5.6. Evidently, if the system (5.1) and (5.2) has a solution over
the non-negative rationals, then it has a solution over N, and vice versa. The theorem
then follows from Proposition 5.1.

For the general (non-finite) case, we reduce BGE to the satisfiability problem
for propositional Horn clauses. (One might try to solve the above equation system
over N∗ but satisfiability over Q∗ is not obviously in PTime.) For f ∈ F , let Xf be
a proposition letter, which we may informally read as “There are no vertices in U
having order f . Similarly, for g ∈ G, let Yg be a proposition letter, which we may
informally read as “There are no vertices in V having order g.” Consider the set Γ of
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propositional Horn-clauses
 ∧
g∈G:g(δ)>0

Yg

→ Xf | f ∈ F, δ ∈ ∆ s.t. f(δ) > 0

 (5.3)


 ∧
f∈F :f(δ)>0

Xf

→ Yg | g ∈ G, δ ∈ ∆ s.t. g(δ) > 0

 (5.4)


 ∧
f∈F :f(δ)>0

Xf

→ ⊥ | δ ∈ ∆0

 . (5.5)

Intuitively, (5.3) says “For all δ ∈ ∆, if no vertices in V are incident on any δ-edges,
then neither are any vertices in U ;” (5.4) expresses the reverse implication; and (5.5)
says “For all δ ∈ ∆0, some vertices in U are incident on some δ-edges.” Suppose
Γ is satisfiable. For each f ∈ F such that Xf is false, take an infinite set Uf , and
for each g ∈ G such that Yg is false, take an infinite set Vg. Let U =

⋃
f∈F Uf and

V =
⋃
g∈G Vg. For each f ∈ F , each u ∈ Uf , and each δ ∈ ∆, attach f(δ) δ-labelled

edges to u; and similarly for the elements of V , using the functions g ∈ G. By (5.3),
if a δ-labelled edge is attached to some vertex (hence infinitely many vertices) of U ,
then a δ-labelled edge is attached to some vertex (hence infinitely many vertices) of V .
And by (5.4), the same holds with U and V transposed. Hence these edges can easily
be matched up to form an infinite bipartite graph. By (5.5), there exist δ-labelled
edges for every δ ∈ ∆0. Hence P is a positive instance of BGE. Conversely, if P
is a positive instance of BGE, let H = (U, V,E∆) be a solution. Now interpret the
variables Xf and Yg as indicated above. It is obvious that (5.3)–(5.5) hold. Thus, Γ
is satisfiable. This completes the reduction.

We note in passing that there exists a sequence {Pn}n≥1 of positive instances
of finite BGE such that the size of Pn = (∆n,∆0, Fn, Gn) is bounded by a poly-
nomial function of n, but such that the smallest solution has size approximately
2n. Specifically, we set ∆n = {δ0, . . . , δ2n−1}, ∆0 = {δ0}, Fn = {f0, . . . , fn} and
Gn = {g0, . . . , gn−1}, where, taking addition in subscripts δ2i+1 modulo 2n:

f0(δ) =

{
1 if δ = δ0

0 otherwise.
fi(δ) =


1 if δ = δ2i−1

2 if δ = δ2i

0 otherwise;

(0 < i < n)

fn(δ) =

{
1 if δ = δ2n−1

0 otherwise.
gi(δ) =


1 if δ = δ2i

1 if δ = δ2i+1

0 otherwise

(0 ≤ i < n).

The reader may easily convince himself that Pn has a finite solution, and that in any
solution, at least 2i distinct vertices on the right-hand side are incident on δ2i-edges,
for all i (0 ≤ i < n). Thus, the finite BGE-solutions themselves cannot serve as
witnesses for membership in NPTime.

5.2. Skew edges. Recall our motivation for introducing edge-coloured bipartite
graphs: we intend the left-hand vertices to represent r#

1 -classes in some EC2
2-structure,

the right-hand vertices to represent r#

2 -classes, and the variously coloured edges to
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represent intersections having various isomorphism types. In general, EC2
2-formulas

can impose restrictions on pairs of intersections which belong neither to the same r#

1 -
class nor to the same r#

2 -class. Thus, for example, the formula ∀xy((p(x) ∧ q(y)) →
(r#

1 (x, y)∨r#

2 (x, y))) says that there cannot be such a pair of intersections, one with an
element satisfying p and the other with an element satisfying q. And we need some
way of representing these restrictions in terms of the corresponding edge-coloured
bipartite graph. To this end, we call a pair of edges (u1, v1) and (u2, v2) in a bipartite
graph skew if u1 6= u2 and v1 6= v2. We now proceed to define the problem BGES
(“bipartite graph existence with skew restrictions”). A BGES-instance is a quintuple
P = (∆,∆0, F,G,X), where ∆, ∆0, F and G are as before, and X is a symmetric
relation on ∆. A solution of P is a bipartite ∆-graph H = (U, V,E∆) satisfying
(G1)–(G3) above, as well as

if e ∈ Eδ and e′ ∈ Eδ′ with e, e′ skew, then (δ, δ′) ∈ X. (G4)

The problem BGES is as follows:

Given: a BGES-instance P.
Output: Yes, if P has a solution; No, otherwise.

The problem finite BGES is defined analogously. Thus, (finite) BGES is just like
(finite) BGE, but with X specifying the allowed colours of skew edge-pairs.

To establish a lower complexity bound for BGES and finite BGES, we proceed by
reduction from the well-known NPTime-hard problem 3-SAT: given a set of proposi-
tional clauses each of which contains at most three literals, determine whether there
exists a truth-valuation making all clauses simultaneously true.

Lemma 5.8. The problems BGES and finite BGES are NPTime-hard.
Proof. Let ϕ =

∧
C∈C C be an instance of 3-SAT, where each C is a disjunction

of literals over variables from a set V. For a given literal l, let v(l) denote the variable
of this literal and s(l) = 1 if l is positive, and s(l) = 0 otherwise. We define a
BGES-instance Pϕ = (∆,∆0, F,G,X), of size polynomial in |ϕ|, such that: (i) if ϕ
is satisfiable, then Pϕ has a finite solution; and (ii) if Pϕ has a solution, then ϕ is
satisfiable. (In fact, Pϕ will have no infinite solutions.) Let ∆0 := {3}, where 3 is a
fresh symbol, ∆ := {〈C, v(l), s(l)〉 : l is a disjunct of C,C ∈ C} ∪ C ∪ V ∪∆0, and let
X := ∆2 \{(3,3)}. It remains to define F and G. We take F to consist of a function
f3, together with a function fsp for each p ∈ V, s ∈ {0, 1}. Likewise, G consists of a

function g3 together with a function gWC for each C ∈ C and every nonempty subset
W of literals of C (notice that since there are at most three disjuncts in each clause,
for each clause there are at most seven such subsets). All these functions have domain
∆ and co-domain {0, 1}, and are defined as follows:

f�(δ) = 1 iff δ ∈ {3} ∪ C
fsp (δ) = 1 iff δ ∈ {p} ∪ {〈C, p, s〉 : for some literal l of C, v(l) = p ∧ s(l) = s}
g3(δ) = 1 iff δ ∈ {3} ∪ V
gWC (δ) = 1 iff δ ∈ {C} ∪ {〈C, v(l), s(l)〉 : l is a literal in W}.

This completes the reduction. Clearly, it can be performed in polynomial time.
(i) Assume that ϕ is satisfiable, and let σ be a truth-valuation which makes ϕ true.

We construct a finite solution for Pϕ of the form H = (U, V,E∆), where U = {u3}∪V,
V = {v3}∪C, E3 = {(u3, v3)}, Ep = {(p, v3)} for p ∈ V, EC = {(u3, C)} for C ∈ C,
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u3

p1

p2

p3

v3

c1

c2

3

Figure 5.1: The intended solution of Pϕ for ϕ = c1 ∧ c2, where c1 = p1 ∨ ¬p2 ∨ ¬p3

and c2 = ¬p2 ∨ p3, and a valuation σ given by σ(p1) = σ(p3) = 1 and σ(p2) = 0.
Dashed lines represent V-edges and C-edges, solid lines represent 〈p1, c1, 1〉-edges and
〈p3, c2, 1〉-edges and dotted lines represent 〈p2, c1, 0〉-edges and 〈p2, c2, 0〉-edges.

(p, C) ∈ E〈C′,p′,0〉 if and only if C = C ′, p = p′, ¬p is a literal in C and σ(p) = 0,
and (p, C) ∈ E〈C′,p′,1〉 if and only if C = C ′, p = p′, p is a literal in C and σ(p) = 1.

Observe that ordHu3
= f3, ordHv3 = g3, for all p ∈ V we have ordHp = f

σ(p)
p , and

for all C ∈ C we have ordHC = gWC , where W consists of those literals of C which are
made true by σ. So H is indeed a solution for Pϕ. See Fig. 5.1, which illustrates an
intended solution for an example ϕ.

(ii) Let H = (U, V,E∆) be a solution of Pϕ. We argue that ϕ is satisfiable.
Observe first threat |E3| = 1. Indeed, ∆0 guarantees that |E3| is greater than 0, no
function f ∈ F ∪G satisfies f(3) > 1 and 3-edges cannot be skew. Let (u3, v3) be
the only edge in E3. Note now that the only possible order function of u3 is f3, and
the only possible order function of v3 is g3. It is not hard to see that for each p ∈ V,
|Ep| = 1. This is because g3 is the only order function in G that allows p-edges,
and there is precisely one vertex in V , namely v3, that has order g3. Since each
u ∈ U \{u3} has to be connected to precisely one such edge (because of the definition
of F ) it follows that |U | = |V|+ 1. We denote by up the vertex of U that is incident
to the p-edge. Similarly, for each C ∈ C, |EC | = 1, and |V | = |C| + 1. We denote by
uC the vertex of V that is incident to the C-edge.

Now we are ready to define the valuation σ that satisfies ϕ. For each variable
p, we set σ(p) = 1 if for some C, E〈C,p,1〉 is not empty, and σ(p) = 0 if for some C,
E〈C,p,0〉 is not empty or for all C, s, E〈C,p,s〉 are empty. Note that this definition is
sound — for any p, the only vertex of U that can be incident on any edge with colour
〈C, p, s〉 is up (because that vertex must also be incident to the p-coloured edge), so
the order function of up is either f0

p or f1
p . Thus up is incident only to edges whose

colour is of the form 〈C, p, 0〉 or 〈C, p, 1〉, resp. We show that σ indeed satisfies ϕ. Let
C ∈ C be a clause. Since uC is incident to a C-edge, the order function of uC must
be of the form gWC for some non-empty W . Let l be a literal from W . Clearly, C is
incident to a 〈C, v(l), s(l)〉-edge, and therefore E〈C,v(l),s(l)〉 is not empty, so σ(l) = 1
and C is satisfied.

In Sec. 5.3, we shall obtain a matching NPTime upper bound for BGES. We end
this section with a simple observation on skew edges.

Lemma 5.9. Suppose H = (U, V,E∆) is a ∆-graph. If δ ∈ ∆, then H has a pair
of skew edges e, e′ in Eδ if and only if both the following conditions hold:

(i) there is more than one u ∈ U incident on a δ-edge;
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u′
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v′′
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δ
u′

u

v′′
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δ′

δ

δ′

u′

u

v′′

v

δ′

δ

δ′

δ

Figure 5.2: The three configurations in final condition of Lemma 5.9: in each config-
uration, no other δ- or δ′-edges occur.

(ii) there is more than one v ∈ V incident on a δ-edge.
Further, if δ′ ∈ ∆ is distinct from δ, then H has a pair of skew edges e ∈ Eδ and
e′ ∈ Eδ′ if and only if all the following conditions hold:
(iii) there are δ-edges and δ′-edges;
(iv) there is more than one u ∈ U incident on either a δ- or a δ′-edge;
(v) there is more than one v ∈ V incident on either a δ- or a δ′-edge;

(vi) the edge-sets Eδ and Eδ′ are not isomorphic to any of the three configurations
shown in Fig. 5.2.

Proof. For the first statement, it is obvious that, if e, e′ ∈ Eδ are skew, then
Conditions (i) and (ii) hold. Suppose, conversely, Conditions (i) and (ii) hold. By
Condition (i), let e = (u, v), e′ = (u′, v′) be edges in Eδ with u 6= u′. If v 6= v′, these
edges are skew and we are done; so assume v = v′. By Condition (ii), let e′′ = (u′′, v′′)
be an edge in Eδ with v 6= v′′. Then e′′ is skew to at least one of e and e′.

For the second statement, it is obvious that, if e and e′ are skew with e ∈ Eδ
and e′ ∈ Eδ′ , then Conditions (iii)–(v) obtain; and, for Condition (vi), a quick check
confirms that, if Eδ and Eδ′ are as in Fig. 5.2, then e ∈ Eδ and e′ ∈ Eδ′ cannot
be skew. For the converse, suppose Conditions (iii)–(vi) obtain, but H contains no
δ-edge skew to any δ′-edge. By Conditions (iii) and (iv) , we can find (u, v) ∈ Eδ and
(u′, v′) ∈ Eδ′ with u 6= u′. Since these are not skew, v = v′. By Condition (v), we
can find v′′ ∈ V , distinct from v, lying on either a δ-edge or a δ′-edge. But then, if
(u′′, v′′) is a δ-edge, u′′ = u′; and if it is a δ′-edge, u′′ = u. And clearly, no other
δ- or δ′-edges are possible. Hence, Eδ and Eδ′ are exactly as depicted in one of the
arrangements of Fig. 5.2, contradicting Condition (vi).

We see from Lemma 5.9 that skew restrictions can introduce upper bounds on the
number of occurrences of vertices of certain orders. (Thus, for example, if (δ, δ) 6∈ X,
then in any graph satisfying (G4), one of Conditions (i) or (ii) in Lemma 5.9 must
fail: in other words, either there is at most one vertex u ∈ U with any order f such
that f(δ) ≥ 1, or there is at most one vertex v ∈ V with any order g such that
g(δ) ≥ 1.) This means that we cannot in general take the union of two solutions
to a BGES problem to form a larger solution. In number-theoretic terms, when
we convert BGES instances into systems of equations over N (or N∗), the resulting
solution sets are—as we shall see—not preserved under multiplication by a constant.
This observation explains the complexity-theoretic differences (assuming, of course,
that NPTime 6= PTime) between BGE and BGES.

5.3. Ceilings on orders. To apply the graph existence problem to the concerns
of the present paper, we require one further complication. So far, we have taken the
sets F and G in any BGES-instance to specify the allowed orders of vertices exactly.
We now consider the case where these orders are known only up to a certain ceiling,
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M . Specifically, for M ≥ 0, we define bncM = min(n,M), and if f is any function
with range N, we denote by bfcM the composition b·cM ◦ f (i.e., bfcM is the result of
applying f and ‘capping’ at M). We proceed to define the problem BGESC (bipartite
graph existence with skew constraints and ceiling). A BGESC-instance is a sextuple
P = (∆,∆0,M, F,G,X), where ∆, ∆0, X are as before, M is a positive integer, and
F and G are sets of functions ∆ → [0,M ]. A solution of P is a bipartite ∆-graph
H = (U, V,E∆) satisfying the following variants of conditions (G1)–(G4):

for all δ ∈ ∆0, Eδ is non-empty; (G1)

for all u ∈ U , bordHu cM ∈ F ; (G2′)

for all v ∈ V , bordHv cM ∈ G; (G3′)

if e ∈ Eδ and e′ ∈ Eδ′ , with e, e′ skew, then (δ, δ′) ∈ X. (G4)

The problem BGESC is defined as follows.

Given: a BGESC-instance P.
Output: Yes, if P has a solution; No otherwise.

The problem finite BGESC is defined analogously. Thus (finite) BGESC is just like
(finite) BGES, but with M specifying the bound past which we do not bother counting
orders. By Lemma 5.8, these problems are certainly NPTime-hard. (Just take M to
be the maximum value of any function in F ∪G plus one.)

The following definition will be used later in this section: we introduce it here
because of its obvious connection to the problem BGESC. Let H = (U, V,E∆) and
H ′ = (U ′, V ′,E′∆) be ∆-graphs. We write H ≈M H ′, and say that H and H ′

are M -approximations of each other if U = U ′, V = V ′ and, for all w ∈ U ∪ V ,

bordHw cM = bordH
′

w cM . Thus, a BGESC problem-instance (∆,∆0,M, F,G,X) re-
quires us to determine the existence of an M -approximation to some solution of the
corresponding BGES problem-instance (∆,∆0, F,G,X).

The main result of this section is:

Theorem 5.10. BGESC and finite BGESC are NPTime-complete.

Theorem 5.10, as well as being interesting in its own right, allows us to prove that
the satisfiability and finite satisfiability problems for EC2

2 are in 2-NExpTime, as we
shall see in Sec. 6.

The remainder of this section is devoted to a proof of the membership part of
Theorem 5.10. We mention here that readers interested primarily in decidability,
rather than computational complexity, may simply reduce (finite) BGESC to the
(finite) satisfiability problem for C2—the two-variable fragment of first-order logic
with counting quantifiers. The reduction is straightforward, and we outline it only in
general terms. For each f ∈ F , let pf be a unary predicate, for each g ∈ G, let qg be a
unary predicate, and for each δ ∈ ∆, let rδ be a binary predicate. We think of pf (x) as
saying “x is left-hand node with order f”, and similarly for qg; and we think of rδ(x, y)
as saying “(x, y) is a δ-edge.” Given a BGESC-instance P = (∆,∆0,M, F,G,X), we
can write C2-formulas expressing obvious constraints under these interpretations, for
example:

∀x
(
pf (x)→ ∃=f(δ)y.rδ(x, y)

)
if f(δ) < M

∀x (pf (x)→ ∃≥My.rδ(x, y)) otherwise,
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and similarly for the qg. Using this signature, Conditions (i)–(v) in Lemma 5.9 can
evidently be expressed using C2-formulas. To see that the same holds for Condition
(vi), consider the first graph in Fig. 5.2. We can rule out the possibility that the edges
of Eδ and Eδ′ have this configuration using the C2-formula

¬
(
∃x∃y(rδ(x, y) ∧ ∃x(rδ′(y, x) ∧ ∃y.rδ(x, y)))∧

∃=2x∃y(rδ(x, y),∨rδ′(x, y)) ∧ ∃=2y∃x(rδ(y, x),∨rδ′(y, x))
)
,

(We assume obvious formulas stating the disjointness of the edge-colours and ensuring
the division of vertices into left- and right-hand sides.) The other two graphs can be
ruled out similarly. Thus, we may write a C2-formula ϕP such that ϕP is (finitely)
satisfiable if and only if P is a positive instance of (finite) BGESC. And the (finite)
satisfiability problem for C2 is known to be decidable [10, 27]. Unfortunately, both
problems are NExpTime-complete [29], and so do not yield tight a complexity bound
for (finite) BGESC. So we still have work to do below.

To establish Theorem 5.10, however—and, in particular, to cope with the variant
conditions (G2′) and (G3′)—we require a still more intricate version of BGESC. Define
a directed ∆-graph to be a quintuple H = (U, V,E+

∆,E
−
∆,E

◦
∆), where U and V are

countable (possibly finite, possibly empty) disjoint sets, and E+
∆,E

−
∆ and E◦∆ are

families of sets E+
δ , E−δ and E◦δ , all of which (taken together) form a collection of

pairwise disjoint subsets of U × V . We always write Eδ = E+
δ ∪ E

−
δ ∪ E◦δ for any

δ ∈ ∆. It helps to think of H as the result of giving the edges of the underlying
(un-directed) ∆-graph H̄ = (U, V,E∆) one of three orientations: left-to-right (i.e.,
U -to-V ) (E+

δ ), right-to-left (E−δ ) or bi-directional (E◦δ ). For u ∈ U and v ∈ V , we

define the functions degHu : ∆→ N∗ and degHv : ∆→ N∗ by

degHu (δ) =|{v ∈ V : (u, v) ∈ E+
δ ∪ E

◦
δ }|

degHv (δ) =|{u ∈ U : (u, v) ∈ E−δ ∪ E
◦
δ }|,

and we define the functions DegHu : ∆→ (N∗)2 and Degv : ∆→ (N∗)2 by

DegHu (δ) =(|{v ∈ V : (u, v) ∈ E+
δ }|, |{v ∈ V : (u, v) ∈ E◦δ }|)

DegHv (δ) =(|{u ∈ U : (u, v) ∈ E−δ }|, |{u ∈ U : (u, v) ∈ E◦δ }|).

Thus, for any vertex w, degHw (δ) (pronounced: “δ-degree of w”) counts the number
of uni- or bi-directional δ-edges emanating from w, ignoring incoming edges. The
pair DegHw (δ) simply splits degHw (δ) into the uni- and bi-directional components. We
require the following notation in the sequel. If (m,n) is a pair of elements of N∗, we
write (m,n)|1 = m and (m,n)|2 = n. Thus: degHw (δ) = DegHw (δ)|1 + DegHw (δ)|2.

Let H be a directed ∆-graph and M a positive integer. We say that H is M -
bounded if degHw (δ) ≤M for all w ∈ U ∪V and all δ ∈ ∆. We say that H is M -proper
if, for all u ∈ U , v ∈ V and δ ∈ ∆: (i) (u, v) ∈ E+

δ implies degHv (δ) ≥ M ; and (ii)

(u, v) ∈ E−δ implies degHu (δ) ≥M .
It is possible to transform ∆-graphs into directed ∆-graphs by appropriately

labelling their edges.

Lemma 5.11. Suppose M is a positive integer and H = (U, V,E+
∆,E

−
∆,E

◦
∆)

an M -bounded, M -proper, directed ∆-graph; and define the collection E∆ by setting
Eδ = E+

δ ∪E
−
δ ∪E◦δ for all δ ∈ ∆. Then the ∆-graph H̄ = (U, V,E∆) satisfies degHw =

bordH̄w cM , for all w ∈ U ∪ V . Moreover, given a ∆-graph H ′, and positive integer M ,
we can find an M -bounded, M -proper, directed ∆-graph H such that H̄ ≈M H ′.



26 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann and L. Tendera

Proof. The first statement is immediate from the fact that H is M -proper. For if

u ∈ U participates in any edges of E−δ , we have ordH̄u (δ) ≥ degHw (δ) = M ; otherwise,

ordH̄u (δ) = degHw (δ). Similarly for the vertices of V . For the second statement, suppose
H ′ = (U, V,E∆). We construct E+

∆, E−∆, E◦∆ as follows. For each u ∈ U and each
δ ∈ ∆, select edges (u, v) ∈ Eδ until either M edges have been selected or no more can
be found; mark each selected edge (u, v) with an arrow from u to v. For each v ∈ V
and each δ ∈ ∆, select edges (u, v) ∈ Eδ until either M edges have been selected or
no more can be found; mark each selected edge (u, v) with an arrow from v to u. For
each δ ∈ ∆, let E+

δ be the set of (u, v) ∈ Eδ with an arrow from u to v, but no arrow
from v to u; let E−δ be the set of (u, v) ∈ Eδ with an arrow from v to u, but no arrow
from u to v; let E◦δ be the set of (u, v) ∈ Eδ with an arrow from u to v and also an
arrow from v to u. Discard any edges in Eδ with no arrows at all. By construction,
H is M -bounded. To see that it is M -proper, consider first any u ∈ U and δ ∈ ∆. If
u is incident on at most M edges in Eδ, then a left-to-right arrow will be placed on
all of these edges, and so u will be incident on no edges of E−∆. If, on the other hand,
u is incident on at more than M edges in Eδ, then a left-to-right arrow will be placed
on M of these, whence degHw (δ) = M . A symmetric argument applies to any v ∈ V .
Similar reasoning shows that H̄ ≈M H ′.

Let Γ and ∆ be non-empty sets. A Γ-partitioned, directed ∆-graph is a quintuple
H = (UΓ, V,E

+
∆,E

−
∆,E

◦
∆), where UΓ is a collection of pairwise disjoint sets Uγ such

that, setting U =
⋃
γ∈Γ Uγ , the quintuple Ḣ = (U, V,E+

∆,E
−
∆,E

◦
∆) is a directed

∆-graph. When dealing with Γ-partitioned, directed ∆-graphs, we always use the
notation U =

⋃
γ∈Γ Uγ ; and we continue to use the notation Eδ = E+

δ ∪E
−
δ ∪E◦δ . We

define the functions degHw and DegHw as above; additionally, we define the functions
DEGH

v : Γ×∆→ (N∗)2 for v ∈ V by:

DEGH
v (γ, δ) = (|{u ∈ Uγ : (u, v) ∈ E−δ }|, |{u ∈ Uγ : (u, v) ∈ E◦δ }|).

It helps to think of H as the result of partitioning the left-vertices of the underlying
directed ∆-graph, Ḣ, into (possibly empty) cells Uγ , indexed by the elements of
Γ. Note that the right-vertices V are not partitioned in this way. The function
DEGH

v (γ, δ) thus specifies how the right-to-left and bi-directional edges incident to v
distribute over the partition UΓ: in particular, DegHv (δ)|i =

∑
γ∈Γ DEGH

v (γ, δ)|i for
i = 1, 2. For M a positive integer, we call H M -bounded (M -proper) if the underlying
unpartitioned directed ∆-graph, H ′ is. We call a function r : Γ×∆→ N2 unitary if∑

δ∈∆

(r(γ, δ))|2 ≤ 1 for all γ ∈ Γ,

and we call H unitary if, for all v ∈ V , DEGv is unitary. Thus, H is unitary just in
case, for each γ, no vertex in V is linked via bi-directional edges (regardless of colour)
to more than one vertex in Uγ .

It is possible to transform directed ∆-graphs into unitary, partitioned, directed
∆-graphs by appropriately labelling their left-vertices.

Lemma 5.12. Suppose M is a positive integer, and H = (UΓ, V,E
+
∆,E

−
∆,E

◦
∆)

a Γ-partitioned, directed ∆-graph; and let U =
⋃
γ∈Γ Uγ . Then the directed ∆-graph

Ḣ = (U, V,E+
∆,E

−
∆,E

◦
∆) satisfies DegḢw = DegHw for all w ∈ U ∪ V ; hence, H is M -

bounded if and only if Ḣ is, and also M -proper if and only if Ḣ is. Moreover, given
an M -bounded, directed ∆-graph H ′, we can find a set Γ with |Γ| ≤ M2|∆|2, and a
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unitary, Γ-partitioned, directed ∆-graph H = (UΓ, V,E
+
∆,E

−
∆,E

◦
∆) such that H ′ = Ḣ.

Proof. The first statement follows from the definition of DegHw . For the second
statement, suppose H ′ = (U, V,E+

∆,E
−
∆,E

◦
∆) is given: we must define the partition

UΓ of U . To do so, simply consider the graph G = (U,E) where (u, u′) ∈ E just in
case u and u′ are distinct and there exists v ∈ V and δ, δ′ ∈ ∆ with (u, v) ∈ E◦δ and
(u′, v) ∈ E◦δ′ . Note that G is simply an ordinary (undirected) graph here. Then the
degree of a vertex of G—i.e. the number of edges on which that vertex is incident—is
bounded by M |∆|(M |∆| − 1) < M2|∆|2. Hence, the vertices of G can be coloured
with M2|∆|2 colours so that no two vertices joined by an edge have the same colour.
Let Γ be the set of colours used, and let Uγ be the set of vertices of colour γ, for
γ ∈ Γ. This guarantees that H is unitary.

We now proceed to define the problem PDBGE (“partitioned, directed bipartite
graph existence”). A PDBGE-instance is a septuple Q = (Γ,∆,∆0,M, P,R,X),
where Γ, ∆, ∆0, M and X are as before, P is a set of functions ∆ → [0,M ]2, and
R is a set of unitary functions Γ ×∆ → [0,M ]2. A solution of Q is an M -bounded,
M -proper, Γ-partitioned, directed ∆-graph H = (UΓ, V,E

+
∆,E

−
∆,E

◦
∆) such that:

for all δ ∈ ∆0, Eδ is non-empty; (D1)

for all u ∈ U , DegHu ∈ P ; (D2)

for all v ∈ V , DEGH
v ∈ R. (D3)

if e ∈ Eδ and e′ ∈ Eδ′ , with e, e′ skew, then (δ, δ′) ∈ X. (D4)

The problem PDBGE is defined as follows.

Given: a PDBGE-instance P.
Output: Yes, if P has a solution; No otherwise.

Thus, PDBGE is a variant of BGESC in which the left-hand vertices have colours
(chosen from Γ), and the edges have orientations (left-to-right, right-to-left or bi-
directional). The problem finite PDBGE is defined analogously. We proceed to
establish membership of (finite) PDBGE in NPTime. Two simple, combinatorial
results will prove useful in this enterprise.

Lemma 5.13. Let `,m, n ≥ 0, let Z be a set, and let Z0, Z1, . . . Zn be subsets of
Z with |Z0| = `. Then there exists Z∗ such that: Z0 ⊆ Z∗ ⊆ Z; |Z∗| ≤ ` + mn; and
for all i (1 ≤ i ≤ n), either Zi ⊆ Z∗ or |Zi ∩ (Z \ Z∗)| > m.

Proof. Begin by setting Z∗ = Z0. As long as there is any Zi such that 1 ≤
|Zi ∩ (Z \ Z∗)| ≤ m, add all the elements of Zi to Z∗. This process must terminate
after at most n rounds, each involving the addition of at most m elements.

Lemma 5.14. Let m,n ≥ 1, let Z be a set, and let Z1, . . . , Zn be subsets of Z
with |Zi| ≥ m(n + 1). Then we can partition Z into sets Z+ and Z− such that, for
all i (1 ≤ i ≤ n), |Zi ∩ Z+| ≥ m and |Zi ∩ Z−| ≥ m.

Proof. For each i (1 ≤ i ≤ n), select m elements of Zi for inclusion in Z+. Let Z−

be the set of elements not selected in this process. By construction, |Zi ∩ Z+| ≥ m,
and, furthermore, |Z+| ≤ nm. That |Zi ∩ Z−| ≥ m then follows from the fact that
|Zi| ≥ m(n+ 1).

Lemma 5.15. The problems PDBGE and finite PDBGE are in NPTime.
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Proof. We deal first with the case PDBGE; the result for finite PDBGE will
follow by a simple adaptation. The proof consists of four stages. In Stage 1, we
take any PDBGE-instance Q = (Γ,∆,∆0,M, P,R,X), and construct a certain data-
structure, D, which we refer to as a quasi-certificate. In Stage 2, we derive a collection
of conditions which D must satisfy, on the assumption that Q has a solution. These
conditions, numbered (5.6)–(5.23) in the proof, constitute a Boolean combination of
linear equations and inequalities in the variables xγ,p and yr (with γ, p and r ranging
over specified index sets). We show how satisfying values for these variables can
be read off from any solution of Q. In Stage 3, we reverse this process, showing
that, given quasi-certificate D, satisfying (5.6)–(5.23), we can construct a solution of
Q. Thus, the original PDBGE-instance Q has been transformed into the problem
of determining the solvability of a system of linear equations and inequalities. We
characterize the size of this system of conditions rather carefully: in particular, we
show that the total number of equations and inequalities involved is polynomial in
the quantities |Γ|, |∆| and M , as indeed are all the constant terms involved; however,
the number of variables, and therefore the total size of the system of conditions, need
not be so bounded. In Stage 4, we use facts about integer programming (specifically,
Proposition 5.2) to show that the existence of some D satisfying (5.6)–(5.23) can be
checked in time polynomially bounded as a function of |Γ|, |∆| and M .

The following imagery will be helpful in the sequel. Let H = (U, V,E+
∆,E

−
∆,E

◦
∆)

be a directed ∆-graph. If u ∈ U and δ ∈ ∆, we speak of any δ-edge in e ∈ E+
δ ∪ E◦δ

such that u is incident on e as being ‘sent’ by u. Likewise, if v ∈ V , we speak of any
δ-edge in e ∈ E−δ ∪ E◦δ such that v is incident on e as being ‘sent’ by v. (Thus, left-
to-right edges are sent by their left-vertices, right-to-left edges by their right-vertices,
and bi-directional edges by both of their vertices.) If H is M -bounded, a vertex can
send at most M δ-edges; and if H is M -proper, a vertex can ‘receive’ a δ-edge only
if it sends at least M δ-edges. That is, vertices which send fewer than M δ-edges are
disqualified from receiving any uni-directional δ-edges at all. Accordingly, where H
and M are clear from context, and H is M -proper, we call a vertex w of H δ-receptive
if degHw (δ) ≥M , regardless of whether w actually receives any δ-edges.

Stage 1: Let a PDBGE-instance Q = (Γ,∆,∆0,M, P,R,X) be given. We first
assume that there is a solution of Q, and we use that solution to construct a quasi-
certificate

D = (U∗Γ,U
+
Γ , V

∗, V +,L+
∆,L

−
∆,L

◦
∆,pU+ , rV +).

Here, the components U∗Γ and U+
Γ are collections of sets satisfying U∗γ ⊆ U+

γ for
all γ ∈ Γ; V ∗ and V + are sets satisfying V ∗ ⊆ V +. Furthermore, writing U =⋃

Γ Uγ , and similarly for U∗ and U+, the components L+
∆, L−∆ and L◦∆ are subsets of

(U+× V ∗)∪ (U∗× V +) such that (U+
Γ , V

+,L+
∆, L−∆, L◦∆) is a Γ-partitioned, directed

∆-graph. Finally, the component pU+ is a collection of functions in P indexed by the
elements of U+; and the component rV + is a collection of functions in R indexed by
the elements of V +.

Suppose H = (UΓ, V,E
+
∆,E

−
∆,E

◦
∆) is a solution of Q; as usual, we write U =⋃

γ∈Γ Uγ , and Eδ = E+
δ ∪ E

−
δ ∪ E◦δ , for δ ∈ ∆. We begin the construction of D

by defining the collection of sets U∗Γ and the set V ∗. As a preliminary, say that

δ ∈ ∆ is left-special if at most two vertices u ∈ U satisfy degHu (δ) > 0, and say that
u ∈ U is special if degHu (δ) > 0 for some left-special δ. Let U ′γ be the set of special
vertices in Uγ , for all γ ∈ Γ, and let V ′ be the set of special elements of V , defined
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analogously. Evidently, |U ′γ | ≤ 2|∆|, and |V ′| ≤ 2|∆|. Fix γ ∈ Γ and, for δ ∈ ∆,
define Uγ,δ to be the set of δ-receptive vertices in Uγ . We apply Lemma 5.13 with
m = M |∆|(|∆| + 1), n = |∆|, Z = Uγ , Z0 = U ′γ , and Z1, . . . , Zn a list of the sets
Uγ,δ, for δ ∈ ∆. Then there exists a set of vertices U∗γ such that: U ′γ ⊆ U∗γ ⊆ Uγ ;
|U∗γ | ≤ 2|∆| + M |∆|2(|∆| + 1); and, for all δ ∈ ∆, if any vertices u ∈ Uγ \ U∗γ are
δ-receptive, then at least M |∆|(|∆| + 1) are. Similarly, there exists V ∗ such that:
V ′ ⊆ V ∗ ⊆ V ; |V ∗| ≤ 2|∆| + M |∆|2(|∆| + 1); and if any vertices v ∈ V \ V ∗ are
δ-receptive, then at least M |∆|(|∆|+ 1) are.

We now define the collection of sets U+
Γ and the set V +. To reduce notational

clutter, let us write u → v if (u, v) ∈ E+
δ ∪ E◦δ for some δ ∈ ∆ and u ← v if

(u, v) ∈ E−δ ∪ E◦δ for some δ ∈ ∆. Now let

U+
γ = U∗γ ∪ {u ∈ Uγ | u← v for some v ∈ V ∗}

V + = V ∗ ∪ {v ∈ V | u→ v for some u ∈ U∗}.

Thus, U+
γ adds to U∗γ those elements of Uγ reachable via either a right-to-left or a

bi-directional edge from V ∗, while V + adds to V ∗ those elements of V reachable via
either a left-to-right or a bi-directional edge from U∗. Since H is M -bounded, each
of the sets U+

γ or V + has cardinality at most (2|∆|+M |∆|2(|∆|+ 1))(M |∆|+ 1).
The next step in the construction of D is to define the collections of edge-sets

L+
∆, L−∆ and L◦∆. Let Ω denote the set of pairs (U+ × V ∗) ∪ (U∗ × V +); and for

all δ ∈ ∆, let L+
δ = (E+

δ ) ∩ Ω, L−δ = (E−δ ) ∩ Ω and L◦δ = (E◦δ ) ∩ Ω. Then H− =
(U+

Γ , V
+,L+

∆,L
−
∆,L

◦
∆) is an M -bounded, Γ-partitioned, directed ∆-graph (though it

need not be M -proper). The motivation for defining H− is that it is polynomially
bounded in M and |∆|, and that the vertices in U∗ and V ∗ have the same degrees in
H− as they have in H.

The final components of our quasi-certificate D are the collections of functions
pU+ and rV + , where pu ∈ P for all u ∈ U+, and rv ∈ R for all v ∈ V +. To define
these functions, we simply set

pu = DegHu

rv = DEGH
v

for u ∈ U+ and v ∈ V +: since H is a solution of Q, we have pu ∈ P and rv ∈ R as
required.

This completes the construction of the quasi-certificate D.

Stage 2: In this stage, we derive some properties of D. If (m,n) and (m′, n′) are
pairs of natural numbers, we write (m,n)� (m′, n′) if m ≥ m′ and n ≥ n′. Evidently:∧

u∈U+

∧
δ∈∆

(
pu(δ)�DegH

−

u (δ)
)

(5.6)

∧
v∈V +

∧
γ∈Γ

∧
δ∈∆

(
rv(γ, δ)�DEGH−

v (γ, δ)
)
. (5.7)

On the other hand, by construction of the sets U+ and V +, we have∧
u∈U∗

∧
δ∈∆

(
pu(δ) = DegH

−

u (δ)
)

(5.8)

∧
v∈V ∗

∧
γ∈Γ

∧
δ∈∆

(
rv(γ, δ) = DEGH−

v (γ, δ)
)
. (5.9)
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U∗

U+

U \ U+

Uγ

Uγ,p Vr

V ∗

V +

V \ V +

V

Figure 5.3: The partitioning of (Uγ \ U+) into the collection {Uγ,p | p ∈ P}, and of
(V \ V +) into the collection {Vr | r ∈ R}.

Now, let P be the set of functions p : ∆→ [0,M ]2, and R the set of unitary functions
r : Γ×∆ → [0,M ]2. Thus, P ⊆ P and R ⊆ R. We remark, however, that P and R
are large sets—not polynomially bounded in |∆|. For all γ ∈ Γ and all p ∈ P, let xγ,p
be a new symbol; and for all r ∈ R, let yr be a new symbol. Formally, these symbols
are variables ranging over N∗. Informally, we have a particular valuation in mind:
xγ,p is the cardinality of the set Uγ,p = {u ∈ Uγ \ U+ | DegHu = p}, and yr is the

cardinality of the set Vr = {v ∈ V \V + | DEGH
v = r}. Note that the (possibly empty)

sets Uγ,p and Vr partition Uγ \U+ and V \V +, respectively, as illustrated in Fig. 5.3.
Since H is a solution of Q, we know that Uγ,p = ∅ whenever p 6∈ P ; similarly, Vr = ∅
whenever r 6∈ R. That is, under the suggested valuation, the following equations hold:

∧
γ∈Γ

∑
p∈P\P

xγ,p = 0 (5.10)

∑
r∈R\R

yr = 0. (5.11)

Our suggested valuation satisfies further conditions. We examine first those aris-
ing from the bi-directional edges in H. Fixing γ ∈ Γ and δ ∈ ∆, the expression∑
u∈U+

γ

(
pu(δ)|2

)
+
∑
p∈P

(
p(δ)|2

)
xγ,p records the total number of edges in E◦δ inci-

dent on the vertices of Uγ ; similarly,
∑
v∈V +

(
rv(γ, δ)|2

)
+
∑
r∈R

(
r(γ, δ)|2

)
yr records

the total number of edges in E◦δ ∩ (Uγ × V ) incident on the vertices of V . Since these
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must be equal, we have the condition:

∧
γ∈Γ

∧
δ∈∆

 ∑
u∈U+

γ

(
pu(δ)|2

)
+
∑
p∈P

(
p(δ)|2

)
xγ,p =

∑
v∈V +

(
rv(γ, δ)|2

)
+
∑
r∈R

(
r(γ, δ)|2

)
yr

)
. (5.12)

We next examine those conditions on D arising from the uni-directional edges
in H. The following notation, which loosely alludes to the construction of H̄ and
Ḣ in Lemmas 5.11 and 5.12, will help us do so. For p ∈ P, define the function
p̄ : ∆ → N by p̄(δ) = p(δ)|1 + p(δ)|2; for r ∈ R, define the function ¯̇r : ∆ → N
by ¯̇r(δ) =

∑
Γ(r(γ, δ)|1 + r(γ, δ)|2). Observe that, for the particular collections of

functions pU+ and rV + defined above, we have p̄u = degHu for all u ∈ U+, and
¯̇rv = degHv for all v ∈ V +. In particular, u ∈ U+ is δ-receptive just in case p̄u(δ) = M ,
and v ∈ V + is δ-receptive just in case ¯̇rv(δ) = M .

Consider first the left-to-right edges incident on vertices in U+ \ U∗, as well as
the right-to-left edges incident on vertices in V + \ V ∗. Any vertex u ∈ U+ \ U∗, lies
on pu(δ)|1 left-to-right δ-edges in H. We have two possibilities. If all of these edges

link u to vertices in V ∗, then pu(δ)|1 = DegH
−

u (δ)|1. If, on the other hand, u is linked
by a left-to-right δ-edge to at least one vertex in V \ V ∗, then we have at least one
δ-receptive vertex in V \ V ∗, since H is M -proper. Corresponding remarks apply to
v ∈ V + \ V ∗. The following term in the variables xγ,p specifies, under the valuation
suggested above, the number of δ-receptive vertices of Uγ \ U∗γ :

|{u ∈ U+
γ \ U∗γ : p̄u(δ) = M}|+

∑
{xγ,p : p ∈ P, p̄(δ) = M}.

We abbreviate this term by
←
s γ(δ); obviously, there is an analogous term,

→
t (δ), spec-

ifying the number of δ-receptive vertices in V \ V ∗. Thus, we have:∧
u∈U+

∧
δ∈∆

(
pu(δ)|1 = (DegH

−

u (δ))|1 ∨
→
t (δ) ≥ 1

)
(5.13)

∧
v∈V +

∧
γ∈Γ

∧
δ∈∆

(
rv(γ, δ)|1 = (DEGH

−
u (γ, δ))|1 ∨

←
s γ(δ) ≥ 1

)
. (5.14)

Consider now the left-to-right edges incident on vertices in U \U+, as well as the
right-to-left edges incident on vertices in V \ V +. Fix γ ∈ Γ and δ ∈ ∆. If, for any
p ∈ P, xγ,p > 0, then there exists a vertex u ∈ Uγ \ U+ lying on p(δ)|1 left-to-right
δ-edges in H. We have two possibilities. If all of these edges link u to vertices in
V ∗, then the number of δ-receptive vertices of V ∗ must be at least p(δ)|1. If, on the
other hand, u is linked by a left-to-right δ-edge to at least one vertex in V \ V ∗, then
we have at least one δ-receptive vertex in V \ V ∗. Taking the constant nδ to be the
number of δ-receptive elements of V ∗ (which can be computed from L−∆ and L◦∆),
the number of elements of Uγ \ U+ for which p(δ)|1 exceeds nδ is given by the term∑
{xγ,p : p ∈ P s.t. p(δ)|1 > nδ}. Thus:∧

γ∈Γ

∧
δ∈∆

(→
t (δ) ≥ 1 ∨

∑
{xγ,p : p ∈ P s.t. p(δ)|1 > nδ} = 0

)
. (5.15)
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Similarly, taking mγ,δ to be the number of δ-receptive elements of U∗γ (which can be

computed from L+
∆ and L◦∆), we have:∧

γ∈Γ

∧
δ∈∆

(
←
s γ(δ) ≥ 1 ∨

∑
{yr : r ∈ R s.t. r(γ, δ)|1 > mγ,δ} = 0

)
. (5.16)

We note in this connection that, by construction of the sets U∗γ , if Uγ \ U∗γ contains
any δ-receptive vertices, then it contains at least M |∆|(|∆| + 1); and similarly for
V \ V ∗. Thus, we have the conditions:∧

γ∈Γ

∧
δ∈∆

(
←
s γ(δ) = 0 ∨←s γ(δ) ≥M |∆|(|∆|+ 1)

)
(5.17)

∧
δ∈∆

(→
t (δ) = 0 ∨

→
t (δ) ≥M |∆|(|∆|+ 1)

)
. (5.18)

So far, we have made no use of the fact that, since H is a solution of Q, then, for
all δ ∈ ∆0, Eδ is non-empty. To do so, we define some useful abbreviations, gathering
additional conditions on D along the way. Observe first that the following constants
specify the number of vertices in U∗γ and U+

γ \U∗γ , respectively, lying on some edge in

E+
δ ∪ E◦δ :

s∗γ(δ) =|{u ∈ U∗γ : p̄u(δ) > 0}|
s+
γ (δ) =|{u ∈ U+

γ \ U∗γ : p̄u(δ) > 0}|.

But, since H is M -proper (and M ≥ 1), these are the numbers of vertices in U∗γ and
U+
γ \ U∗γ , respectively, lying on some edge in Eδ. The following term in the variables

xγ,p likewise specifies the number of vertices in Uγ \ U+
γ lying on some edge in Eδ:

sγ(δ) =
∑
{xγ,p | p ∈ P, p̄(δ) > 0}.

Analogous expressions, t∗(δ), t+(δ) and t(δ), can be constructed to count how many
vertices of V ∗, V + \ V ∗ and V \ V +, respectively, lie on some edge in Eδ. Hence, the
terms

ŝ(δ) =
∑
γ∈Γ

(s∗γ(δ) + s+
γ (δ) + sγ(δ))

t̂(δ) =t∗(δ) + t+(δ) + t(δ)

denote the number of elements of U and V , respectively, lying on some edge in Eδ.
Recall that U∗ is guaranteed to contain all special elements of U—i.e. elements

with degu(δ) > 0 for which at most one other element satisfies degu(δ) > 0. Put
another way: if at most two elements u ∈ U satisfy degu(δ) > 0, then no elements
u ∈ U \ U∗ do:

∧
δ∈∆

∑
γ∈Γ

(s+
γ (δ) + sγ(δ)) = 0 ∨

∑
γ∈Γ

(s∗γ(δ) + s+
γ (δ) + sγ(δ)) > 2

 (5.19)

And similarly for V ∗:∧
δ∈∆

(
(t+(δ) + t(δ) = 0) ∨ (t∗(δ) + t+(δ) + t(δ) > 2)

)
. (5.20)
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Now we can state the condition on D arising from the fact that, for all δ ∈ ∆0, Eδ is
non-empty. We simply write ∧

δ∈∆0

(
t̂(δ) > 0

)
. (5.21)

So far, we have made no use of the fact that, since H is a solution of Q, if e ∈ Eδ
and e′ ∈ Eδ′ are skew, then (δ, δ′) ∈ X. Recalling the terms ŝ(δ) and t̂(δ), we can
evidently write an analogous linear term ŝ(δ, δ′), in the variables xγ,p, specifying the
number of vertices in U lying on either δ- or δ′-edges, with a corresponding term
t̂(δ, δ′) for V . Writing Lδ = L+

δ ∪ L
−
δ ∪ L◦δ for δ ∈ ∆, and similarly for δ′, Lemma 5.9

yields the following pair of conditions on D:∧
(δ,δ)∈∆2\X

(ŝ(δ) ≤ 1 ∨ t̂(δ) ≤ 1) (5.22)

∧
(δ,δ′)∈∆2\X

δ 6=δ′


[
ŝ(δ) = 0

]
∨
[
ŝ(δ′) = 0

]
∨
[
ŝ(δ, δ′) = 1

]
∨
[
t̂(δ, δ′) = 1

]
∨

[
ŝ(δ, δ′) = t̂(δ, δ′) = 2 and Lδ, Lδ′ are as in Fig. 5.2

]
 . (5.23)

This completes the list of conditions on D. We have shown that, ifQ has a solution
H = (U, V,E+

∆,E
−
∆,E

◦
∆), then there exists a quasi-certificate D = (U∗Γ,U

+
Γ , V

∗, V +,
L+

∆,L
−
∆,L

◦
∆,pU+ , rV +), such that the conditions (5.6)–(5.23) can be satisfied by choos-

ing appropriate values (over N∗) for the variables xγ,p and yr. A quick scan of these
conditions (and of the abbreviations they contain) shows that—regarding the symbols
xγ,p and yr as variables, and all others as constants—they are all Boolean combina-
tions of linear equations and inequalities. We have already observed that the cardi-
nalities of the sets U+

γ and V + are bounded by (2|∆|+M |∆|2(|∆|+ 1))(M |∆|+ 1);
thus, by scanning the index sets over which any conjunctions or disjunctions occur-
ring in (5.6)–(5.23), range, we see that the number of linear equations and inequalities
involved is bounded by a polynomial function of the size of Γ, |∆| and M . Finally, all
constant terms—such as, for example, numbers nδ or the function values pu(δ) (for
u ∈ U+)—are also evidently bounded by a polynomial function of the Γ, |∆| and M .
We remark that the number of variables appearing in these conditions—and hence
their total size—is not so bounded. This fact necessitates the reasoning in Stage 4,
below.

Stage 3: Now suppose we have a quasi-certificate

D = (U∗Γ,U
+
Γ , V

∗, V +,L+
∆,L

−
∆,L

◦
∆,pU+ , rV +)

where U∗Γ and U+
Γ are collections of sets satisfying U∗γ ⊆ U+

γ for all γ ∈ Γ; V ∗

and V + are sets satisfying V ∗ ⊆ V +; L+
∆, L−∆ and L◦∆ are collections of edge-sets

in Ω = (U+ × V ∗) ∪ (U∗ × V +) such that H− = (U+
Γ , V

+,L+
∆, L−∆, L◦∆) is a Γ-

partitioned, directed ∆-graph; pU+ is a collection of functions pu ∈ P ; and rV + is a
collection of functions rv ∈ R. And suppose Conditions (5.6)–(5.23) can be satisfied
over N∗. We show that there exists a solution H = (U, V,E+

∆,E
−
∆,E

◦
∆) of Q. To

this end, we henceforth take the xγ,f and yg to be elements of N∗ such that (5.6)–
(5.23) hold. For all γ ∈ Γ and all p ∈ P, let Uγ,p be a fresh set of cardinality xγ,p;
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let Uγ = U+
γ ∪

⋃
P Uγ,p; and let U =

⋃
Γ Uγ . For all r ∈ R, let Vr be a fresh set

of cardinality yr; and let V = V + ∪
⋃

R Vr. As usual, we set U∗ =
⋃
γ∈Γ U

∗
γ and

U+ =
⋃

Γ U
+
γ . When u ∈ Uγ,p, we take pu to denote p, and when v ∈ Vr, we take rv

to denote r. In this way, the notation pu makes sense for all u ∈ U , and the notation
rv makes sense for all v ∈ V . If u ∈ U and δ ∈ ∆, we think of pu(δ) (a pair of integers)
as the ‘desired’ value of DegHu (δ) when H is finally constructed; and if v ∈ V , γ ∈ Γ
and δ ∈ ∆, we think of rv(γ, δ) as the ‘desired’ value of DEGH

v (γ, δ) when H is finally
constructed. Accordingly, we call u ∈ U δ-receptive if p̄u(δ) = M , and we call v ∈ V
δ-receptive if ¯̇rv(δ) = M .

Our task is to define the collections of edge-sets E+
∆, E−∆ and E◦∆. We begin by

setting E+
∆, E−∆ and E◦∆ on the pairs in Ω to coincide exactly with L+

∆, L−∆ and L◦∆,
respectively. In the sequel, if u ∈ U∗, we shall not add any edges (u, v) to any of the
edge-sets E+

δ or E◦δ ; likewise, if v ∈ V ∗, we shall not add any edges (u, v) to any of the

edge sets E−δ or E◦δ . In this way, using (5.8) and (5.9), we ensure that DegHu = pu ∈ P
for all u ∈ U∗, and DEGH

v = rv ∈ R for all v ∈ V ∗. The remainder of the construction
is concerned with extending the definition of E+

∆, E−∆ and E◦∆ to the whole of U × V .
We begin with the collection of bi-directional edge sets, E◦∆. Fix γ ∈ Γ. Now

associate with each u ∈ Uγ exactly pu(δ)|2 bi-directional δ edges, and associate with
each v ∈ V exactly rv(γ, δ)|2 bi-directional δ edges. We think of u ∈ Uγ as having
pu(δ)|2 ‘dangling’ δ-edges which need to be paired up with dangling edges belonging
to vertices in V ; and we think of v ∈ V as having rv(γ, δ)|2 dangling δ-edges which
need to be paired up with dangling edges belonging to vertices in Uγ . By (5.12),
the total number of δ-edges left dangling by vertices in Uγ is the same as the total
number left dangling by the vertices in V , and so we can put these dangling edges
in a 1–1 correspondence; indeed, this may obviously be done consistently with the
partial correspondence induced by L◦δ . We then simply take (u, v) to be in E◦δ just
in case u and v are associated with dangling δ-edges that have been paired up in this
process. (Note that E◦δ agrees with L◦δ on Ω.) For this assignment to make sense, we
must check that vertices u ∈ Uγ and v ∈ V cannot be paired twice in this process.
After all, if u ∈ Uγ and v ∈ V were both associated with one (dangling) δ-edge and
one (dangling) δ′-edge, we could not use both dangling pairs to form two edges in
the graph, since then E◦δ and E◦δ′ would not be disjoint. However, no such double
pairings can arise, because rv is, by assumption, unitary: v never ‘wants’ to be linked
by more than one bi-directional edge (regardless of colour) to vertices in Uγ . (Indeed,
this was the point of introducing the notion of partitioned directed ∆-graphs in the
first place.) Carrying out this process for all γ ∈ Γ, we have set E◦∆ so as to ensure
that

DegHu (δ)|2 =pu(δ)|2
DEGH

v (γ, δ)|2 =rv(γ, δ)|2

for all u ∈ U and v ∈ V .
We now turn to the uni-directional edges in H. As a prelude, we use Lemma 5.14

to partition the sets V \ V ∗ and Uγ \ U∗γ (for γ ∈ Γ) into sets of ‘positive’ and
‘negative’ elements. Suppose δ ∈ ∆. Now, it follows from (5.18) that, if there are any
δ-receptive elements of V \ V ∗ at all, then there are at least M |∆|(|∆|+ 1) of them.
By Lemma 5.14, therefore, putting m = M |∆| and n = |∆|, we may divide V \ V ∗
into sets of positive and negative elements such that, for all δ ∈ ∆, if there are any
δ-receptive elements of V \ V ∗, then there are at least M |∆| positive such elements,
and at least M |∆| negative such elements. Similarly, by (5.17), we may divide each
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Uγ \U∗γ (γ ∈ Γ) into sets of positive and negative elements such that, for all δ ∈ ∆, if
there are any δ-receptive elements of Uγ \ U∗γ , then there are at least M |∆| positive
such elements, and at least M |∆| negative such elements.

We are now ready to define the collection of left-to-right edge sets, E+
∆. We have

already dealt with the elements of U∗γ , so consider first any element u ∈ U+
γ \U∗γ . For

each δ ∈ ∆, we have two cases, depending on the condition DegH
−

u (δ)|1 = pu(δ)|1. If
this condition holds, then, for each v ∈ V , we simply take (u, v) to be in E+

δ just in case
(u, v) ∈ L+

δ . This does not change any previously made assignments, and will result in

the condition that DegHu (δ)|1 = pu(δ)|1. If, on the other hand, DegH
−

u (δ)|1 < pu(δ)|1,
then, by (5.13), V \ V ∗ contains some δ-receptive elements, whence, as we have just
argued, we can find M |∆| such elements that are positive, and also M |∆| that are

negative. If u is positive (negative), we can therefore choose pu(δ)|1 − DegH
−

u (δ)|1
positive (negative) v ∈ V \ V ∗ such that (u, v) has not so far been assigned to any
edge, and simply make the assignment (u, v) ∈ E+

δ . It is obvious that, at the end of

this process, DegHu (δ)|1 = pu(δ)|1. Suppose, finally, u ∈ Uγ \ U+
γ . Again, we have

two cases, depending on the condition nδ ≥ pu(δ)|1. If this condition holds, then, for
each v ∈ V , we can find pu(δ)|1 δ-receptive v ∈ V ∗, and simply make the assignment
(u, v) ∈ E+

δ . Since u 6∈ U+
γ , this cannot disturb any previously made assignments. If,

on the other hand, nδ < pu(δ)|1, then, by (5.15), V \ V ∗ contains some δ-receptive
elements, and hence at least M |∆| positive such elements and at least M |∆| negative
such elements. Again, if u is positive (negative), we choose pu(δ)|1 positive (negative)
v ∈ V \V ∗ such that (u, v) has not so far been assigned to any edge, and simply make
the assignment (u, v) ∈ E+

δ . When all these assignments have been made, we have

DegHu (δ)|1 = pu(δ)|1. At this point, E+
δ has been completely defined for all δ ∈ ∆

in such a way that DegHu (δ)|1 = pu(δ)|1 for all u ∈ U . Since the definition of E◦∆
has already secured DegHu (δ)|2 = pu(δ)|2 for all u ∈ U , we have DegHu (δ) = pu(δ).
If u ∈ U+, the fact that pu ∈ P ensures that DegHu ∈ P ; if u ∈ U \ U+, the same
conclusion follows from (5.10).

To define the collection of right-to-left edge sets, E−∆, we proceed in an analogous
way, relying on Condition (5.14) instead of (5.13), and on Condition (5.16) instead
of (5.15). There is one small difference, however. If v ∈ V \ V ∗ is positive (negative)
we choose only negative (positive) elements of Uγ \ U∗γ to receive right-to-left edges
from v. Thus, while left-to-right edges link positive Us to positive V s and negative Us
to negative V s, right-to-left edges link positive Us to negative V s and negative Us to
positive V s. This strategy prevents the assignments of right-to-left edges disturbing
the earlier left-to-right assignments. At the end of this process, we have DEGH

v = rv
for all v ∈ V . If v ∈ V +, the fact that rv ∈ R ensures that DEGH

v ∈ R; if v ∈ V \V +,
the same conclusion follows from (5.11).

That Eδ = E+
δ ∪E

−
δ ∪E◦δ 6= ∅ for all δ ∈ ∆0 follows easily from Conditions (5.21);

and that there exists no pair of skew edges e ∈ Eδ, e′ ∈ Eδ′ with (δ, δ′) 6∈ X follows
from Conditions (5.19), (5.20), (5.22) and (5.23), using Lemma 5.9. (Notice that
Conditions (5.19) and (5.20) are needed to ensure that, if there are only two vertices
in U lying on δ- or δ′-edges, and only two vertices in V lying on δ- or δ′-edges, then all
the δ- and δ′-edges are accounted for by H−.) Thus, H is a solution of Q, as required.

Stage 4: To complete the proof, suppose that D exists and satisfies Conditions (5.6)–
(5.23). These conditions are simply a Boolean combination (involving ∧ and ∨) of
easily checkable statements aboutQ—let us call themQ-statements—and linear equa-
tions and inequalities in the variables xγ,p and yr. Select a single disjunct from each
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disjunction so that a simple conjunction results. Now verify the truth of all the Q-
statements in this conjunction (failing if any is false); and let E be the remaining
conjunction of linear equations and inequalities. Thus, m = |E| is bounded by a
polynomial function of M and ∆, and each coefficient in E certainly has at most k
bits, where k is given by a polynomial function of M and ∆. By Corollary 5.4, if E
has a solution over N∗, then it has a solution in which at most polynomially many
values are non-zero (as a function of km). The relevant set of non-zero values may be
guessed and written down in polynomial time, and all other variables ignored. Thus,
from Conditions (5.6)–(5.23), we can non-deterministically construct an equisatisfi-
able, polynomial-sized integer-programming problem. But Corollary 5.5 states that
this problem is in NPTime.

To show that finite PDBGE is in NPTime, we reason in exactly the same way,
but with N∗ replaced by N, and Corollaries 5.4 and 5.5 replaced by Propositions 5.2
and 5.3, respectively. The details of the proof are unaffected.

The proof of Lemma 5.15 actually shows a little more:
Corollary 5.16. Let Q = (Γ,∆,∆0,M, P,R,X) be a (finite) PDBGE-instance.

If Q has a solution, then we can find subsets P0 ⊆ P and R0 ⊆ R, bounded by
a polynomial function of |Γ|, |∆| and M , such that the (finite) PDBGE-instance
(Γ,∆,∆0,M, P0, R0, X) also has a solution.

Proof. Let P0 be the set of functions p ∈ P for which either p ∈ pU+ or xγ,p is
non-zero (for some γ) in the proof of Lemma 5.15; and similarly let R0 be the set of
functions r ∈ R for which either r ∈ rV + or yr is non-zero.

We are now able to establish Theorem 5.10, the main result of this section.

Proof. [Theorem 5.10] Let the (finite) BGESC-instance P = (∆,∆0,M, F,G,X)
be given. We carry out the following procedure, where h is some fixed polynomial.
Guess subsets P0 ⊆ P and R0 ⊆ R of cardinality at most h(M |∆|), and determine
whether

ṗ ∈ F for all p ∈ P0 (5.24)

¯̇r ∈ G for all r ∈ R0 (5.25)

failing if not. Now let Γ be a set of cardinality M2|∆|2, and run a non-deterministic
polynomial time algorithm which succeeds just in case the (finite) PDBGE-instance
Q = (Γ,∆,∆0,M, P0, Q0, X) is positive, and report the result.

The above non-deterministic procedure obviously runs in polynomial time. We claim
that, for suitable choice of the polynomial h, it has a successful run if and only if P
is positive. For suppose the procedure has a successful run. Let the Γ-partitioned,
directed ∆-graphH be a solution ofQ. Then the conditions (5.24) and (5.25), together
with Lemmas 5.11 and 5.12 ensure that, setting H ′ = Ḣ and H ′′ = H ′, the ∆-graph
H ′′ is a solution of P. Conversely, suppose P is positive, and let the ∆-graph H ′′ be
a solution of P. By Lemma 5.11, there is an M -bounded, M -proper directed ∆-graph
H ′ such that H ′ = H ′′; and by Lemma 5.12, there exists a set Γ with |Γ| ≤ M2|∆|2
and a unitary (M -bounded, M -proper) Γ-partitioned directed directed ∆-graph H
such that Ḣ = H ′. Now define

P ={p ∈ P | ṗ ∈ F}
R ={r ∈ R | ¯̇r ∈ G}
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Thus, H is a solution of the (finite) PDBGE-instance (Γ,∆,∆0,M, P,R,X). Hence,
for suitable choice of h, Corollary 5.16 ensures that we can find P0 ⊆ P and R0 ⊆ R,
with cardinalities bounded by h(M, |∆|), such that H is a solution of the (finite)
PDBGE-instance Q = (Γ,∆,∆0,M, P0, R0, X). But then the above procedure has a
successful run, as required.

Using the same reasoning as for Corollary 5.16, we have:
Corollary 5.17. If (∆,∆0,M, F ′, G′, X) is a positive instance of (finite)

BGESC, then there exist subsets F ⊆ F ′, G ⊆ G′, both of cardinality bounded by
a polynomial function h0 of |∆| and M , such that (∆,∆0,M, F,G,X) is also a posi-
tive instance of (finite) BGESC.

6. Upper Bound for EC2
2. The purpose of this section is to establish that the

satisfiability and finite satisfiability problems for EC2
2 are both in 2-NExpTime. We

proceed by transforming a reduced normal-form EC2
2-formula ϕ, non-deterministically,

into a BGESC-instance, P, and showing that ϕ is (finitely) satisfiable if and only if
this transformation can be carried out in such a way that P is a positive instance of
(finite) BGESC. Any solution of P is a bipartite graph in which the left-hand ver-
tices represent r#

1 -classes, the right-hand vertices represent r#

2 -classes and the edges
represent intersections; incidence of an edge on a vertex represents inclusion of the
corresponding intersection in the corresponding r#

1 - or r#

2 -class. Owing to Lemma
4.2 we may restict our attention to intersections of exponentially bounded size. The
main work in this reduction is performed in Sec. 6.2; Sec. 6.1 is devoted to estab-
lishing technical results allowing us to manipulate structures built from collections of
intersections. We introduce some additional notation. If τ = τ0 ∪ {r1, r2} ∪ {r#

1 , r
#

2 },
we say that a τ -structure I is a pre-intersection if for i = 1, 2, and for all a, a′ ∈ I
we have I |= r#

i [a, a′] (but we do not require (r#

i )I to be the equivalence closure
of rIi ). Obviously, if I is an intersection of A, then the induced substructure I is a
pre-intersection. By the type of a pre-intersection, we mean its isomorphism type.

Let ∆ be a set of types of pre-intersections, and f : ∆ → N∗ a function not
uniformly 0 on ∆. We write D ≈ JfK1 to indicate that the structure D is a single
r#

1 -class built out of exactly f(δ) pre-intersections of type δ, for each δ ∈ ∆. More
precisely: (i) the domain of D can be represented as D =

⋃
{Dδ,i | δ ∈ ∆, 0 ≤ i <

f(δ)}; (ii) for all δ ∈ ∆ and all i < f(δ), D�Dδ,i is a pre-intersection of type δ; (iii)
every pair of elements ofD is r1-connected in D; (iv) r#

1 is the equivalence closure of r1;
(v) no elements from different sets Dδ,i are related by r2. Note that a pair of elements
belonging to a single pre-intersection is not required to be connected by an r2-path in
D (in a model containing D as an r#

1 -class such a pair may be properly connected by
an r2-path going through some other pre-intersections of its r#

2 -class). The notation
D ≈ JfK2 is defined symmetrically, with r1 and r2 exchanged. Observe that f does not
fully determine D, since the connections (i.e. 2-types) between elements from different
pre-intersections are not specified.

6.1. Approximating Classes. Fix a reduced normal-form EC2
2-formula ϕ =

χ∧ψ00∧ψ01∧ψ10∧ω over signature τ . We take ϕ1 to denote χ∧ψ00∧ψ01, and ϕ2 to
denote χ∧ψ00∧ψ10. Thus, ϕ1 incorporates the universal requirements of ϕ, as well as
its existential requirements in respect of the relation r#

1 ; similarly, mutatis mutandis,
for ϕ2. We employ the exponential function K : N→ N of Lemma 4.2. In addition, we
take N : N→ N to be a doubly exponential function such that N(|τ |) bounds number
of isomorphism types of τ -structures consisting of two pre-intersections of size at most
K(|τ |). We define the function L(n) = 45(N(n))6, corresponding to the size bound
obtained in Lemma 4.3. We prove two simple facts regarding the r#

i -classes in a
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model of ϕ. The first allows us to add pre-intersections to an existing r#

1 - or r#

2 -class,
provided that, for each pre-intersection being added, its type is realized in this class
at least twice.

Lemma 6.1. Let ∆ be a finite set of isomorphism types of pre-intersections. Let
f and f ′ be functions ∆→ N∗, such that, for all δ ∈ ∆, f(δ) ≤ 1 implies f ′(δ) = f(δ),
and f(δ) ≥ 2 implies f ′(δ) ≥ f(δ). For i ∈ {1, 2}, if D ≈ JfKi is such that D |= ϕi,
then there exists D′ ≈ Jf ′Ki such that D′ |= ϕi.

Proof. We prove the result for i = 1; the case i = 2 follows by symmetry. Consider
first the case where, for some δ ∈ ∆, f ′(δ) = f(δ)+1, with f ′(δ′) = f(δ′) for all δ′ 6= δ.
By assumption, f(δ) ≥ 2. We show how to add to D a single pre-intersection of type
δ to obtain a model D′ |= ϕ1. Let I1, I2 be pre-intersections in D of type δ; and let
D′ extend D by a new pre-intersection I of type δ. For every pre-intersection I ′ of D,
I ′ 6= I1, set the 2-types between I and I ′, i.e. the 2-types realized by pairs of elements
from, respectively, I and I ′, isomorphically to the connection between I1 and I ′. This
ensures all the required witnesses for I inside D′, and, as I1 has to be r1-connected
to the remaining part of D, this also makes D′ r1-connected. Complete D′ by setting
the connection between I and I1 isomorphically to the connection between I1 and I2.
Note that all 2-types in D′ are also realized in D, so D′ |= χ. Observe that, in this
construction, D ⊆ D′.

Consider now the case where, for some δ ∈ ∆, f ′(δ) > f(δ) ≥ 2, with f ′(δ′) =
f(δ′) for all δ′ 6= δ. If f ′(δ) is finite, iterating the above procedure f ′(δ) − f(δ)
times yields the required D′. If f ′(δ) = ℵ0, we define a sequence D1 ⊆ D2 ⊆ · · ·
of models of ϕ1 with increasing numbers of copies of pre-intersections of type δ, and
set D′ =

⋃
iDi. The statement of the lemma is then obtained by applying the above

construction successively for all δ ∈ ∆.
In the next lemma we show that, from a local point of view, every class can be

‘approximated’ by a class in which the number of realizations of each pre-intersection
type is bounded doubly exponentially in τ . (In fact, exponentially many realizations
of each type suffice; however, a doubly exponential bound makes for a simpler proof.)
This lemma is a counterpart of Lemma 16 from [21].

Lemma 6.2. Let ∆ be the set of all types of pre-intersections of size bounded
by K(|τ |). Let f be a function ∆ → N∗, and let f ′ = bfcL(|τ |). For i ∈ {1, 2}, if
D ≈ JfKi is such that D |= ϕi, then there exists D′ ≈ Jf ′Ki such that D′ |= ϕi.

Proof. Again, we prove the result for i = 1; the case i = 2 follows by symmetry.
We translate D into a structure F whose domain is the set of all pre-intersections of
D; atomic 1-types in D represent isomorphism types of pre-intersections, and atomic
2-types represent connections among them. The signature σ of F contains a binary
symbol r′1, corresponding to r1 from τ , a dummy binary symbol r′2 and some sets of
unary and binary predicates bounded logarithmically in N(|τ |). We build F in such a
way that: (i) I1, I2 have the same 1-type in F if and only if I1 and I2 are isomorphic
in D; (ii) pairs of pre-intersections I1, I2 and I ′1, I

′
2 have the same 2-types in F if and

only if D�(I1 ∪ I2) is isomorphic to D�(I ′1 ∪ I ′2); (iii) F |= r′1(I1, I2) if and only if there
exist a1 ∈ I1, a2 ∈ I2 such that D |= r1(a1, a2); and (iv) r′2 is the universal relation:
F |= r′2[I1, I2] for all I1, I2 ∈ F . Note that F is r′1-connected, and thus forms a single
r′1

#
-class, and, as r′2

#
is universal, F is actually an intersection. Note also that |β[F]|,

i.e. the number of 2-types in F, is bounded by N(|τ |).
Let α be a 1-type realized in F. Let Fα be the set of realizations of α. If

|Fα| > 45|β[F]|6 then apply Lemma 4.3, taking A := F, B := Fα, D1 := D2 := F .
Repeat this step for all 1-types of F. Let F′ be the structure thus obtained.
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Since, by Lemma 4.3 (ii) and (iii), no new 1-types or 2-types can appear in F′, it
has a natural translation back into a structure D′′, with elements of F′ corresponding
to pre-intersections in D′′. Thus, each isomorphism type δ is realized in D′′ at most
45|β[F]|6 ≤ L(|τ |) times. If δ is realized fewer than min(f(δ), L(|τ |)) times in D′′,
then we can use Lemma 6.1 to add an appropriate number of realizations of δ to D′′

to obtain a model D′ |= ϕ1 with D′ ≈ Jf ′K1.

6.2. The (Finite) Satisfiability Problem for EC2
2 and (Finite) BGESC.

Let ϕ, ϕ1, ϕ2, τ and the function L be as in Sec. 6.1. (Recall: ϕ = χ∧ψ00∧ψ01∧ψ01∧ω,
ϕ1 = χ ∧ ψ00 ∧ ψ01 and ϕ2 = χ ∧ ψ00 ∧ ψ10.) We now explain how to transform ϕ
non-deterministically into a BGESC-instance P = (∆,∆0,M, F,G,X). We show that
ϕ is (finitely) satisfiable if and only if this transformation can be applied in such a
way that the resulting tuple P is a positive instance of the problem (finite) BGESC.

We first define the components ∆, M , and X of P. Let ∆ be the set of isomor-
phism types of pre-intersections over the signature τ satisfying χ∧ψ00, and of size at
most K(|τ |). Let M = max(L(|τ |), 2), and let X be the set of pairs (δ, δ′) ∈ ∆2 for
which there exists a model D |= χ consisting of exactly one pre-intersection of type
δ and another of type δ′, each forming its own r#

1 -class and its own r#

2 -class. Thus,
|∆|, M and |X| are all bounded by a doubly exponential function of |τ |.

The remaining components of P, namely, ∆0, F and G, will be guessed. The
following terminology and notation will prove useful. Say that a set of pre-intersection
types ∆′ ⊆ ∆ certifies ω if, for every conjunct ωi = ∃x.pi(x) of ω we can find δ in ∆′

such that in any structure I consisting of a single pre-intersection of type δ there is
a such that I |= pi[a]. Now let F ∗ be the set of functions f : ∆ → [0,M ] for which
there exists a structure D ≈ JfK1 such that D |= ϕ1. Similarly, let G∗ be the set
of functions g : ∆ → [0,M ] for which there exists a structure D ≈ JgK2 such that
D |= ϕ2. (Note that |F ∗| and |G∗| are bounded by a triply exponential function of
|ϕ|.)

Lemma 6.3. Let ϕ, ∆, F ∗, G∗, X be as defined above, and let h0 be the polynomial
guaranteed by Corollary 5.17. Then ϕ is (finitely) satisfiable if and only if there exist
∆0 ⊆ ∆ certifying ω, and collections of functions F ⊆ F ∗, G ⊆ G∗, both of cardinality
bounded by h0(|∆|,M), such that P = (∆,∆0,M, F,G,X) is a positive instance of
the problem (finite) BGESC.

Proof. ⇒ By Lemma 4.2, let A |= ϕ be a model with intersections bounded by
K(|τ |). Let E be the set of intersections in A. For each conjunct ωi of ω choose
one element of E satisfying ωi. Let ∆0 be the set of isomorphism types of the
chosen intersections. Clearly ∆0 certifies ω. We show that the BGESC-instance
P∗ = (∆,∆0,M, F ∗, G∗, X) is positive. (Of course: F ∗ and G∗ do not satisfy the
cardinality bounds of the lemma.) Let U be the set of r#

1 -classes in A, and V the set
of r#

2 -classes. (As before, any ‘loner’—i.e., an intersection which is both an r#

1 -class
and an r#

2 -class—contributes one element of U and a distinct element of V .) Since
each intersection is contained in exactly one r#

1 -class and exactly one r#

2 -class, and
indeed is determined by those classes, we may regard the intersections in E as edges
in a bipartite graph (U, V,E). Denoting by Eδ the set of intersections in E having any
type δ ∈ ∆, we obtain a ∆-graph H = (U, V, {Eδ}∆). We show that H is a solution of
P∗ by checking properties (G1), (G2′), (G3′), (G4) from Section 5.3. Property (G1)
is obvious. For (G2′), we show that, for each D ∈ U , bordHDcM ∈ F ∗. Since A |= ϕ,
and D is an r#

1 -class in A, D |= ϕ1; moreover, by definition, D ≈ JordHDK1. Setting
f = ordHD and f ′ = bfcM , Lemma 6.2 then states that there exists a model D′ |= ϕ1

such that D′ ≈ Jf ′K1. Thus by the definition of F ∗, bordHDcM ∈ F ∗ as required.
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Property (G3′) follows symmetrically. For property (G4), consider any pair (I, I ′) of
skew edges in H, I ∈ Eδ, I ′ ∈ Eδ′ . Observe that the structure A�(I ∪ I ′) consists of
two pre-intersections of types δ, δ′, each forming its own r#

1 - and r#

2 -class. Thus (δ, δ′)
is a member of X. Applying Corollary 5.17, we may find F ⊆ F ∗ and G ⊆ G∗, of size
bounded by h0(|∆|,M), such that P = (∆,∆0,M, F,G,X) is a positive instance.

⇐ Assume now that there exist ∆0 certifying ω, F ⊆ F ∗ and G ⊆ G∗, such
that P = (∆,∆0,M, F,G,X) is positive. Let H = (U, V, {Eδ}∆) be an edge-coloured
bipartite graph which is a solution of P. Thus, H satisfies (G1), (G2′), (G3′), (G4).
We show how to construct a model A |= ϕ from the graph H. Intersections of A
correspond to the edges of H: for each δ ∈ ∆ and each e ∈ Eδ, we put into A a
pre-intersection Ie of type δ. Property (G1) ensures that A |= ω; and the fact that all
intersections have types from ∆ ensures that A |= ψ00.

Consider now any vertex u ∈ U . Let J be the set of all pre-intersections corre-
sponding to the edges incident to u. Our task is to compose from them an r#

1 -class
Du satisfying ϕ1. First, writing f for ordHu and f ′ for bfcM , we form from some
subset of J a class D ≈ Jf ′K1 such that D |= ϕ1. This is possible by (G2′) and the
construction of F ∗. For each of the remaining intersections from J of type δ, note
that the number of intersections of type δ realized in D is bigger than M ≥ 2 and
thus the preconditions of Lemma 6.1 are fulfilled. Thus all the remaining intersec-
tions of J can be joined to D using Lemma 6.1, forming a desired Du. We repeat
this construction for all vertices in U . This ensures that A |= ψ01. It also makes every
pre-intersection r1-connected.

Similarly, from any vertex v ∈ V , we form a r#

2 -class consisting of all pre-
intersections corresponding to edges incident on v, using (G3′) and the construction
of G. This step ensures that A |= ψ10 and makes every pre-intersection r2-connected.
Thus, all pre-intersections become both r1- and r2-connected; moreover, no two pre-
intersections can be connected to each other by both r1 and r2 (because no two edges
of H can have common vertices in both U and V ); hence, every pre-intersection
becomes an intersection of A, as required.

At this point, we have specified the 2-type in A of any pair of elements not in
free position. To complete the definition of A, consider a pair of intersections Ie, Ie′

which are in free position, i.e. are not members of the same r#

1 -class or r#

2 -class. But
then the edges e and e′ are skew in H. Assume that e ∈ Eδ and e′ ∈ Eδ′ , so that
Ie and Ie′ have respective isomorphism types δ and δ′. By (G4), (δ, δ′) ∈ X. By the
definition of X, there is a structure D |= χ consisting of exactly one intersection of
type δ and another of type δ′, each forming its own r#

1 -class and its own r#

2 -class. We
make A�Ie ∪ Ie′ isomorphic to D. Finally, we point out that each pair of intersections
in A has been connected by copying the connections between a pair of intersections
from a structure which satisfied χ. This ensures that A |= χ.

6.3. Main Theorem. Theorem 6.4. The satisfiability and finite satisfiability
problems for EC2

2 are in 2 -NExpTime.

Proof. Let ϕ ∈ EC2
2 be given. By Lemma 3.2, we may assume that ϕ = χ ∧

ψ00 ∧ ψ01 ∧ ψ10 ∧ ω is in reduced normal form, since satisfiability of ϕ over models
of at most exponential size can be tested in doubly exponential time. We continue
to write ϕ1 for χ ∧ ψ00 ∧ ψ01, and ϕ2 for χ ∧ ψ00 ∧ ψ10. Let M , ∆, F ∗, G∗ and X
be as in Sec. 6.2. To determine the (finite) satisfiability of ϕ′, execute the following
procedure. Non-deterministically guess a subset ∆0 ⊆ ∆, and sets of functions F
and G of type ∆ → [0,M ], such that |F | and |G| are bounded by h0(|∆|,M), where
h0 is the polynomial guaranteed by Corollary 5.17. Check, in deterministic doubly
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exponential time, that ∆0 certifies ω, and fail if not. For each f ∈ F , guess a structure
D ≈ JfK1, and check that D |= ϕ1, failing if not; and similarly, for each g ∈ G, guess
a structure D ≈ JgK2, and check that D |= ϕ2, failing if not. This non-deterministic
process runs in doubly exponential time, and has a successful run just in case F ⊆ F ∗
and G ⊆ G∗. Let P be the BGESC-instance (∆,∆0,M, F,G,X); thus the size of P
is bounded doubly exponentially in |τ |. Check the existence of a (finite) solution of P
using the NPTime-algorithm guaranteed by Theorem 5.10, and report the result. This
non-deterministic procedure runs in time bounded by a doubly exponential function
of |ϕ|. By Lemma 6.3, it has a successful run if and only if ϕ is (finitely) satisfiable.

The following corollary is an improvement of Theorem 13 of [22].
Corollary 6.5. Any finitely satisfiable EC2

2-formula ϕ has a model of cardinality

at most 222p(‖ϕ‖)

, for some fixed polynomial p.
Proof. The proof of Theorem 6.4 constructs a finite model A of ϕ from the solution

G of some BGESC-instance P, where P is of size doubly exponential in ‖ϕ‖. More
specifically, A consists of a collection of intersections, each with size bounded by a
singly-exponential function of ‖ϕ‖, and each corresponding to a specific edge of G.
We showed in the proof of Theorem 5.10 that P translates into a system E of linear
equations and inequalities, with the size of G given by the integer solutions of E . From
Proposition 5.3, these numbers are all at most triply exponential in ‖ϕ‖. Hence the
number of edges in G is triply exponential in ‖ϕ‖.
Of course, the size bound in Corollary 6.5 is insufficient to secure the complexity
bound of Theorem 6.4. On the other hand, we know from [21] that it cannot be
improved upon: there exists a series ϕn of finitely satisfiable EC2

2-formulas such that
‖ϕn‖ grows polynomially with n, but the smallest satisfying model of ϕn has at least

222n

elements.

7. Lower Bound for FO2 with Two Equivalences. In this section we show
that the satisfiability and finite satisfiability problems for EQ2

2 are both 2-NExpTime-
hard. It follows that the satisfiability and finite satisfiability problems for both EQ2

2

and EC2
2 are 2-NExpTime-complete. Adapting notation and terminology used above

in the natural way, we henceforth assume that the binary predicates r1 and r2 are
interpreted as equivalences; and when a structure A is clear from context, we refer
to equivalence classes of rA1 ∩ rA2 as intersections. The lower bounds are obtained by
a reduction from a variant of the tiling problem. Let Gm denote the standard grid
on a finite m × m torus: Gm = ([0,m − 1]2, h, v), h = {((p, q), (p′, q)) : p′ − p ≡ 1
mod m}, v = {((p, q), (p, q′)) : q′ − q ≡ 1 mod m}. A tiling system is a quadruple
T = 〈C, c0, H, V 〉, where C is a non-empty, finite set of colours, c0 is an element of
C, and H, V are binary relations on C called the horizontal and vertical constraints,
respectively. A tiling for T of a grid Gm is a function f : [0,m]2 → C such that
f(0, 0) = c0 and, for all d ∈ [0,m]2, the pair 〈f(d), f(h(d))〉 is in H and the pair
〈f(d), f(v(d))〉 is in V . The doubly exponential tiling problem is defined as follows.

Given: a number n ∈ N written in unary, and a tiling system T .
Output: Yes, if T has a tiling of the grid Gm, where m = 22n ; No otherwise.

It is well known that the doubly exponential tiling problem is 2-NExpTime-complete
(see, e.g. [28], p. 501).

Theorem 7.1. The satisfiability and finite satisfiability problems for EQ2
2 are

2 -NExpTime-hard.
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Figure 7.1: A doubly-exponential toroidal grid of intersections: the top and bottom
rows are identified, as are the left- and right-most columns; r1-classes are indicated
by light grey squares, and r2-classes by dark grey squares.

Proof. We proceed to reduce the doubly-exponential tiling problem to the satis-
fiability and finite satisfiability problems for EQ2

2. The crux of the proof is a succinct
axiomatization of a toroidal grid structure of doubly exponential size by means of an
EQ2

2-formula. In this axiomatization, the nodes of the grid are intersections (in our
technical sense) containing at least 2n elements. By regarding these elements as in-
dices of binary digits, we can endow each intersection with a pair of (x, y)-coordinates
in the range [0, 22n − 1]. Our axiomatization forces each intersection to have a ver-
tical and a horizontal successor with appropriate coordinates. This ensures that, for
each pair of numbers (i, j) in the range [0, 22n − 1], there is at least one intersection
having coordinates (i, j). In addition, our axioms ensure that horizontally successive
intersections having respective coordinates (i, j) and (i+ 1, j) are related by r1 if i is
even, and by r2 if i is odd; a similar condition holds for vertical successors. To guar-
antee that there is at most one intersection having coordinates (i, j), it is sufficient to
assert: (i) there is at most one intersection having coordinates (22n − 1, 22n − 1); and
(ii) no two intersections possess a common horizontal or a common vertical successor.
To enforce the latter condition, we use the pattern of r1- and r2-relations between
successive intersections: we simply say that, if two elements are joined by one of the
equivalence relations and if the parities of their (x, y)-coordinates agree, then they
are also joined by the other equivalence relation, and hence are members of the same
intersection. Thus, any model of our axioms has intersections arranged in the pattern
shown in Fig. 7.1. Having established our grid, encoding an instance of the tiling
problem can be done in a standard fashion. Below we describe the construction in
detail.

Given an instance (T , n) of the doubly exponential tiling problem, where T =
(C, c0, H, V ), we construct an EQ2

2-formula Ω of length polynomial in n and T , such
that the following are equivalent: (i) Ω is satisfiable; (ii) Ω is finitely satisfiable; (iii)
(T , n) is positive. As usual, we take r1, r2 to be distinguished binary predicates
interpreted as equivalence relations. For ease of reading, we abbreviate r1(x, y) ∧
r2(x, y) by r12(x, y), and we introduce the conjuncts of Ω in groups.
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Let o1, . . . , on be unary predicates. By taking the oi to indicate the values of
binary digits, we may take each element in any structure interpreting these predicates
to have a ‘local coordinate’ in the form of a (single) number in the range [0, 2n−1]. For
our purposes, it helps to think of an element’s local coordinate as fixing its position
within its intersection. We employ the abbreviation ε(x, y) to state that x and y
(which may be from different intersections) have the same local coordinates, λ(x, y)
to state that the local coordinate of y is one greater than the local coordinate of x
(addition modulo 2n), and ζ(x) to state that the local coordinate of x is 0. All these
formulas can be defined in a straightforward way. The conjunct

∀x∃y
(
r12(x, y) ∧ λ(x, y)

)
(7.1)

then ensures that each intersection contains a collection of 2n elements, distinguished
by local coordinates in the range [0, 2n − 1].

We now endow each intersection with a pair of ‘global coordinates’ corresponding
to the grid coordinates, in the range [0, 22n − 1], though the process here is more
involved than with local coordinates. Let p and q be unary predicates. The conjunct

∀x, y
(
r12(x, y) ∧ ε(x, y)→ ((p(x)↔ p(y)) ∧ (q(x)↔ q(y)))

)
(7.2)

ensures that elements of the same intersection with the same local coordinates agree
on the satisfaction of p and q. To avoid cumbersome circumlocutions in the sequel,
we allow ourselves to speak of the element of some intersection with a given local
coordinate, since all such elements will turn out to have identical properties. If I is
an intersection, we take the global P -coordinate of I to be the number in the range
[0, 22n−1] whose jth bit (0 ≤ j ≤ 2n−1) is 1 just in case the element of I whose local
coordinate is j satisfies the predicate p. Likewise, we take the global Q-coordinate of
I to be the number in the range [0, 22n − 1] whose jth bit (0 ≤ j ≤ 2n − 1) is 1 just
in case the element of I whose local coordinate is j satisfies the predicate q.

Recalling that ζ(y) states that the local coordinate of y is 0, we abbreviate the
formula ∃y(r12(x, y)∧ ζ(y)∧¬p(y)) by p◦(x). Thus, we may read p◦(x) as “x belongs
to an intersection whose global P -coordinate is an even number”. Similarly, we may
write a formula q◦(x) to mean “x belongs to an intersection whose global Q-coordinate
is an even number”. Of course, all elements in an intersection agree on the satisfaction
of these predicates; hence, we may speak of the satisfaction of p◦(x) or q◦(x) by an
intersection.

We employ the abbreviations

η(x, y) ≡
(
r1(x, y) ∧ ¬r2(x, y) ∧ ¬p◦(x) ∧ p◦(y)

)
∨(

¬r1(x, y) ∧ r2(x, y) ∧ p◦(x) ∧ ¬p◦(y)
)

ν(x, y) ≡
(
r1(x, y) ∧ ¬r2(x, y) ∧ ¬q◦(x) ∧ q◦(y)

)
∨(

¬r1(x, y) ∧ r2(x, y) ∧ q◦(x) ∧ ¬q◦(y)
)
.

Evidently, if a pair of elements satisfies η(x, y), then so does any other pair of elements
from the same respective intersections. We wish to read η(x, y) as “the intersection
of y is a horizontal successor of the intersection of x”, and ν(x, y) as “the intersection
of y is a vertical successor of the intersection of x”: we proceed to add conjuncts to
Ω justifying these readings.

Suppose I and J are intersections. We shall write conjuncts ensuring that if J is a
horizontal successor of I (in the sense of the previous paragraph), then I and J have
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successive P -coordinates and identical Q-coordinates. Let p̂ be a unary predicate.
Observing that the elements of an intersection are naturally ordered by their local
coordinates, and recalling that λ(x, y) states that the local coordinate of y is one
greater than the local coordinate of x, the conjuncts

∀x(ζ(x)→ p̂(x)) (7.3)

∀x∀y(λ(x, y)→ (p̂(y)↔ p(x) ∧ p̂(x))) (7.4)

allow us to read p̂(x) as stating that all the bits in the global P -coordinate of the
intersection containing x up to (but not necessarily including) the bit x are 1. Thus,
the formula p̂(x) ∧ ¬p(x) says “x is the least significant zero-bit in the global P -
coordinate of its intersection”. Recalling that ε(x, y) states that x and y have the
same local (but not necessarily global) coordinates, we can enforce the required global
coordinate constraints on horizontal successors using the conjuncts

∀x∀y(η(x, y) ∧ ε(x, y)→ (p̂(x)→ (p(x)↔ ¬p(y)))) (7.5)

∀x∀y(η(x, y) ∧ ε(x, y)→ (¬p̂(x)→ (p(x)↔ p(y)))) (7.6)

∀x∀y(η(x, y) ∧ ε(x, y)→ (q(x)↔ q(y))). (7.7)

That is: two equivalence classes whose elements are related by η have global coordi-
nates (P,Q) and (P + 1, Q), for some P , Q in the range [0, 22n − 1] (addition modulo
22n).

Let (7.8)–(7.12) be a counterparts of (7.3)–(7.7) for ν. Thus, by arranging the
intersections in any model of Ω according to their global coordinates, we see that these
intersections are related by r1 and r2 according to the pattern of Fig. 7.1, forming
a doubly-exponential toroidal grid of interlocking r1-classes and r2-classes. Notice
incidentally that intersections in even numbered columns satisfy p◦, while those in
odd-numbered columns do not. Likewise, the intersections in even numbered rows
satisfy q◦; those in odd-numbered rows do not.

Now we can enforce the existence of at least one intersection with any given pair
of global coordinates in the range [0, 22n − 1], by writing conjuncts requiring each
element to have at least one horizontal successor and at least one vertical successor:

∀x∃y.η(x, y) ∧ ∀x∃y.ν(x, y). (7.13)

The main idea of the proof is that we can also enforce the existence of at most one
intersection with any given pair of global coordinates in this range. Let e(x) abbreviate
∀y(r12(x, y)→ (p(y) ∧ q(y))), stating that “x belongs to an intersection whose global
coordinates are (22n − 1, 22n − 1)”. Hence, the conjunct

∀x∀y(e(x) ∧ e(y)→ r12(x, y)). (7.14)

ensures that there is exactly one such intersection.
We now write conjuncts preventing two intersections from having a common hor-

izontal successor or a common vertical successor. To this end, observe from the defi-
nitions of η(x, y) and ν(x, y) that, if x and y belong to intersections with a common
horizontal or vertical successor, then they are related by either r1 or r2, and agree on
p◦(x) and q◦(x). Thus, it suffices to add the conjunct

∀x∀y
(
(r1(x, y)∨ r2(x, y))∧ (p◦(x)↔ p◦(y))∧ (q◦(x)↔ q◦(y))→ r12(x, y)

)
. (7.15)
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(A glance at the arrangement of Fig. 7.1 shows that (7.15) is satisfied in this case.)
Thus, in any model of Ω: (i) there is at most one intersection with global coordinates
(22n−1, 22n−1); (ii) every intersection possesses at least one horizontal successor and
at least one vertical successor, with the global coordinates of these intersections related
in the expected ways; (iii) no two intersections have a common horizontal successor
or a common vertical successor. A straightforward double (backwards) induction,
starting from the coordinates (22n − 1, 22n − 1), then establishes that there is at most
one intersection with any given pair of global coordinates, as required. That is: any
model of Ω has precisely the pattern of intersections depicted in Fig. 7.1.

Having established a grid of doubly exponential size, the encoding of any instance
of the doubly-exponential tiling problem on some tiling system (C, c0, H, V ) is routine.
We simply add to Ω the conjuncts

∀x
( ∨
c∈C

c(x) ∧
∧

c,d∈C
c6=d

¬(c(x) ∧ d(x))
)

(7.16)

∀x∀y
(
r12(x, y) ∧ c(x)→ c(y)

)
(7.17)

∀x∀y
(
η(x, y) ∧ c(x)→ ¬d(y)

)
(〈c, d〉 6∈ H) (7.18)

∀x∀y
(
ν(x, y) ∧ c(x)→ ¬d(y)

)
(〈c, d〉 6∈ V ) (7.19)

∃x (∀y(r12(x, y)→ (¬p(y) ∧ ¬q(y))) ∧ c0(x)) . (7.20)

Notice that (7.20) states that the grid square with coordinates (0,0) is coloured with
c0.

Let Ω be the conjunction of constraints (7.1)–(7.20). From any model of Ω, we
can read off a T -tiling of size 22n—for example, by looking at the colours assigned to
the elements with local coordinate 0 in each of the 22·2n intersections. On the other
hand, given any tiling for T , we can construct a finite model of Ω in the obvious
way using the arrangement of Fig. 7.1. Thus we see that: (i) if Ω is satisfiable, then
(T , n) is positive; (ii) if (T , n) is positive, then Ω is finitely satisfiable. This proves
the theorem.

We remark that, in the above proof, (7.14) is the only conjunct of Ω that is
not—modulo trivial logical manipulations—a guarded formula. The function of this
formula is to ensure that there is only one intersection with global coordinates (22n −
1, 22n − 1)—an effect which could be achieved using a constant. Recalling that the
satisfiability problem for the two-variable guarded fragment with two equivalence
relations is 2-ExpTime-complete [16], we see that adding a single individual constant
to this fragment results in the same complexity as the full (unguarded) fragment.
That is:

Corollary 7.2. The satisfiability problem for the guarded fragment of FO2 with
two equivalence relations and a single individual constant is 2 -NExpTime-complete.

8. Undecidability of FO2 with one equivalence and one transitive rela-
tion. In this section we show that the (finite) satisfiability problem for two-variable
first-order logic in which one distinguished predicate, r, is required to denote an equiv-
alence and another, t, a transitive relation, is undecidable. This logic contains EQ2

2:
we may write FO2 conjuncts requiring t to be reflexive and symmetric, and thus to be
an equivalence. The result may also be a seen as a strengthening of an earlier theo-
rem that FO2 with two transitive relations is undecidable [13, 16]. Actually, our proof
will show rather more: the logic in question is undecidable even under the stronger
assumption that t is a strict partial order, rather than an arbitrary transitive relation.
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The following proof closely follows the approach taken in [22], but additionally
avoids the use of the equality predicate. We begin by recalling some definitions and
lemmas from [26].

Let Gm be the standard grid on a finite m×m torus as defined in Section 7, and let
GN be the standard grid structure on N2: GN = (N2, h, v), h =
{((p, q), (p+ 1, q)) : p, q ∈ N}, v = {((p, q), (p, q+ 1)) : p, q ∈ N}. An infinite structure
G = (G, h, v) is called grid-like if GN is homomorphically embeddable into G; a finite
G is grid-like if some Gm is homomorphically embeddable into G. Grid-likeness is
implied by a simple local criterion. We say that h is complete over V in G = (G, h, v)
if G |= ∀x∀y∀x′∀y′((h(x, y) ∧ v(x, x′) ∧ v(y, y′))→ h(x′, y′)).

Lemma 8.1. Assume that G = (G, h, v) satisfies the FO2-axiom ∀x(∃y h(x, y) ∧
∃y v(x, y)). If h is complete over v, then G is grid-like.

Lemma 8.2. Let C be a class of structures, and suppose that there exists an FO2

sentence Ω such that:
(a) GN can be expanded to a structure in C satisfying Ω;
(b) for every n ∈ N there exists k ∈ N such that the grid Gm with m = kn can be

expanded to a structure in C satisfying Ω;
(c) every model of Ω from C is grid-like.
Then both satisfiability and finite satisfiability of FO2 over C are undecidable. In fact,
FO2 forms a conservative reduction class over C.

Now we are ready to prove the main result for this section.
Theorem 8.3. The satisfiability and finite satisfiability problems for FO2 with

one equivalence and one transitive relation (but without equality) are both undecid-
able.

Proof. We construct a sentence Ω satisfying conditions (a)–(c) of Lemma 8.2.
We add to the formula Ω suitable conjuncts to ensure that both the infinite grid, GN,
and every finite toroidal grid, G8n, can be expanded to a model of Ω.

The formula Ω employs unary predicates cij with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7,
together with binary predicates h v, r and t. We refer to the cij as colours, and to h
and v as the horizontal and vertical grid relations, respectively. We assume that r is
interpreted as an equivalence, and t as a transitive relation. The colour ci,j describes
elements whose column number, modulo 8, is i, and whose row number, modulo 4,
is j, as shown in Figure 8.1. When we use addition in subscripts of the ci,j s, it is
always understood modulo 4 in the first position, and modulo 8 in the second position,
i.e. ci+a,j+b denotes c(i+a)mod 4,(j+b)mod 8. We start by writing the initial formula

∃xc00(x) ∧ ∀x(∃y h(x, y) ∧ ∃y v(x, y)). (8.1)

Both grid relations, h and v, interact with t in two possible ways. To define these, we
employ the abbreviations

θi,j ≡ ∀x∀y(ci,j(x) ∧ h(x, y)→ ci+1,j(y) ∧ t(x, y))

θ̄i,j ≡ ∀x∀y(ci,j(x) ∧ h(x, y)→ ci+1,j(y) ∧ t(y, x))

ξi,j ≡ ∀x∀y(ci,j(x) ∧ v(x, y)→ ci,j+1(y) ∧ t(x, y))

ξ̄i,j ≡ ∀x∀y(ci,j(x) ∧ v(x, y)→ ci,j+1(y) ∧ t(y, x)),

and add to Ω the conjuncts∧
i=0,2

∧
j=1,2,5,6

θi,j ∧
∧
i=1,3

∧
j=0,3,4,7

θi,j ∧
∧
i=0,2

∧
j=0,3,4,7

θ̄i,j ∧
∧
i=1,3

∧
j=1,2,5,6

θ̄i,j (8.2)
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Figure 8.1: Expansion of GN to a structure interpreting r, t and the colours ci,j : the
grid element (n,m) ∈ N × N is coloured with ci,j , where i = n mod 4 and j = m
mod 8; r-classes are indicated by grey shading; arrows depict t-connections.

∧
i=0,2

∧
j=2,3,6,7

ξi,j ∧
∧
i=1,3

∧
j=0,1,4,5

ξi,j ∧
∧
i=0,2

∧
j=0,1,4,5

ξ̄i,j ∧
∧
i=1,3

∧
j=2,3,6,7

ξ̄i,j . (8.3)

The equivalence relation r partitions the required model into many equivalence
classes. We define a partition with eight classes, denoted K0, . . . , K7, with each Ki

equal to the union of those r-classes whose elements realize a particular combination
of colours ci,j . (We note that not all combinations of these colours are possible in
models of Ω.) The intended arrangement of these colour classes is depicted in Figure
8.1. To enforce this partition, we employ the following abbreviations

for every l = 0, 2, 4, 6: Kl(x) ≡ c0,l(x) ∨ c0,l+1(x) ∨ c1,l(x) ∨ c1,l+1(x)

for every l = 1, 3, 5, 7: Kl(x) ≡ c2,l−1(x) ∨ c2,l(x) ∨ c3,l−1(x) ∨ c3,l(x),

and we add to Ω the conjunct

∀x∀y
(
r(x, y)→∧

k 6=l

¬(Kk(x) ∧Kl(y)) ∧
∧
i,j

(
ci,j(x) ∧ ci,j(y)→ t(x, y) ∧ t(y, x)

))
(8.4)

which expresses that elements belonging to the same equivalence class and having the
same colour form a t-clique. This means that the structure of our possible models is
similar to Fig. 8.1, where white circles represent t-cliques. If we allowed equality, we
could write formulas identifying elements of the same colour within a t-clique; but
this is not needed for undecidability.

We also induce the diagonal t-edges drawn in Figure 8.1 by adding to Ω the



48 E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann and L. Tendera

conjuncts ∧
i=1,3

∧
j=0,4

(
∀x
(
ci,j(x)→ ∃y(t(y, x) ∧ ci+1,j+1(y))

))
∧
i=1,3

∧
j=2,6

(
∀x
(
ci,j(x)→ ∃y(t(x, y) ∧ ci+1,j+1(y))

)) (8.5)

and we add to Ω a formula saying that certain elements connected by t are in the
same r-class

7∧
l=0

∀x∀y
(
t(x, y) ∧Kl(x) ∧Kl(y)→ r(x, y)

)
. (8.6)

To ensure that every model of Ω is grid-like, we need additional conjuncts saying
that certain elements connected by t are also connected by the horizontal grid relation∧

i=0,2

∧
j=0,3,4,7

∀x∀y
(
t(y, x) ∧ ci,j(x) ∧ ci+1,j(y)→ h(x, y)

)
,

∧
i=1,3

∧
j=1,2,5,6

∀x∀y
(
t(y, x) ∧ ci,j(x) ∧ ci+1,j(y)→ h(x, y)

)
,

∧
i=0,2

∧
j=1,2,5,6

∀x∀y
(
t(x, y) ∧ ci,j(x) ∧ ci+1,j(y)→ h(x, y)

)
,

∧
i=1,3

∧
j=0,3,4,7

∀x∀y
(
t(x, y) ∧ ci,j(x) ∧ ci+1,j(y)→ h(x, y)

)
(8.7)

and a similar formula for elements connected by r∧
i=0,2

∧
j=1,3,5,7

∀x∀y
(
r(x, y) ∧ ci,j(x) ∧ ci,j+1(y)→ h(x, y)). (8.8)

We show that the expansion of GN illustrated in Figure 8.1 is a model of the
formula Ω. It is clear that in the model all conjuncts of the form (8.1)–(8.6) hold. To
see that also conjuncts of the form (8.7)–(8.8) are satisfied, observe that every t-path
in the structure is finite and of length at most 6. Moreover, any t-path connects at
most three adjacent columns and at most five adjacent rows. So, the distribution of
the colours ci,j ensures that formulas (8.7)–(8.8) cannot force new pairs of elements,
apart from those already connected in the standard grid, to become connected by h
or v.

By considering two copies of the arrangement in the dotted rectangle of Fig. 8.1
placed side by side, an identical argument shows that every grid G8m can be expanded
to a model of Ω.

To show that every model of Ω is grid-like, i.e. that condition (c) of Lemma 8.2
holds, we use Lemma 8.1 and prove the following claim.

Claim. In every model A of Ω, h is complete over v, i.e.:

A |= ∀x∀y∀x′∀y′
(
h(x, y) ∧ v(x, x′) ∧ v(y, y′)→ h(x′, y′)

)
.

Assume that A |= h[a, b] ∧ v[a, a′] ∧ v[b, b′]. We show that A |= h[a′, b′]. Several
cases need to be considered, depending on the colour of the element a. We discuss
three typical ones.
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Case 1: A |= c00[a]. By θ̄00 from (8.2) we have A |= t[b, a]∧c10[b]. Formula ξ̄00 from
(8.3) implies A |= t[a′, a]∧ c01[a′]. Formula ξ10 from (8.3) implies A |= t[b, b′]∧ c11[b′].
By (8.6), A |= r[a, b], A |= r[a, a′] and A |= r[b, b′]. Since r is an equivalence, we have
A |= r[a′, b′]. And by (8.8), we get A |= h[a′, b′]. A similar argument works for a
coloured by c20, c02, c22, c04, c24, c06 or c26.

Case 2: A |= c10[a]. As before, by θ10 from (8.2), we have A |= t[a, b] ∧ c20[b].
Formula ξ10 from (8.3) implies A |= t[a, a′]∧c11[a′], and ξ̄20 implies A |= t[b′, b]∧c21[b′].
Now, by (8.5), for some c ∈ A, A |= t[c, a]∧c21[c]. By transitivity of t, A |= t[c, a′] and
A |= t[c, b]. As A |= K1[b]∧K1[b′]∧K1[c], by (8.6), we have A |= r[c, b] and A |= r[b′, b].
Since r is an equivalence, we have A |= r[b′, c] and so, using (8.4), A |= t[b′, c]∧ t[c, b′].
So, by transitivity of t, A |= t[b′, a′]. Now, as A |= c11[a′] ∧ c21[b′], by (8.7), we get
A |= h[a′, b′]. A similar argument works for a coloured by c30, c12, c32, c14, c34, c16

or c36.

Case 3: A |= c11[a]. By θ̄11 from (8.2) we have A |= t[b, a] ∧ c21[b]. Formula ξ11

from (8.3) implies A |= t[a, a′] ∧ c12[a′], and ξ̄21 implies A |= t[b′, b] ∧ c22[b′]. Now, by
transitivity of t, A |= t[b′, a′]. Using (8.7) we get A |= h[a′, b′]. The remaining cases
are similar to Case 3.

We conclude by noting that the grid relations h and v can be replaced with
appropriate combinations of r, t and the unary predicates ci,j . Furthermore, all the
resulting formulas are—modulo trivial logical manipulations—guarded. Moreover,
the transitive relation t is not required to contain non-trivial cliques, and thus we
may assume that it is a partial order. Therefore:

Corollary 8.4. The (finite) satisfiability problem for the guarded fragment of
FO2 with one equivalence and one transitive relation (or with one equivalence and
one partial order) is undecidable even if no other binary relation symbols are allowed
(including equality).

As mentioned in Section 1, the satisfiability problem for FO2 in the presence
of one transitive relation is in 2-NExpTime [33]. The satisfiability of FO2 in the
presence of a single transitive closure operation, however, is not currently known to
be decidable. The decidability of finite satisfiability for both of these logics is likewise
open.
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[8] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order logic.

Bulletin of Symbolic Logic, 3(1):53–69, 1997.
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