Kwaterniony i obroty

Antoni Koscielski

1 Iloczyn skalarny i dlugo$é wektora

lloczynem skalarnym wektoréow Z = (z1,...,x,) 1y = (y1,...,ys) nazywamy liczbe

za$ liczbe

nazywamy dtugoscig wektora .

Lemat 1.1 Dia dowolnych wektorow ¥,y € R"™ zachodzi nieréuwnosé

czyli warto$é bezwzgledna iloczynu skalarnego wektoréw ¥ i y nie przekracza iloczynu diugosci
tych wektorow.

Dowdéd. Nierownosé ta jest oczywista, gdy & = 0. Zatézmy wiec, ze ¥ # 0 i rozwazmy réwnanie

kwadratowe N

D (@i t—y)* =0 (1)

i=1
z niewiadoma t. Nietrudno zauwazy¢, ze rOwnanie to jest identyczne z réwnaniem

(ix?)'tz_Q(ixiyi) 't+i?/¢2 =7 =227 t+|gP =0
i=1 i=1 i=1
oraz jest rownowazne uktadowi réwnan liniowych
T t=Y1, -, T L= "1Yn.
Ten uktad moze mie¢ najwyzej jedno rozwigzanie. Wobec tego, wyréznik réwnania (1)
A = 47— 4 7 7
jest niedodatni. Stad otrzymujemy dowodzona nieréwnos¢. O

Whniosek 1.2 Dla dowolnych wektorow Z,y € R"™ zachodzi nieréuwnosé

[Tyl <[Z|+]y] O
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2 Elementy geometrii

Przypusémy, ze mamy dang ptaszczyzne lub przestrzen tréjwymiarowa, lub tez ogodlniejsze
pojecie przestrzeni geometrycznej, o nieustalonym wymiarze. W takiej przestrzeni mozemy
wprowadzi¢ prostokatny uktad wspotrzednych. Wtedy kazdy punkt da sie opisa¢ za pomoca
skonczonego uktadu wspotrzednych. Przyjmujemy, ze wspotrzedne punktu sg liczbami rzeczy-
wistymi.

Jezeli rézne punkty majg rézne uktady wspotrzednych i potrafimy konstruowaé punkty o
zadanych wspotrzednych, to taka przestrzen geometryczng mozna utozsamicé ze zbiorem R™.

W przestrzeni R” odlegtosé punktéw & = (xy,...,2,) 19 = (y1, .. .,y,) Wyrazamy wzorem

\f—ﬁ\:« (sz‘—yz‘)Q-
=1

Lemat 2.1 Odlegtosé ma nastepujgce wiasnosci:
1. |@—b|>0,
2. |a— l;| = 0 wiedy i tylko wtedy, gdy @ = b,
3. |@a—b|=|b—al
Jola=b|<|a—F|+|F-b|

dla dowolnych wektorow a, g, Z. O

Pojecie odleglosci pozwala zdefiniowac pojecie prostej. Mowimy, ze punkt Z lezy miedzy
punktami @ i b, jezeli .
lb—d|=|Z—ad|+|b—12].
Trzy punkty @, 5,5 sg wspotliniowe, jezeli jeden z tych punktéw lezy miedzy pozostalymi.
Prosta przechodzaca przez (rézne) punkty @i b to zbiér

{Z € R" : punkty d, b, T sa wspoétliniowe }.
Odcinek, ktérego koncami sg punkty @ i g, to zbidr
{7 € R" : ¥ lezy miedzy a, l;}

Lemat 2.2 Przypusémy, ze mamy dane dwa punkty a 1 b oraz liczbe s € (0,1). Istnieje
doktadnie jeden punkt ¢ lezgcy miedzy @ i b taki, e |d — ¢ | = s|d —b|. Co wigcej, tym
punktem jest @ + s(b — @).

Dowéd. Niech ¢ bedzie rézne od d. Oczywiscie, nieréwnosci 0 < (¢ — d)? oraz 2cd < ¢® +d? sa
réwnowazne. Stad mamy 2cd < ¢ + d?. Proste przeksztalcenia pozwalaja stad wyprowadzié

nierownos¢ )
c+d _ &+ &
2 2
Zalézmy, ze mamy dwa rézne punkty ¢ = (cq,...,¢p) i d = (dy,...,d,) o whasnosciach

podanych w tezie lematu. Wtedy

|_,_ E;d |2_i<(al—cl)+(az—dl)> <i(ai—0i)2+(ai—di)2

a

i=1
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> =22 7— dl2 N
:‘a C’_'_‘a ‘ :82|C_I:—b‘2.
2
Tak wiec
21 d .
a- % <sa—i).
2
Analogicznie dowodzimy, ze
ét+d

| = bl<(1—s)a—bl.

Sumujac otrzymane nieréwnosci stronami otrzymujemy, ze
c+d c+d

i-b|<|a-—
j@-b|<[d———|+]|—

—b|<(s+(1—s)|a—bl=|a—bl,

a to nie jest mozliwe.
Wykazalismy wiec jednoznaczno$¢ ¢. Sprawdzenie, ze ¢ wyraza sie przytoczonym wzorem
jest tatwe. O

Whniosek 2.3 Odcinek lgczqey punkty a i b to zbiér
{G+sb—T)eR":0<s<1}={tda+sbeR":t,s>0ANt+s=1}. O
Whniosek 2.4 Prosta przechodzqgca przez punkty a 1 b to zbiér
{i+s(b—d)eR":seR}={td+sbeR":t,s e RAL+s=1}. O

Przypusémy, ze mamy trzy punkty a, bic takie, ze 5,5 # d. Niech p.; bedzie prosta
przechodzaca przez punkty @ i b. Analogicznie definiujemy prostg pge Proste p.; i pae sa
nachylone do siebie pod katem «, jezeli 0 < a < 7 oraz

Z lematu 1.1 i z wtasnosci funkcji cosinus (w tym z ciaglosci) wynika, ze liczba « jest dobrze
okredlona. Uzasadnienie tej definicji (miary) kata w R? i R? jest podawane zwykle na lekcjach
matematyki.

Te sama liczbe nazywamy katem (miara kata) miedzy odcinkami o koncach @ i b oraz o
koncach a i ¢, a takze katem miedzy wektorami b—d oraz ¢— a. Zwroémy jeszcze uwage, ze w
geometrii kat jest czesto rozumiany inaczej, jako czesé ptaszezyzny miedzy dwoma potprostymi.
Oczywiscie, dwie potproste o wspélnym poczatku rozbijaja plaszcyzne na dwie czesci (czyli
katy). Zgodnie z przyjeta definicja, kat jest miara ,mniejszej” z tych dwdch czesci.

3 Izometrie

Jednym z najbardziej znanych poje¢ geometrycznych jest przystawanie. Figury sa przystajace,
jezeli jedng z nich mozna przeksztalci¢ na druga uzywajac izometrii.
Przyjmujemy, ze funkcja f : R™ — R" jest izometria, jezeli dla wszystkich Z, iy € R"
zachodzi rownoscé
| f@) = fW) | =12-7]
Najprostszym przykladem izometrii jest przesuniecie (o pewien wektor). Przesuniecie o
wektor @ jest to funkcja p(¥) = 7+ d.
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Lemat 3.1 Kazde przesuniecie jest izometrig. Zlozenie izometrii jest izometrig. O

—

Lemat 3.2 Jezeli f jest izometrig, to funkcja g(Z) = (&) — f(0) tez jest izometrig. Ponadto,
g(0)=0.0

Z lematu 3.2 wynika, ze aby pozna¢ wszystkie izometrie, wystarczy poznac¢ izometrie prze-
ksztatcajace 0 na 0. Pozostale otrzymujemy stosujac sktadanie z przesunieciami. Jest to kon-

—,

sekwencja oczywistego wzoru f(Z) = (f(Z) — f(0)) + f(0)

Lemat 3.3 Jezeli f : R™ — R" jest izometriq, to dla dowolnych ¥,y € R"™ oraz dla dowolnych
nieujemnych a,b € R takich, ze a + b =1 mamy

flaZ + b)) = af (%) + b (Y).
Dowéd. Wynika to z lematu 2.2. Punkt Z = ax + by lezy miedzy punktami ¥ i . Mamy
bowiem
| Z—Z|=|af+ by —aZ —bZ | =0y — |
oraz podobnie | — Z| = a| ¥ — 7| . Stad
(= F|+|F-F| =W G—F|+al§-F|= |7 7|
Poniewaz f jest izometria, wiec f(2) lezy miedzy f(Z) i f(y) oraz

| F(Z) = (@) [ = bl f(g) = f(2) |-

Ze wspomnianego lematu otrzymujemy, ze
f(aZ +b) = £(2) = F@) + (@) — f(8) = af (&) + bf (7). O
Lemat 3.4 Jezeli izometria f spelnia warunek f(ﬁ) =0, to jest funkcjg jednorodng.
Dowéd. Zaltézmy, ze a € (0,1) oraz wezmy Z. Zauwazmy, ze
az = (1 — a)0 + a.
Stad i z poprzedniego lematu otrzymujemy, ze

fla?) = (1= a) f(0) + af () = af(7).
Przyjmijmy teraz, ze a > 1. Wtedy

1.- 1
—;: 1__ - —».
7= a)O—i-a(ax)

Ponownie korzystamy z poprzedniego lematu:

» Lo 1,
f(@) = (1 ==)f(0) + — f(aZ)
a a
i teraz wystarczy przemnozy¢ stronami otrzymang rownosé przez a.
Jezeli a < 0, to postepujemy podobnie:

1 —a

0= (aZ) +

l1—a
Z poprzedniego lematu otrzymujemy, ze
0= £(0) = —— () + T /(@)
1—a l—a
Mnozac te réwnosé przez 1 — a i przenoszac na drugg strone jeden ze sktadnikéw otrzymujemy
zadany wzor. O
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Lemat 3.5 Jezeli f jest izometrig takg, ze f(ﬁ) =0, to f jest funkcjg addytywng.
Dowdd. Z lematow 3.4 i 3.3 otrzymujemy, ze

T4y

)= FGE+ 50 = 5@ + 51,

1 - 2\
§f (@ +9) = f( 2
Stad otrzymujemy addytywnos¢ f. O
Lemat 3.6 [zometria f taka, ze f(ﬁ) = 0 zachowuje iloczyn skalarny, a wiec
Ty = f(@) (@)
dla wszystkich Z,i € R™.

Dowédd. Oczywiscie,

Wobec tego,
oraz

Stad otrzymujemy teze. O

4 Wyznacznik macierzy izometrii

Pokazemy teraz, ze wyznacznik macierzy przeksztalcenia zalezy wytacznie od przeksztatcenia,
a nie od bazy uzytej w definicji macierzy przeksztalcenia.
Wyprowadzimy to z nastepujacego twierdzenia.

Twierdzenie 4.1 Przypusémy, ze Vi, Vo i V3 sq przestrzeniami lintowymi skonczonego wy-
miaru, By, By i By wybranymi bazami w tych (odpowiednio) przestrzeniach oraz g : Vi — Vj
i [ Vo — V3 sq przeksztatceniami liniowymai. Jezeli Ao jest macierzq przeksztatcenia g wy-
znaczong przez bazy By i Bo, a Ay jest macierzq przeksztatcenia f wyznaczong przez bazy Ba
1 Bs, to A1 As jest macierzqg ztozenia fg przeksztatcenia f i g wyznaczong przez bazy By 1 Bs.
O

Twierdzenie 4.2 Niech f : V. — V bedzie przeksztalceniem liniowym, a By i@ By dwoma
skoniczonymi bazami w V. Niech Ay i Ay bedg bazami f wyznaczonymi odpowiednio przez bazy
By i By (dokladniej, wyznaczajgc A; w przestrzeniach arqgumentéw i wartosci bierzemy te samg
baze B;). Wtedy istnieje macierz C o niezerowym wyznaczniku taka, Ze

Ay =CACT

Dowéd. Oczywiscie, f = ido foid. Niech Cy bedzie macierza przeksztatcenia identycznoscio-
wego wyznaczong przez bazy By i By, a C| — wyznaczona przez bazy By i By. Oczywiscie, sa
to macierze odwracalne. Z przytoczonego twierdzenia mamy, ze

A2 = C’lAng.

Z tego samego powodu macierz C7Cy jest macierzg przeksztatcenia identyczno$ciowego wy-
znaczong przez baze By (czyli bazy By i Bs). Z definicji macierzy przeksztalcenia otrzymujemy,
ze C1Cy = I. Tak wiec Cy = C7'. Aby otrzymaé teze, wystarczy przyjaé, ze C = C;. O
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Whniosek 4.3 Wyznacznik macierzy przeksztatcenia nie zalezy od wyboru bazy wyznaczajgcej
macierz.

Dowd6d. Aby dowiesé ten wniosek, wystarczy skorzysta¢ z faktu, ze wyznacznik iloczynu
macierzy jest iloczynem ich wyznacznikéw. O

Lemat 4.4 Jezeli [ jest izometrig takq, Ze f(ﬁ) =0, to f jest funkcjq lintowqg @ wyznacznik
macierzy funkcji f jest rowny +1.

Dowdéd. Wyznacznik macierzy przeksztatcenia liniowego nie zalezy od bazy uzytej w definicji
macierzy przeksztatcenia. Bedziemy wiec rozwazac baze standardowa.

Niech A bedzie macierza funkcji f wyznaczona przez baze standardowa. Wtedy kolumnami
A sa wektory f(€;). Z tego powodu wierszami macierzy A7 sa tez wektory tej postaci Wyliczmy
macierz AT A . Jej wyrazami sa iloczyny skalarne f(¢;) f(€;). Taki iloczyn jest réwny iloczynowi
€;¢;. Tak wiec macierz AT A jest macierza jednostkowa. Stad otrzymujemy, ze

(AP =] ATA|=|T|=1.

Ostatecznie, | A| = +1. O

5 Obroty w R?

Z elementarnej geometrii wynika, ze obracajac punkt o wspotrzednych (x,y) o kat ¢ dookota
poczatku uktadu wspotrzednych otrzymujemy punkt o wspétrzednych

Oy(z,y) = (z-cosp —y-sing, z-sinp+y-cosy).

Jest oczywiste, ze przeksztalcenie to jest liniowe. Ponadto zachowuje dtugosé wektora.
Liniowe przeksztatcenia zachowujace dlugos¢ zachowuja odlegtosé. Jest wiec to izometria i
to przeksztatcajaca (0,0) na (0,0). Zauwazmy tez, ze macierz tego przeksztalcenia w bazie
standardowej jest rowna

cosp —sing
singp cosp |
Wyznacznik tej macierzy jest réwny 1.

Pokazemy teraz, ze izometria f : R? — R? taka, ze f(0,0) = (0,0), ktérej macierz ma

wyznacznik 1, jest obrotem. Niech
a b
i

bedzie macierza tego przeksztatcenia w bazie standardowej. Tak wiec f(1,0) = (a, c¢). Poniewaz
izometria zachowuje dtugo$é wektora, wiec a® + ¢ = 1. Dla takich liczb istnieje kat ¢ taki, ze
a = cosp i ¢ = sin . Pozostaje wyliczy¢ b i d. Oczywiscie f(0,1) = (b, d). Poniewaz izometrie
zachowuja iloczyn skalarny, wiec

0= (1,0)(0,1) = £(1,0)£(0,1) = (a, ) (b, d) = ab -+ cd.
Poniewaz wyznacznik A jest réwny 1, wiec
ad — bc = 1.

Z podanych rownan tatwo wyznaczy¢, ze b = —c = —sin p oraz d = a = cos .
W przestrzeni R? obroty o $rodku w poczatku uktadu wspoétrzednych to doktadnie izome-
trie przeksztaltcajace (0,0) na (0,0), ktére maja macierz o wyznaczniku 1.
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5.1 Obroty w R? a liczby zespolone

Przestrzen R? jest w naturalny sposob izomorficzna z liczbami zespolonymi uwazanymi za
przestrzen liniowa nad cialem liczb rzeczywistych. Korzystajac z tego izomorfizmu obroty w
R? mozna uwazaé za funkcje przeksztatcajace liczby zespolone w liczby zespolone. Nietrudno
zauwazy¢, ze obrot O, o kat ¢ (dookola zera) daje si¢ wyrazi¢ wzorem

Oy(x +1y) = (cos ¢ + ising)(z + iy),

a wiec jest iloczynem przez pewna liczbe zespolong o module 1.

Liczby zespolone moga by¢ rozwazane takze jako algebra macierzy. Funkcja f zdefiniowana
wzorem

. xr —y
fevan=[7 2]

przeksztalca zbior liczb zespolonych C na zbior macierzy o wymiarach 2 x 2, majacych podang
posta¢. Ten zbior jest R-algebrg izomorficzng z C, a f jest izomorfizmem tej algebry i C.
Zauwazmy, ze zbiér takich macierzy o wyznaczniku 1 to zbiér macierzy obrotéow (dla bazy
standardowej). Ponadto zbior ten przez izomorfizm f odpowiada zbiorowi liczb zespolonych o
module 1.

Bedziemy teraz tworzy¢ podobng sytuacje dotyczaca obrotéw w R3.

6 Obroty w R’

Przypuéémy, ze [ : R® — R? jest izometrig taka, ze f(0,0,0) = (0,0,0), ktérej macierz A (w
bazie standardowej) ma wyznacznik 1. Checemy pokazaé, ze f jest obrotem.

Jezeli jest to obrét w R3, to jest to obrét wokét pewnej osi. Najpierw znajdziemy te of.
Punkt Z # 0 z tej osi podezas obrotu nie ulega zmianie. Wobec tego, f(@)=z=XMddla)=1.
Zaczynamy od szukania A, dla ktorych jest wektor & # 0 spetniajacy podang rownosc.

Zauwazmy, ze

Lemat 6.1 Przypusémy, ze A jest macierzq przeksztatcenia f. Wyznacznik macierzy A — A
jest rowny 0 wtedy i tylko wtedy, gdy istnieje niezerowy wektor T taki, ze f(¥) = A\Z.

Dowéd. Réwnosé | A — Al | = 0 oznacza, ze uktad rownan
(A-ADNZ=0

ma wiele rozwigzan, w tym niezerowe rozwigzanie Z. Nietrudno zauwazy¢, ze niezerowymi
rozwiagzaniami tego ukltadu sa doktadnie wektory & speliajace réwnos¢ f(Z) = AZ. O

Jezeli wyliczymy wyznacznik | A — A |, to otrzymamy wyrazenie postaci
(CL171 — )\)(0,272 — )\)(CL373 - )\) + ... ,

gdzie zamiast . .. pojawia si¢ pewien wielomian zmiennej A drugiego stopnia. Wyrazenie to jest
wielomianem trzeciego stopnia i nazywa si¢ wielomianem charakterystycznym przeksztatcenia
f, a jego pierwiastki — wartosciami wtasnymi tego przeksztalcenia.

Tak wiec otrzymaliémy rownanie na A i jest to réwnanie trzeciego stopnia. Takie rownanie
w liczbach rzeczywistych ma rozwigzanie.

Lemat 6.2 Izometria f : R3 — R? taka, ze £(0,0,0) = (0,0,0) ma wartosci wlasne i wartosci
te sq rowne +1.
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Dowdéd. Niech \g bedzie warto$cia wlasng izometrii f. Wtedy réwnanie liniowe (A—XoI)Z = 0
ma przynajmniej dwa rozwigzania. Niech 2y bedzie niezerowym roziwgzaniem tego rOwnania.
Wobec tego,

f(#o) = AZy = Aop.

Poniewaz f jest izometria, wiec zachowuje iloczyn skalarny. Stad,
)\g.’fofo = ()\Qf())()\ofo) = f(fo)f(fo) = fo.ﬁ(?(].

Stad A2 = 1 i ostatecznie otrzymujemy, ze pierwiastkami wielomianéw charakterystycznych
rozwazanych przeksztatcen moga by¢ tylko liczby £1. O

Lemat 6.3 Niech ﬁ,f;,ﬁ € R? bedzie bazq zlozong z wektoréw o dtugosci 1 i takich, Ze
fif; =0 dla i # j. Przypusémy, ze

7= (1,y,2) = afi + b + cfy

oraz
=2y, ) =d itV fat S
Wtedy
7o' = xx' +yy + 22 = ad’ + b0’ + .

Dowéd. Jest to oczywista konsekwencja dwuliniowosci iloczynu skalarnego i przyjetych wta-
snoéci rozwazanej bazy. O

Lemat 6.4 Liczba 1 jest wartoscig wlasng kazdej izometrii f : R3 — R? takiej, ze £(0,0,0) =
(0,0,0), ktérej macierz A (w bazie standardowej) ma wyznacznik 1.

Dowéd. Niech f bedzie izometrig spelniajaca zatozenia lematu. Wiemy, ze jedna z liczb £1
jest wartoscig wlasna f. Jezeli tg liczbg jest 1, to teza lematu zachodzi w sposéb oczywisty.
Mozemy wiec zalozy¢, ze —1 jest wartoscig wtasng f.

Niech 03 bedzie wektorem dlugosci 1 takim, ze f(U3) = —u3. WeZzmy teraz dopelnienie
ortogonalne przestrzeni generowanej przez vs i jeden z wektoréw tej przestrzeni o dhugosci 1.
Oznaczmy go symbolem 9. Niech 9} bedzie wektorem dtugosci 1 z dopetnienia ortogonalnego
przestrzeni generowanej przez v, i U3. Mamy wiec trzy wektory takie, ze iloczyn skalarny
dowolnych dwoch z nich (réznych) jest réwny 0, a kwadrat skalarny kazdego jest réwny 1.
Niech teraz A oznacza macierz przeksztatcenia f wzgledem bazy vy, s, U3, a wiec

0
0

(zamiast f(v;) bierzemy kolumne wspoétrzednych tego wektora w ustalonej bazie). Zauwazmy,

ze

a— A b 0
|A—X| = c d—\ 0 =—((a=XN)(d=X) =bc)(14+)\) =
0 0 —-1-A

— (M= (a+dr+ad—be) (1+X) =~ (N = (a+d)A—1) (1+\).
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Tak jest, poniewaz 1 = | A| = —(ad — bc). Wyliczymy do konca wielomian charakterystyczny
f. Poniewaz f (vl) () = 0, wiec ab + c¢d = 0 na mocy poprzedniego lematu. Zachodzi takze
rownosé a? + ¢® = 1, gdyz dtugoéé wektora f(@)) jest réwna 1. Tak wiec

—a = a*d — (ab)c = a*d + *d = d.

Podstawiajac otrzymang réwnos¢ do wzoru na wielomian charakterystyczny f otrzymujemy;,
ze

A= |==(N=1)(1+)).
Teraz jest oczywiste, ze 1 jest wartoscia wlasng przeksztatcenia f i istnieje niezerowy wektor
7 taki, ze f(¥) = 2. O

7 Kwaterniony

7.1 Rozwazania wstepne

Chcemy skonstruowac¢ algebre kwaternionow, ktéra pozwalataby na opisywanie obrotow w
przestrzeni R? podobnie, jak cialo liczb zespolonych opisuje obroty na plaszczyznie R?. Naj-
lepiej bytoby, gdyby ta algebra byta ciatem, ale to okaze si¢ niemozliwe. Chcemy, aby kazde-
mu elementowi tej algebry (albo np. elementom o module 1) odpowiadal obrét i to w taki
sposob, aby mnozeniu odpowiadalo sktadanie obrotow. Wtedy oczywiscie kwaternionowi 1
(elementowi neutralnemu mnozenia w algebrze kwaternionéw) bedzie odpowiadaé obrét o kat
0. Zastanéwmy sie, jakie wtasnosci majg kwaterniony odpowiadajace obrotom o kat potpetny.
Jest oczywiste, ze jest duzo takich obrotéw i takich kwaternionéw ¢ tez musi by¢ duzo.

Naturalna hipoteza, ze ¢> = 1 jest nie do przyjecia. W dowolnych pierécieniach z jednoécia,
bez dzielnikéw zera réwnanie 22 = 1 ma najwyzej dwa rozwigzania: 1 i —1. Wynika stad, ze
odpowiednio$¢ miedzy kwaternionami i obrotami nie moze by¢ wzajemnie jednoznaczna. W
szczegblnodei, obrot o 0 stopni musi byé opisany przez kilka kwaternionéw.

Przyjrzyjmy sie rysunkom.

Definiujgc obrét musimy podaé os i kat obrotu. Z drugiej strony stwierdzenie, ze chcemy
np. obréci¢ wektor jednostkowy i (albo koniec tego wektora) o 90 stopni (o 7/2) wokot osi
y, nie definiuje jeszcze obrotu. Definiujac obrét na plaszczyznie dodaliby$my, ze ma byé¢ on
zgodny lub nie zgodny z ruchem wskazéwek zegara. W przestrzeni taka informacja tez nie
bedzie wystarczajaca. To, czy obrot jest zgodny z ruchem wskazowek zegara, zalezy od miejsca
obserwacji. Aby opisa¢ obrét, zamiast osi rozumianej jako pewna prosta, dobrze jest opisaé
o$ za pomoca wektora lub prostej o pewnym kierunku. Wtedy podany wyzej obrot f mozemy
opisa¢ w nastepujacy sposob: obracamy o 90 stopni wokoét osi wyznaczonej przez wektor 7, i
jezeli patrzymy w kierunku wektora j, to obracamy zgodnie z ruchem wskazéwek zegara. Dalej
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tak bedziemy rozumie¢ obroty: jako obroty wokot wektora, o podany kat, zgodnie z ruchem
wskazowek zegara w podanym sensie.

Obrot f zostal juz precyzyjnie zdefiniowany, ale to nie koniec ktopotéw. Obrét ten mozemy
roznie wyrazi¢ wzorem algebraicznym, zaleznie od wyboru wektoréw opisujacych przestrzen.
Niech k bedzie wektorem jednostkowym rownolegtym do osi z, jednym z dwéch mozliwych.
Zaleznie od wyboru wektora k, albo wzér algebraiczny na obrécony wektor i ma postaé f(i) =
k, albo f(i) = —k. Na rysunku wektor k zostal tak wybrany, aby f(i) = —k.

Kazdy obrét mozna opisa¢ w podany sposob podajac dwie rézne informacje. Bierze sie to
stad, ze obrét wokot wektora v o kat ¢ jest takze obrotem wokot wektora —v' o kat 360 — .
Ta zalezno$¢ ma szczegdlng postaé w przypadku obrotéw o 180 stopni. Obroty o taki kat
wokot osi U1 —0' sg identyczne. Kwaterniony oddajg przytoczony sposéb definiowania obrotow.
Kwaterniony odpowiadajace obrotom o 180 stopni mozna utozsamia¢ z osiami obrotu. Okaze
sie jak nalezy sie spodziewac, ze kwaterniony roznigce sie znakiem opisujg ten sam obroét, takze
dla dowolnych katow.

Niech ¢ nadal bedzie kwaternionem opisujacym obrot wokoét jakiegos wektora o 180 stopni.
Przytoczone rozwazania sugeruja na dwa sposoby, ze ¢> = —1. Po pierwsze, —1 tez opisuje
obrét o 0 stopni, a wiec jezeli g nie moze by¢ réwne 1, to moze okazaé sie réwne —1. Kwaternion
q®> moze by¢ tez interpretowany jako obrét o 360 stopni. Wtedy kwaternion (—q)q = —¢?
powinien by¢ interpretowany jako obrét o 0 stopni. Jezeli —g? = 1, to oczywidcie takze ¢ = —1.
Wszytko wskazuje wiec na to, ze w algebrze kwaternionéw powinno by¢ duzo pierwiastkow
kwadratowych z —1 i nie moze zachodzi¢ twierdzenie Bezout.

Analizujac, dlaczego w ciatach sg najwyzej dwa pierwiastki z dowolnej liczby, mozna za-
uwazy¢, ze bardzo istotna jest przemienno$¢ mnozenia. Rezygnujac z przemiennosci mozna
stworzy¢ algebre kwaternionow zawierajaca bardzo duzo pierwiastkow z —1.

7.2 Kwaterniony jako algebra poczatkowa (lub ciekawostka)
Chcemy wiec zbudowaé algebre,

e ktora jest skoniczenie wymiarowa R-algebra (niekoniecznie przemienng),
e w ktorej kazdy rézny od zera element ma (obustronny) element odwrotny,

e w ktérej sa dwa rozne pierwiastki z —1 oznaczane i oraz [ takie, ze I # —i (i oczywiscie
i?=1*=-1).

Przypusémy, ze taka algebra istnieje i oznaczmy jg symbolem H. Algebre H bedziemy
nazywaé algebra kwaternionéw, a jej elementy - kwaternionami. Czasem nazywa sie ja (nie-
przemiennym) ciatem kwaternionéw. Wtedy nalezy pamietaé, ze w tej algebrze mnozenie nie
jest przemienne, a wiec nie sg spetnione wszystkie warunki wymienione w definicji ciata.

7.3 Pierwsze wlasnosci

Zrozumienia tego rozdzialu wymaga bardzo doktadnego przypomnienia sobie definicji R-
algebry.

Przyjmijmy nastepujace oznaczenia: -, i -, to odpowiednio mnozenia wewnetrzne i ze-
wnetrzne w algebrze H, 14 i 1z to jednosci w algebrze H i ciele R, a 0 i Oz to zera w tych
algebrach. Najpierw pokazemy, ze dopisywanie tych indekséw jest niepotrzebne.

Lemat 7.1 Dla wszystkich x € R achodzi rowno$é x -, Oy = Oy.
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Dowéd. Zauwazmy, ze
o, 0y=2,0+0y) =20 +x-, 0y
Odejmujac od tej rownosci stronami x -, 0y otrzymujemy, ze -, 0y = 0. O
Lemat 7.2 Algebra 'H zawiera podalgebre izomorficzng z ciatem liczb rzeczwistych R.

Dowéd. Funkcja J : R — H zdefiniowana wzorem J(z) = z -, 1y jest monomorfizmem
ciata liczb rzeczywistych R w algebre H. Latwo dowiesé, ze J(x +x y) = J(x) +4 J(y) oraz
J(x-ry) = J(x)-3J(y). Pokazemy tylko réznowartosciowos$¢ J. Przypusémy, ze z-, 14 = 0y dla
pewnej liczby rzeczywistej x # 0. Pomnézmy te réwnosé stronami przez x~ 1. Z poprzedniego
lematu otrzymujemy, ze

0'}—[ = (.’L’il> ‘s 07-( = (.’L’il) ‘y (SL’ ‘y 17—[) = (Iil . .I‘) ‘ 17-( = 173 ‘y 17_[ = 17-(,

(pamietajmy, ze mnozenie zewnetrzne przez 1 jest funkcja identyczno$ciowa), a to nie jest
mozliwe. Uzyskana sprzeczno$é¢ dowodzi, ze réwnosé x -, 1oy = Oy zachodzi tylko dla z = 0.
Tak wiec J jest monomorfizmem. O

Udowodniony lemat pozwala utozsamiaé liczbe rzeczywista = z elementem postaci x -, 14.
Dalej przyjmujemy wigc, ze
r,ly=x€H

dla wszystkich liczb rzeczywistych x.

Lemat 7.3 Jednoscig algebry H jest liczba rzeczywista 1, czyli 1 -, 1. Zerem w algebrze 'H
jest liczba rzeczywista 0, czyli Og -, 1y.

Dowd6d. Mnozenie zewnetrzne przez liczbe 1 jest funkcja identycznosciows. Tak wiec
Iy=1g . 13y = 1x.
Druga podana wlasnos¢ dowodzimy podobnie:
I 21y =(Ir + O0r) > Iy = 1 - Iy + Op 2 13-

Stad wynika, ze
Oy =0r - 1y =0g O

Lemat 7.4 Mnozenie zewnetrzne jest mnozeniem wewnetrznym, a wiec
roh=(@,1ly) wh=xwh
dla wszystkich x € R © h € 'H.
Dowéd. Zauwazmy, ze
roh=x, 1y wh)=(x,1y) wh=x-h O
Lemat 7.5 W algebrze H mnozenie przez liczby rzeczywiste jest przemienne, a wiec
Twh=h-,x
dla wszystkich x € R + h € H.
Dowéd. Zauwazmy, ze
rwh=@ 1ly)wh=x2,1y-wh) =z, (hwly) =h-w@,1ly) =h-pz O

Dalej nie bedziemy juz stosowaé indeksow tak, jak w tym rozdziale.
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7.4 'H jest sumga prostg
Lemat 7.6 Kazdy element x algebry H mozna przedstawié w postaci

x—ixi+x+ixi
Tr =
2 2

Element x — 1xt jest przemienny z i. Element x 4 1xt spelnia natomiast rownosé
i(x +izi) = —(x + tw1)i.
Dowdéd. Mamy bowiem
(x —ixi)i = xi — ix(i%) = xi + iz oraz i(x — ixi) = iz — (i*)xi = iz + i.
Druga réwnosé sprawdzamy rownie tatwo, jak poprzednia. W algebrze z przemiennym mno-

zeniem element x + iz¢ musiatby by¢ réwny 0. O

Przyjmijmy, ze
Hy ={reH:iv=uwi} oraz H_={x € H :ix=—uxi}.

Twierdzenie 7.7 Zbiory Hy @ H_ sq podprzestrzeniami lintowymi H i H jest sumq prostq
tych podprzestrzeni.

Dowdéd. Wobec poprzedniego lematu wystarczy sprawdzi¢, ze jedynym elementem x € H, N
H_ jest wektor zerowy. Zauwazmy, ze iz = xi = —ix. Mnozac otrzymang rownos¢ stronami
przez i otrzymujemy, ze —x = x, a wiec x = 0. O

Zauwazmy tez, ze

Lemat 7.8 Zbior H, jest zamkniety ze wzgledu na mnozenie, a wiec jest R-algebrg. O

7.5 Charakteryzacja H
Przyjmijmy, ze C = {r + si € H : r,s € R}. Latwo dowodzi sie nastepujacy fakt.
Lemat 7.9 Zbior C jest algebrg izomorficzng z ciatem liczb zespolonych. O

Bedziemy wiec utozsamia¢ elementy C z liczbami zespolonymi.
Twierdzenie 7.10 Algebra H, jest ciatem liczb zespolonych C.

Dowéd. Oczywiscie, C C H,. Wystarczy wiec dowies¢, ze Hy C C. Wezmy wiec h € H, .

Niech R[z] bedzie pierscieniem wielomianéw o wspdtezynnikach rzeczywistych. Przyjmij-
my, ze val(x) = h. Warunek ten pozwala zdefiniowa¢ wartos¢ wielomianéw w algebrze H .
przy takim wtadnie wartosciowaniu. Niech val : R[x] — H, bedzie tak zdefiniowana warto-
Scia wielomianéw. Funkcja ta jest homomorfizmem algebry wielomianéw R[z] w algebre H., .
Pierwsza z tych algebr ma wymiar nieskoriczony, druga - przeciwnie. Istnieje wiec niezerowy
wielomian w(z) € R[z] taki, ze w(h) = val(w(z)) = 0. O tym wielomianie mozemy zalozy¢, ze
jest stopnia nie wigkszego niz 2. Wynika ze znanego twierdzenia mowiacego, ze kazdy wielo-
mian o wspétczynnikach rzeczywistych jest iloczynem wielomianéw stopnia < 2. Jest to tzw.
zasadnicze twierdzenie algebry.
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Pierwiastki wielomianu stopnia 1 o wspotczynnikach rzeczywistych sg liczbami rzeczywi-
stymi. Mozemy wiec zatozy¢, ze w(x) jest stopnia 2. Mozemy takze przyjac, ze wspotezynnik
tego wielomianu przy z? jest réwny 1. Niech

w(x) = 2° + ax + b.

Mamy wiec
w(h) = h*>+ah+b=0.

Z drugiej strony wiemy, ze wielomian w ma dwa pierwiastki zespolone z, 2z’ € C. Wiedzac to,
tatwo wyliczy¢ wspotczynniki wielomianu w:

a=z+7 oraz b= z7.
Stad otrzymujemy, ze
0=h*+(z+2)h+ 22 = (h—2)(h—2).

Poniewaz w algebrze H kazdy niezerowy element ma element odwrotny, wiec nie ma dzielnikow
zera, a takze h = z lub tez h = 2. W obu przypadkach, h € C. O

7.6 Wtlasnosci H_
Przypomijmy, ze I oznacza trzeci pierwiastek z —1 w algebrze kwaternionéow.
Lemat 7.11 Pewien pierwiastek z —1 nalezy do zbioru H_.

Dowdd. Ten lemat ma rachunkowy dowod. Wprowadzmy nastepujace oznaczenia:

a =

I —ili I+t
oraz b = 7

Zachodzg wiec nastepujace rownosci
I=a+b, ai=1ia oraz bi = —ib.

Element b spetniajacy rownosé¢ bi = —ib nie moze by¢ liczbg zespolong, tym bardziej nie
moze by¢ liczbg rzeczywista, ani zerem.
Zauwazmy, ze

(I —ili)(I +ili) = I + Iili — ilil — iliili = Iili — ilil

oraz
(I +ili)(I —ili) = I* — Iili +4lil — iliili = —(Iili — ilil).
Stad otrzymujemy, ze
ab = —ba.

Ta ostatnia réwnosé¢ ma dwie konsekwencje. Po pierwsze,
—1=I?=(a+b)?=a*+ab+ ba +b* = a* + b°.
Ponadto, poniewaz a € H, = C, wiec a = r + si oraz

rb+ sib = (r + si)b = ab = —ba = —b(r + si) = —rb — sbi = —rb + sib.
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Oznacza to, ze rb = 0. Tak wiec r = 0 oraz a = st dla pewnej liczby rzeczywistej s.
Po potaczeniu tych dwoch konsekwencji otrzymujemy, ze

W=-1-ad>=-1+s’eR.

Latwo tez wykazac, ze kwadrat kwaternionu jest nieujemna liczbg rzeczywista tylko wtedy,
gdy ten kwaternion jest liczba rzeczywista. Nieujemne liczby rzeczywiste sg kwadratami liczb
rzeczywistych. Jezeli b? = r? dla liczby rzeczywistej r, to

b+r)b—r)=b*4rb—br —r>=b"+1b—1b—1? =V —1? =0,

gdyz iloczyn przez liczbe rzeczywista niezalezy od kolejnosci czynnikéw. Stad wynika, ze b =
+r € R, a to nie jest mozliwe. Ostatecznie,

¥=—-1+4+s*<0.

Przyjmijmy, ze
b

=
Oczywiscie, j € H_ oraz j2 = —1. O

Dalej 5 bedzie oznaczaé jeden z pierwiastkow z —1 nalezacy do H_.

Lemat 7.12 Funkcja f(x) = zj jest liniowa i réZnowartosciowa, przeksztalca przestrzen li-
niowg H na H, a takze przeksztatca Hy wH_ oraz H_ w H, .

Dowdd. Podane wlasnoéci funkeji f wynikaja natychmiast z definicji R-algebry. Fakt, ze f jest
typu ,na” jest wynika ze znanych wlasnosci funkcji liniowych przeksztatcajacych przestrzenie
skonczonego wymiaru. Pozostate wlasnosci f wynikaja z banalnych rachunkéw. O

Whniosek 7.13 Przestrzenie Hy i@ H_ (nad cialem liczb rzeczywistych) sq tego samego wy-
miary © majg wymiar 2. Przestrzen H ma wymiar 4.

Dowéd. Réwnosé wymiaréw podanych przestrzeni wynika z poprzedniego lematu. Oczywiscie,
wymiar przestrzeni H, = C jest réwny 2. Przestrzen liniowa H jest suma prosta przestrzeni
wymiaru 2, ma wiec wymiar 4. O
7.7 Grupa kwaternionéw
Rozwazmy trzy nastepujace elementy algebry H: ¢, j oraz ij. Zauwazmy np., ze

jij = —jji =i

Tak wiec prawdziwe sa nastepujace rOwnosci:

ij=1ij
J - (i3) =1,
(i) i =

Wisréd kwaternionow sa wiec trzy elementy a, b i c takie, ze
ab=c¢, bc=a oraz ca="b.

Algebre poczatkowa w klasie grup generowanych przez takie trzy elementy nazywamy grupa
kwaternionow. W tym rozdziale opiszemy grupy generowane przez takie trzy elementy.
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Lemat 7.14 Niech G oznacza grupe generowang przez elementy a, b i ¢ spelniajgce podane
rownosci. Wtedy kwadraty generatoréow sq rowne, a czwarte potegi generatorow grupy sq rowne
jednosci.

Dowéd. Zauwazmy, ze
a®> = a(bc) = (ab)c = ¢ oraz b* = (ca)b = c(ab) = *.

Ponadto,

a® = c*a = ca’ca = (ca)a(ca) = (ca)(ab) = bc = a.

Stad a* jest elementem neutralnym. O

Lemat 7.15 W grupach rozwazanych w tym rozdziale rzqd elementu c jest < 2 wtedy i tylko
wtedy, gdy ab = ba.

Dowdd. Przypusémy, ze ¢? jest jednoscia grupy. Wtedy abab = e. Pomnézmy te réwnosé z
lewej strony przez a i z prawej przez b. Wtedy z poprzedniego lematu otrzymujemy, ze

ab = a%bab® = b2bab? = bb*ab® = ba’ab? = baa®b? = bab* = ba,

czyli a i b komutuja.

Zauwazmy tez, ze jezeli ab = ba, to ¢® = abab = a’h® = a* =e. O

Jezeli dwa z generatorow sa réwne jednosci, to trzeci tez jest rowny jednosci i cata grupa
jest jednoelementowa.

Jezeli doktadnie jeden z generatoréw jest réwny jednosci, to pozostate sa sobie rowne i
grupa sktada sie z jednosci i drugiego generatora.

Jezeli zaden z generatoréw nie jest jednoscia, to sa one parami rozne. Jezeli wsréd gene-
ratorow jest element rzedu 2, to generatory sa przemienne i cata grupa jest przemienna. Taka
grupa ma cztery elementy i nastepujaca (wymagajaca uzupelnienia) tabelke :

[ lelalblc]

ellelalb]|c
allalel|c

b|b ela
cllcl|b e

Jezeli generatory maja rzad 4, to nie moga komutowac¢ i grupa ma rzad 8. Jezeli przez
¢ oznaczamy kwadrat np. generatora a, to grupa ma nastepujaca, wymagajaca uzupetnienia

tabelke.

‘ He‘a‘b‘c‘g‘ga‘gb‘gc‘
e e|lal|b|c| e lea|eb]|ec
al ale]|c ga | e | ec
b b e | a|eb e | ea
c c | b € | ec|eb
€ € |ea|eb|ec| e b

ca||lca| e | ec a | e | c
eb || €b e |ea| b e | a
ec | ec | b el c|b €
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7.8 Opis algebry kwaternionéw H

W przestrzeni liniowej H, = C tatwo podac baze: sktada sie ona z liczb zespolonych 1 oraz
i. Funkcja f(x) = xj jest izomorfizmem H, i H_. Wobec tego jedna z baz przestrzeni H_
sktada sie z elementéw f(1) 1 f(i), czyli j oraz ij. Oznaczmy iloczyn ij przez k. Wtedy baza
‘H_ jest np. para j i k. Natomiast jedna z baz przestrzeni H sktada sie z elementéw 1, i, j, k.
Kazdy element H daje si¢ wiec przedstawi¢ w postaci

o+ Bi+ i+ ok

dla pewnych «, 3,v,6 € R. Jest to pierwszy ze sposobdéw reprezentowania kwaternionow.
Mnozenie tak reprezentowanych kwaternionow sprowadza sie do liczenia iloczynow takich jak
17. lloczyny te obliczamy zgodnie z nastepujacymi regutami:

ij=k=—ji, jk=i=—kj, ki=j=—ik

oraz
==k =-1

Zbior {£1, +i, +j, £k} C H tworzy grupe. Jest to tzw. grupa kwaternionéw. Grupa ta ma
nastepujaca tabelke:

[ [ [ [ []F]

1 1 it g | k| -1|—i|—7]|—k
i | =1 k| —j|—i| 1 |—=k| J
gl g |=k|-1] @ |—g| k| 1]|—t
kKl k| g |—i|-1|—k|—g| i |1
-1 1| —=¢|—j|—=k| 1 | 7| J|Fk
—i || =i | 1 |=k| J —1| k | —J

i
=Tk [ 1 =i|J |=k|-1]1
k| =k|=j| i | 1|k ]|J

Kwaterniony mozemy przedstawiaé jeszcze w inny sposob. Przypu$émy, ze mamy kwater-
nion

a+bi+cj+dk eH,

gdzie a,b, c,d € R. Przyjmijmy, ze w = a+ bi oraz z = ¢+ di. Elementy w i 2z mozemy uwazac
zaréwno za kwaterniony, jaki i za liczby zespolone. Zauwazmy, ze

a+bi+cj+dk=w+ zj.

Jest to inny, skréocony sposéb przedstawiania kwaternionéw. Tak przedtawione kwaterniony
mnozymy w zwykty sposob. Nalezy jednak pamietac¢, ze dla w € C zachodzg réwnosci

Jjw = j(a+bi) = ja+ jbi = aj — bij = (a — bi)j = wy, (2)

gdzie W oznacza liczbe zespolong sprzezong z w.

7.9 Istnienie ciala kwaternionow

Na poczatku zalozyliSmy, ze mamy algebre spetliajaca pewng liste postulatow i staralismy
sie wyobrazi¢ sobie, jak taka algebra wyglada. Nie mamy jednak zadnych gwarancji, ze wsrod
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przyjetych aksjomatéw nie ma dwoch sprzecznych. Nie udato sie nam wyprowadzi¢ z tych
postulatéow sprzecznosci, ale to nie dowodzi, ze nigdy nie uda sie uzyskaé¢ sprzecznosci. Jest
wiec potrzebny dowdd istnienia algebry kwaternionow.

Przypusémy, ze mamy kwaternion

a+bi+cj+dke™H
gdzie a,b,c,d € R. Niech

ola+bi+ cj + dk) = [““” ‘C‘dﬂ.

c—di a—1bi

Jezeli przyjmijmy, ze w = a + bi oraz z = ¢ + di, to definicje ¢ mozna wyrazi¢ nastepujaco:

zZ W

ola+bi+cj+dk) = p(w + zj) = lq“_” _Z].

Nietrudno zauwazy¢, ze ¢ jest funkcjg liniowa, i to roznowartosciowa. Trudniej zauwazy¢,
ze ¢ zachowuje mnozenie. Z wzoru (2) wynika, ze

(w+ zj)(v+zj) = wv+ zjv +wxj + zjrj = (wv — 2T) + (2T + wx)j. (3)
Zauwazmy takze, ze
w o —z v o—x | | wv—2T —(2U+ wz)
Z W T T | |Zv+wWT WUz

Wzér ten oznacza, ze ¢ zachowuje mnozenie. Tak wiec ¢ jest izomorfizmem algebry H i pewnej
algebry macierzy

;o lw o=z |
7‘(—{[z E].w,zEC}
Twierdzenie 7.16 R-algebra H' ma wilasnosci wymagane od algebry kwaternionéw.

Dowéd. Zbiér H' jest oczywiscie podzbiorem algebry macierzy o wymiarach 2 x 2 i wyrazach
zespolonych. Jest to podalgebra. Zamknietos¢ ze wzgledu na dodawanie i zewnetrzne mnozenie
jest oczywiste, a ze wzgledu na mnozenie — wynika z wyzej przytoczonego wzoru.

Latwo tez wymienié kilka pierwiastkéw z —1 (z elementu przeciwnego do jednosci algebry,
czyli macierzy jednostkowej. Np. sg to

@(i):[é _OZ] @(j):l? —01] oraz w(k)zl_oi _0@1

Aby wykazaé istnienie elementéw odwrotnych zauwazmy, ze wyznacznik

w —z

_ = lw)P+] 2
z

i jest dodatnig liczbg rzeczywistg dla wszystkich niezerowych elementéw H’'. Ponadto macierz
odwrotna wyraza sie wzorem

w o—z] 1 w2
> | TTomELaLE| s -
= v | TTwPePlE w

Przedstawione dotychczas rozumowania swiadcza takze o tym, ze kazda algebra spetiajaca
podane na poczatku postulaty (algebra kwaternionéw) jest izomorficzna z algebra H'.
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7.10 Podstawowe pojecia dotyczace kwaternionéw

Podobnie jak dla liczb zespolonych, definiujemy kwaternion sprzezony z danym i modutl kwa-
ternionu.
Kwaternionem sprzezonym do kwaternionu h = a + bi 4+ ¢j + dk nazywamy kwaternion

h=a—0bi—cj—dk.

Modutem kwaternionu h = a + bi + ¢j + dk nazywamy za$ liczbe rzeczywista

|h|= Va2 +b2+c2+d2
Pojecia te maja oczekiwane wtasnosci. Tak wiec
hi + hy = El _'_EQ, ch = ch (C € R) oraz hihy = Elﬁg.
Ponadto
| hihy | = | hi || he| oraz |w+zjiP=|w+|2]* (w,z€C)
Zachodzi tez wzor B
hh =|h|*

Wzér ten pozwala tatwo oblicza¢ odwrotnosé kwaternionu. Wynika bowiem z niego, ze

1

h.
|22

hl =

Definiujemy tez cze$¢ rzeczywista Re(h) i urojona Im(h) kwaternionu h: jezeli h = a +
bi 4+ cj + dk, to
Re(h) =a oraz Im(h) =bi+ cj+ dk.

Zachodzg oczywiste wzory
Re(h) = —— oraz Im(h) = —.

Cala algebra kwaternionéw ma tez cze$¢ rzeczywista Re(H) identyczng (lub izomorficzng) z
cialem liczb rzeczywistych R i cze$¢ urojona

Im(H)={Im(h):he H} ={bi+cj+dk € H:a,bceR},

ktéra — uwazana za przestrzen liniows — jest izomorficzna z przestrzeniag R3.

Algebre kwaternionéw w naturalny spoéb mozna utozsamiaé ze zbiorem R*. Mozna wiecc
wprowadzi¢ tez iloczyn skalarny kwaternionéw. Aby nie doszto do kolizji oznaczen, iloczyn ten
powinien by¢ oznaczany inaczej niz w przypadku wektorow. Dla kwaternionow

hi =a; +bii+ci1j+dik oraz hy = as + bai + cof + dok
przyjmijmy wiec, ze ich iloczyn skalarny (hi, he) jest dany wzorem

(h1, he) = ajas + biby + c1co + dyds.
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7.11 Iloczyn wektorowy

Zauwazmy, ze

Ty z
c c a a b
a b c|=x- +y- +z-
‘s t‘ t r r s
r s t
Przyjmijmy wiec, ze
b ¢ c a a b
(CL,b,C)X(T,S,t)—< s t I t r ) r s )

Zdefiniowana operacje przeksztalcajaca R*® w siebie nazywamy iloczynem wektorowym.

Lemat 7.17 Zachodzi rownosé
((a,b,¢),(a,b,c) x (r,s,t)) =0,

a wiee iloczyn wektorowy dwéch wektoréw jest wektorem prostopadtym (ortogonalnym) do tych
wektoréow. O

Lemat 7.18 Zachodzi wzor

2
+

2

@ bl _ (a® + 0>+ ) (r* + 8* + %) — (ar + bs + ct)*.

r

b ¢
t r

Wynika z niego, Ze dtugosé iloczynu wektorowego jest tloczynem diugosci mnozZonych wektoréow
1 wartosci bezwzglednej sinusa kgta miedzy tymi wektoramai. O

[loczyn wektorowy kwaternionow z Im(H) wprowadzany analogicznie, tak aby byl zachowy-
wany przez izomorfizm tej przestrzeni i R3. Przyjmujemy wiec, ze

. . . ‘ b c|. c al. a b
(az+b]+ck)><(m+s‘7+tk‘)—‘s M LA I A k.
Whiosek 7.19 Jezeli u,v € Im(H), to
s o = uPloPsinp,

gdzie @ jest kgtem miedzy wektorami wspotrzednych kwaternionow w i v. O
Twierdzenie 7.20 Jezeli u,v € Im(H), to

uwv = —{u,v) +u X v.
Dowé6d. Wystarczy napisa¢ wzor na iloczyn dwoch urojonych kwaternionow. O
Whiosek 7.21 Jezeli u,v € Im(H), to

uv +vu = —2(u,v). O
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7.12 Analiza pewnych przeksztatcen

Przyjmijmy, ze ¢ = a + bi + ¢j + dk jest kwaternionem o module 1. Po pierwsze zajmiemy sie
przeksztatceniami o, : H — H zdefiniowanymi wzorami

ay(z) = qx.

Sa to oczywiscie przeksztatcenia liniowe. Zauwazmy, ze

ay(1l) = a+bi+cj+dk,

Latwo sprawdzi¢, ze iloczyn skalarny kazdej pary ztozonej z dwoch réznych takich wektorow
jest rowny 0, za$ kwadrat skalarny kazdego z tych wektorow, czyli kwadrat modutu jest réwny
g =a®+ 0+ + d%

Macierzg przeksztalcenia o, w bazie 1,1, j, k jest

a —=b —c —d
b a —-d c
Aq = c d a b
d —c b a

Z tfaktow przytoczonych w poprzednim akapicie wynika, ze
| Ay | = £ q|* = £1.

Aby si¢ o tym przekonaé, wystarczy wyliczy¢ iloczyn AqTAq.
Teraz zajmiemy sie przeksztatceniami 3, : H — H zdefiniowanymi wzorami

By(x) = xq L.

Oczywiscie, to tez sa przeksztalcenia liniowe. Poniewaz |q| = 1, wiec ¢~
Zauwazmy, ze

=g =a—bi—cj—dk.

B,(1) =a —bi —cj — dk,
By(1) = b+ ai + dj — ck,
B,(4) = ¢ — di+ aj + bk,
By(k) = d+ ci —bj + ak.
Macierza przeksztalcenia 3, jest
a b c d
b a —-d c
Bq —c d a b
—d —c b a

Poréwnujac macierze A, i B, mozna zauwazy¢, ze jedna z nich mozna otrzymac¢ druga
mnozac pierwsza kolumne przez —1, a nastepnie mnozac przez —1 pierwsza kolumne. Te
operacje nie zmieniajg wyznacznika. Tak wiec | A, | = | B,|. Wobec tego, wyznacznik macierzy
A, B, jest réwny 1.
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Zauwazmy, ze

a —b —c —d a b c d 10 0 0
b a —-d c b a —-d c 0

AqB, = c d a —b —c d a —-b| |0 C,
d —c b a —d —c b a 0

Macierz A,B, jest macierza przeksztalcenia
Oy(w) = qrq™".
Oczywiscie, dla kazdej liczby rzeczywistej ¢ # 0 mamy
Ocq(x) = Oq().
Pozwala to analizowa¢ dalej tylko przeksztatcenia O, dla kwaternionéw ¢ o module 1.

Lemat 7.22 Funkcja O, jest obrotem w przestrzeni Im(H), a wiec Oy : S(H) — Im(H), jest
to przeksztatcenie liniowe i wyznacznik macierzy tego przeksztatcenia jest rowny 1.

Dowdéd. Macierzg przeksztatcenia O, (wyznaczong przez baze 1,14, j, k) jest A,B,. Z wzoru na
te macierz wynika, ze funkcja O, na zbiorze Im(H) przyjmuje wartoéci nalezace do Im(H), a
macierzg obcigcia tej funkeji do Im(H) jest macierz Cy. Oczywiscie, | C, | = | A,B, | =1. O

7.13 Os$ i kat obrotu O,
Przypu$émy, ze Re(q) = r i Im(q) = u, a ponadto, ze a € Im(H). Wtedy
(r +u)a(r —u) = rar — rau + var — uau = r’a + r(ua — au) — vau =

=r2a+7r((—(u,a) +u x a) — (—(a,u) + a x u)) — (—au — 2(u, a))u =
=1r2a+ 2r(u x a) — (u,u)a + 2{a, u)u.

Rownosci te wynikaja z twierdzenia 7.20 i wniosku 7.21, oraz z oczywistych rownosci @ =
—udlaueIm(H)iuxa=—axXu.

Twierdzenie 7.23 Jezeli modut ¢ € H\{%1} jest rowny 1 i Re(q) = cos g, to przeksztalcenie
O, (przestrzeni Im(H) w siebie) jest obrotem o kqt 2¢ wzgledem osi Im(q).

Dowéd. Przyjmujemy wyzej wprowadzone oznaczenia i bedziemy korzysta¢ z udowodnionego
wzoru. Zauwazmy, ze

O,(u) = (r + u)u(r —u) = r’u+2r(u x u) — (u,w)u + 2{(u, u)u = (r* + {u,u))u = | ¢ [*v = u.

Oznacza to, ze wektor u = I'm(q) jest osia obrotu przeksztalcenia O,.
Aby ustali¢ kat obrotu wezmy dowolne a € Im(H) prostopadte do u, a wiec spelniajace
(a,u) = 0. Wtedy

O,(a) = r*a+2r(u x a) — (u,u)a + 2(a, u)u(r? — (u,u>)a+2r!u|(‘ | X a) =
(4)
= (cos® p — sin® p)a + 2 cos @sin go(ﬁ X @) = cos 2y a + sin 2¢(% a)
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(pamietajmy, ze wektor X a jest prostopadly do u i a). Udowodniony wzor swiadczy o

u
| u
tym, ze przeksztalcenie O, obraca wektory prostopadte do u o kat 2¢.

W tej chwili nie potrafimy doktadniej opisa¢ obrotu O,, gtéwnie dlatego, ze nie zostal wpro-
wadzony aparat pozwalajacy zbada¢, czy O, obraca zgodnie z ,ruchem wskazéwek zegara”,

czy przeciwnie. O

Z wyprowadzonych wzoréw mozna tez wywnioskowaé, ze kazdy obrét w przestrzeni Im(H)
(dookota zera) jest funkcjg postaci O,,. Jezeli chcemy zdefiniowaé obrot o kat ¢ wzgledem osi u,
to obliczamy 7 = cos £, mnozac u przez odpowiednig liczbe gwarantujemy, aby r? 4+ (u,u) =1
i definiujemy ¢ jako r + u.

7.14 Grupa obrotéw w R?

Niech S oznacza zbiér kwaternionéw o module 1. Nietrudno zauwazy¢, ze S jest grupa. Przyj-
mijmy, ze

h(q) = OglIm(H).
Tak wiec h przeksztatca S w grupe obrotéw (dookota 0) w przestrzeni Im(H), a warto$é h(q)
to obciecie O, do odpowiedniej przestrzeni).

Twierdzenie 7.24 Funkcja h jest epimorfizmem grupy S na grupe obrotéw przestrzeni Im(H)
0 jadrze ztoZonym z dwéch elementéw +1 (a wiec kazdy obrét jest wyznaczony przez dwa kwa-
terniony réznigce sie znakiem).

Dowéd. Prawie cata teza wynika z poprzedniego rozdzialtu. Udowodni¢ wigc tylko ostatnia
cze$é tezy. W tym celu wystarczy wykazaé, ze jezeli qrg~! = o dla wszystkich z, to ¢ = 1.
Przypusémy wiec, ze g spelnia podany warunek. Wtedy w szczegélnosci qi = iq. Oznacza to,
ze q € C. Przyjmijmy wiec, ze ¢ = a + bi. Teraz rownosé qj = jq jest réwnowazna rownosci
aj + bk = aj — bk. Wynika z niej, ze b =01 ¢ = a € R. Poniewaz modul ¢ jest rowny 1, wiec
qg==+1.0

8 Przyklady obliczen

8.1 Pierwiastki z —1

Przedstawione wczedniej rozwazania sugeruja, ze obrét o 180 stopni wyznacza kwaternion,
ktory jest pierwiastkiem z —1. Zbadajmy wiec pierwiastki z —1.
Oczywiscie,

(a+bi+cj+dk)? =
=a? —b? — ¢ — d* + 2abi + 2acj + 2adk + be(ij + ji) + bd(ik + ki) + cd(jk + kj) =
=a? — b — ¢ — d® + 2abi + 2acj + 2adk.

Jezeli wiec (a + bi + ¢j + dk)? = —1, to a®> — > — * —d*> = —1 oraz ab = ac = ad = 0.
Zauwazmy, ze zatozenie a # 0 prowadzi do sprzecznosci. Wtedy bowiem b = ¢ = d = 0 i liczba
rzeczywista a bylaby pierwiastkiem z —1. Wobec tego, a = 01 b? + ¢ + d* = 1. Pierwiastkami
z —1 sg wiec kwaterniony o czesci rzeczywistej 0 i module 1. Latwo tez zauwazy¢, ze wszystkie
takie kwaterniony sg pierwiastkami z —1.
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8.2 Przyklad obrotu

Sprébujmy znalezé kwaternion g opisujacy obrét o 90 stopni dookota osi (przechodzacej przez
poczatek uktadu wspétrzednych, tylko takimi obrotami zajmowalidmy sie do tej pory) o kie-

runku wektora j. Czesé rzeczywista kwaternionu ¢ to cos(45°) = v2, Caly kwaternion ma

2
posta¢ 5= + bj. Aby miatl modut 1, to nalezy przyja¢, ze b = £%=. Przyjecie, ze b = —5°

zmieni kierunek osi na przeciwny. Interesujacym nas kwaternionem jest wiec
_ V2 V2
q= 5 5 J-

Sprobujemy teraz ustali¢, jak obrot O, przeksztalca punkt i. W tym celu nalezy wyliczy¢
qig~!. Dla kwaternionéw o module 1 zachodzi wzér ¢~ = g. Tak wiec

0,(i) = gig" = gi7 = (? " %) ; (? - %) - L+ i-g) -

:%G+ﬁ@—m:%u—k+ﬂ—jm2%@—k—k—@z—k

Okazalto sie wiec, ze zgodnie z rysunkiem ze strony 7.1, kwaternion ¢ opisuje obrét o 90 stopni
zgodnie z ruchem wskazéwek zegara wokot osi o kierunku j.

8.3 Skladanie obrotow

Spréobujemy teraz ustali¢, czemu jest réwne ztozenie dwdch obrotéw: najpierw obrotu o 90
stopni wokot osi o kierunku j, a nastepnie tez o 90 stopni wokét osi o kierunku i (i osie
przechodza przez 0, a obroty sa zgodne z ruchem wskazéwek zegara). Obroty te sa wyznaczone

przez kwaterniony
V3 V3
q= 5 5 J

V2 V2,
= i.
2 2
Najpierw zbadajmy, co te obroty przeksztatcaja punkt k + j. Okazuje sie, ze

oraz odpowiednio

04l +K) = 51+ )G+ KA~ ) = 54 )( = 72+ k— ki) = 54 )i+ +k+1) =

=S(+j+ktldjit+jk+j)=l+i+tk—ktitj)=i+j
Podobnie,
Og(Oq(i)) = Og(i+j)=k+i=i+k
Ztozenie tych obrotow jest opisane przez kwaternion

| —

Oczywiscie, % = co0s(60°). Tak wiec zlozenie tych obrotéw jest obrotem o 120 stopni wokoét osi

o kierunku 7 + 5 + k.
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8.4 Orientacja tréjki wektorow
8.4.1 Podstawowe definicje

Bedziemy zajmowac sie teraz nastepujacym problemem: mamy dany kwaternion ¢ (na przykltad
o module 1) i chcemy narysowaé lub wyobrazi¢ sobie wektor O,(z) dla danego wektora x.
Albo inaczej, chcemy doktadnie opisaé obrét wyznaczony przez kwaternion ¢q. Wymaga to
wprowadzenia pojecia orientacji trojki wektorow. Bedziemy teraz rozwazaé wytgcznie trojki
wektoréw z przestrzeni R?, ktore nie sg zawarte w pewnej plaszezyznie, a wiec sktadajace sie
z wektorow liniowo niezaleznych. Mozna je jeszcze inaczej scharakteryzowaé jako trojki a, 5, c
takie, ze wyznacznik macierzy [d, Z_; ] (w ktorej wspotrzedne danych wektoréw sa zapisane w
kolejnych kolumnach) jest rézny od zera.

Bedziemy mow1c ze trojki dy, bl, C1 1 do, bg, C» majg te sama orientacje, jezeli wyznaczniki
macierzy [d, bl, A i [do, bQ, 5] sa tego samego znaku.

Bedziemy tez mowié, ze trojka wektorow @, 5,5 ma orientacje dodatnia (ujemna), jezeli
macierz [, b, ¢l ma wyznacznik dodatni (lub odpowiednio: ujemny).

8.4.2 Tréjki tak samo zorientowane

Spréobujemy teraz zrozumieé te pojecia. Zauwazmy najpierw, ze trojka wektorow z bazy stan-
dardowej €7, €5, €3 ma orientacje dodatnig.

Przyjmijmy teraz, ze mamy dwie trojki dy, bl, 01 i ag, bz, 02 ortonormalne, a wiec spetniajace
dodatkowe warunki: alb = q;C; = biC ;¢; = 0 oraz a = b2 =c; =1dlai=1,2 (czyli ztozone z
wektorow dlugoscei 1 1 parami prostopadtych).

Niech f bedzie funkcja liniowa zdefiniowana wzorami f(a;) = da, f (l;l) = by oraz fla) =

—

Co.

Lemat 8.1 Funkcja f jest dobrze zdefiniowang funkcjg liniowq i macierz tej funkcji ma wy-
znacznik rowny albo 1, albo —1.

Dowéd. Ortonormalny uktad wektoréw jest liniowo niezalezny. Wektory dj, 51,51 stanowig
wiec baze. Implikuje to, ze definicja funkcji f jest poprawna i w rzeczywistosci zostata zdefi-
niowna bijekcja przestrzeni R3. Niech A bedzie macierzg funkcji f w bazie standardowe;j.

Wyznacznik macierzy [d, g,ﬂ (ktérej kolumny sa wymienione wspéhrzednymi podanych
wektorow w wybranej bazie) nie zalezy od wyboru bazy, w ktorej przedstawiamy poszczegdlne
wektory. Takze wyznacznik macierzy funkcji f nie zalezy od wyboru bazy. Stad wynika, ze
wyznacznik macierzy A jest taki sam jak wyznacznik macierzy f w bazie dy, 51, C1, a wiec jest
taki sam jak wyznacznik macierzy B = [d, by, ).

Wyznacznik macierzy B tatwo mozna obliczyé. Wystarczy zauwazy¢, ze iloczyn BT B jest
macierzg jednostkowa. Stad | B|?> = 1. O

Whniosek 8.2 Ortonormalne tréjki ay, l;l, C1 1 do, 52, Cy majq te samq orientacje wtedy i tylko
wtedy, gdy funkcja f jest obrotem.

Dowéd. Wyznaczniki macierzy o ortonormalnych kolumnach sa réwne £1, jezeli dla dwoch
takich macierzy wyznaczniki sg tego samego samego znaku, to sa rowne. Jezeli A jest macierza
funkcji f, to takze . .

Aldy, by, &) = [da, b, Ca).
Stad, po przejsciu do wyznacznikéw otrzymujemy, tatwo wywnioskowadé teze. O

Tak wiec dla ortonormalnych trojek wektoréw zgodnos¢ orientacji oznacza, ze jedna z tych
tréjek mozna tak obréci¢, aby otrzymac¢ druga. Mamy takze oczywisty
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Lemat 8.3 Jezeli o, 3,y > 0, to trojki ad, ﬁl;, ~¢ oraz d, b, majq te samq orientacje. O

Tak wiec skrocenie badz wydtuzenie wektorow nie zmienia orientacji, Co wigcej, orientacji
nie zmienia ortogonalizacja trojki.

Lemat 8.4 Trojki a, 5,5 oraz

— -

L~ ab_ , dc_ dc-
a,b——d,c— —d— =
aa dd

—
—

dlad=1b— Cj—JT, majq te samq orientacje.
aa

Dowdéd. Ta druga trojka powstaje w wyniku zastosowania do pierwszej metody ortoganaliza-
¢ji Grama-Schmita. Latwo sprawdzi¢ bezposrednio, ze ma ortogonalne elementy. Teze lematu
dowodzimy bez trudu korzystajac ze znanego faktu, ze dodajac do wiersza macierzy wielo-
krotnos¢ innego nie zmieniamy wyznacznika. O

Teraz mozemy intuicyjnie wyjasni¢ pojecie tej samej orientacji. Dwie trojki maja te sama
orientacje, jezeli po ,wyprostowaniu” (czyli ortogonalizacji) i wyréwnaniu dtugosci, jedna z
nich mozna tak obréci¢, aby otrzymac¢ druga.

8.4.3 Potrzebne wlasnosci kwaternionéow

Jak wiemy, kwaterniony urojone z I'm(H) mozna uwazaé za elementy przestrzeni R3. Ba-
za standardowa w przestrzeni Im(H) jest uklad zlozony z wektoréw ¢, j, k. Mozna wiec do
kwaternionow urojonych stosowaé¢ wprowadzone pojecia. W dalszych rozwazaniach beda nam
potrzebne dwa fakty dotyczace kwaternionéow.

Lemat 8.5 Jezeli kwaterniony u,v € Im(H) utoZzsamimy z ciggiem wspdlrzednych wzgledem
bazy i, j, k, to wyznacznik macierzy [u,v,u X v| jest réwny 0 wtedy i tylko wtedy, gdy u jest
wielokrotnoscig v lub odwrotnie (gdy u i v sqg wspdlliniowe). Co wiecej, jezeli u i v nie sq
wspotliniowe, to trojki u X v, u,v oraz u,v,u X v majq orientacje dodatniq.

Dowéd. Przyjmijmy, ze u = ai + bj + ck oraz v = ri 4+ sj + tk. Jezeli teraz przyjmiemy, ze
u X v =xi+yj+ zk, to zgodnie z definicja iloczynu wektorowego (str. 19) otrzymujemy, ze

Ty z 2
=|la b c|=

r s t

a b

T
I -

| [u X v,u,v

c
s 1
Stad juz tatwo otrzymaé teze lematu. O

Lemat 8.6 Przypusémy, ze q jest kwaternionem roznym od £1, o module 1, o czesci rzeczywi-
stejr =cosp >0 (¢ € (0,7/2)) i czesci urojonej u. Niech a bedzie niezerowym kwaternionem
urojonym, ktory nie jest wspotliniowy z u. Wtedy trajka u, a, O4(a) ma orientacje dodatnig.

Dowd6d. Mamy wiec kwaternion ¢ opisujacy obrot wokét osi u o kat 2¢ i interesuje nas trojka
ztozona z osi obrotu, obracanego wektora a (nie lezacego na osi obrotu) i wektora O,(a)
otrzymanego z a w wyniku wykonania obrotu opisanego kwaternionem g¢.
Aby dowies¢ lemat, wyliczymy wyznacznik |u, a, O4(a)| macierzy [u, a, O,4(a)] (z kolumnami
wypelnionymi wspéhrzednymi podanych kwaternionéw). Zgodnie ze wzorem (4) mamy
sin 2¢p sin 2¢p

el =T

Teraz wystarczy skorzystac¢ z poprzedniego lematu i oczywistych wtasnosci funkcji trygono-
metrycznych. O

| u,a,04(a) | = | u,a,cos2p a+ | u,a,u x a|.
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8.4.4 Kwaterniony a przestrzen fizyczna

Przypu$émy, ze w przestrzeni (fizycznej) wybraliémy poczatek uktadu wspétrzednych i trzy
osie. Zamierzamy teraz wybra¢ trzy wektory jednostkowe wyznaczajace kierunki osi. Mozemy
to zrobi¢ na dwa sposoby:

Na pierwszym rysunku wektory a, l;, ¢’ sg utozone tak, jak kciuk, palec wskazujacy i odpowiednio
palec srodkowy prawej reki (wektor b jest prostopadty do pozostatych i wskazuje kierunek, w
ktorym oddalamy sie od osoby obserwujacej). Na drugim rysunku, uktad wektoréw jest taki,
jak palcow lewej reki.

O wektorach @, 5, ¢ z pierwszego (lewego) rysunku méwimy, ze maja orientacje prawostron-
na. O wektorach z drugiego rysunku, ze maja orientacje lewostronng.

Wektory z bazy standardowej zawsze maja orientacje dodatnia. Na rysunku lub w rzeczy-
wistosci mozemy im nadac¢ albo orientacje lewostronng, albo prawostronna.

Majac na dwa sposoby zdefiniowane pojecie orientacji, takze na dwa sposoby mozemy
definiowa¢ pojecie tej samej orientacji. Oba zdefiniowane pojecia tej samej orientacji powinny
sie pokrywac. Po pierwsze dlatego, ze opisany w rozdziale 8.4.2 sposéb testowania tej samej
orientacji (,wyprostowanie”, wyréwnanie i stosowne obrdcenie trojki) powinien zachowywaé
takze orientacje zdefiniowang za pomoca uktadéw palcow. Po drugie dlatego, ze trudno sobie
wyobrazié¢ trojke, ktora jest jednoczesnie prawo- i lewostronna. Oznacza to, ze jezeli wektory
bazowe maja orientacje prawostronna, to tréjki wektorow o orientacji dodatniej pokrywaja sie
z trojkami prawostronnymi. Jezeli wektory bazowe maja orientacje lewostronna, to sytuacja
jest analogiczna: tréjki o orientacji dodatniej to trojki lewostronne.

Przyjmijmy, ze tréjka kwaternionéw i, j, k (czyli wektoréw w trojwymiarowej przestrzeni
Im(’H)) ma orientacje prawostronna, a wiec taka, jak na ponizszym rysunku.

¢ Oy(a)

Wtedy wszystkie trojki o orientacji dodatniej tez maja orientacje prawostronna. Zgod-
nie z lematem 8.6, zachowujac oznaczenia i zalozenia sformulowane w tym lemacie, tréjka
kwaternionow u, a, O4(a) ztozona z osi obrotu opisanego kwaternionem ¢, wybranego wektora
(kwaternionu) a i wektora obréconego O,(a) ma orientacje dodatnia. Powinna wiec zostaé
narysowana jako tréjka o orientacji prawostronnej. A wiec tak, jak na rysunku. Nietrudno za-
uwazy¢, ze kwaternion g = cos ¢ + u, spelniajacy zatozenia lematu 8.6, definiuje obrét wokot
osi u, o kat 2¢p, w kierunku zgodnym z ruchem wskazowek zegara.
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