
Kwaterniony i obroty

Antoni Kościelski

1 Iloczyn skalarny i długość wektora

Iloczynem skalarnym wektorów ~x = (x1, . . . , xn) i ~y = (y1, . . . , yn) nazywamy liczbę

~x~y =
n
∑

i=1

xiyi,

zaś liczbę
| ~x | =

√
~x~x =

√
~x2

nazywamy długością wektora ~x.

Lemat 1.1 Dla dowolnych wektorów ~x, ~y ∈ Rn zachodzi nierówność

| ~x~y | ¬ | ~x || ~y |,

czyli wartość bezwzględna iloczynu skalarnego wektorów ~x i ~y nie przekracza iloczynu długości
tych wektorów.

Dowód. Nierówność ta jest oczywista, gdy ~x = ~0. Załóżmy więc, że ~x 6= ~0 i rozważmy równanie
kwadratowe

n
∑

i=1

(xi · t − yi)
2 = 0 (1)

z niewiadomą t. Nietrudno zauważyć, że równanie to jest identyczne z równaniem

(
n
∑

i=1

x2

i ) · t2 − 2(
n
∑

i=1

xiyi) · t +
n
∑

i=1

y2

i = | ~x |2 · t2 − 2~x~y · t + | ~y |2 = 0

oraz jest równoważne układowi równań liniowych

x1 · t = y1, . . . , xn · t = yn.

Ten układ może mieć najwyżej jedno rozwiązanie. Wobec tego, wyróżnik równania (1)

∆ = 4(~x~y)2 − 4| ~x |2| ~x |2

jest niedodatni. Stąd otrzymujemy dowodzoną nierówność. 2

Wniosek 1.2 Dla dowolnych wektorów ~x, ~y ∈ Rn zachodzi nierówność

| ~x + ~y | ¬ | ~x | + | ~y |. 2

1
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2 Elementy geometrii

Przypuśćmy, że mamy daną płaszczyznę lub przestrzeń trójwymiarową, lub też ogólniejsze
pojęcie przestrzeni geometrycznej, o nieustalonym wymiarze. W takiej przestrzeni możemy
wprowadzić prostokątny układ współrzędnych. Wtedy każdy punkt da się opisać za pomocą
skończonego układu współrzędnych. Przyjmujemy, że współrzędne punktu są liczbami rzeczy-
wistymi.

Jeżeli różne punkty mają różne układy współrzędnych i potrafimy konstruować punkty o
zadanych współrzędnych, to taką przestrzeń geometryczną można utożsamić ze zbiorem Rn.

W przestrzeni Rn odległość punktów ~x = (x1, . . . , xn) i ~y = (y1, . . . , yn) wyrażamy wzorem

| ~x − ~y | =

√

√

√

√

n
∑

i=1

(xi − yi)2.

Lemat 2.1 Odległość ma następujące własności:

1. | ~a −~b | ­ 0,

2. | ~a −~b | = 0 wtedy i tylko wtedy, gdy ~a = ~b,

3. | ~a −~b | = |~b − ~a |

4. | ~a −~b | ¬ | ~a − ~x | + | ~x −~b |

dla dowolnych wektorów ~a,~b, ~x. 2

Pojęcie odległości pozwala zdefiniować pojęcie prostej. Mówimy, że punkt ~x leży między
punktami ~a i ~b, jeżeli

|~b − ~a | = | ~x − ~a | + |~b − ~x |.
Trzy punkty ~a,~b,~c są współliniowe, jeżeli jeden z tych punktów leży między pozostałymi.
Prosta przechodząca przez (różne) punkty ~a i ~b to zbiór

{~x ∈ Rn : punkty ~a,~b, ~x są współliniowe}.

Odcinek, którego końcami są punkty ~a i ~b, to zbiór

{~x ∈ Rn : ~x leży między ~a,~b}.

Lemat 2.2 Przypuśćmy, że mamy dane dwa punkty ~a i ~b oraz liczbę s ∈ (0, 1). Istnieje

dokładnie jeden punkt ~c leżący między ~a i ~b taki, że | ~a − ~c | = s| ~a − ~b |. Co więcej, tym

punktem jest ~a + s(~b − ~a).

Dowód. Niech c będzie różne od d. Oczywiście, nierówności 0 < (c − d)2 oraz 2cd < c2 + d2 są
równoważne. Stąd mamy 2cd < c2 + d2. Proste przekształcenia pozwalają stąd wyprowadzić
nierówność

(

c + d

2

)2

<
c2 + d2

2
.

Załóżmy, że mamy dwa różne punkty ~c = (c1, . . . , cn) i ~d = (d1, . . . , dn) o własnościach
podanych w tezie lematu. Wtedy

| ~a − ~c + ~d

2
|2 =

n
∑

i=1

(

(ai − ci) + (ai − di)

2

)2

<
n
∑

i=1

(ai − ci)
2 + (ai − di)

2

2
=
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=
| ~a − ~c |2 + | ~a − ~d |2

2
= s2| ~a −~b |2.

Tak więc

| ~a − ~c + ~d

2
| < s| ~a −~b |.

Analogicznie dowodzimy, że

| ~c + ~d

2
−~b | < (1 − s)| ~a −~b |.

Sumując otrzymane nierówności stronami otrzymujemy, że

| ~a −~b | ¬ | ~a − ~c + ~d

2
| + | ~c + ~d

2
−~b | < (s + (1 − s))| ~a −~b | = | ~a −~b |,

a to nie jest możliwe.
Wykazaliśmy więc jednoznaczność ~c. Sprawdzenie, że ~c wyraża się przytoczonym wzorem

jest łatwe. 2

Wniosek 2.3 Odcinek łączący punkty ~a i ~b to zbiór

{~a + s(~b − ~a) ∈ Rn : 0 ¬ s ¬ 1} = {t~a + s~b ∈ Rn : t, s ­ 0 ∧ t + s = 1}. 2

Wniosek 2.4 Prosta przechodząca przez punkty ~a i ~b to zbiór

{~a + s(~b − ~a) ∈ Rn : s ∈ R} = {t~a + s~b ∈ Rn : t, s ∈ R ∧ t + s = 1}. 2

Przypuśćmy, że mamy trzy punkty ~a, ~b i ~c takie, że ~b,~c 6= ~a. Niech p~a,~b będzie prostą

przechodzącą przez punkty ~a i ~b. Analogicznie definiujemy prostą p~a,~c. Proste p~a,~b i p~a,~c są
nachylone do siebie pod kątem α, jeżeli 0 ¬ α ¬ π oraz

cos(α) =
(~b − ~a)(~c − ~a)

|~b − ~a || ~c − ~a |
.

Z lematu 1.1 i z własności funkcji cosinus (w tym z ciągłości) wynika, że liczba α jest dobrze
określona. Uzasadnienie tej definicji (miary) kąta w R2 i R3 jest podawane zwykle na lekcjach
matematyki.

Tę samą liczbę nazywamy kątem (miarą kąta) między odcinkami o końcach ~a i ~b oraz o

końcach ~a i ~c, a także kątem między wektorami ~b −~a oraz ~c −~a. Zwróćmy jeszcze uwagę, że w
geometrii kąt jest często rozumiany inaczej, jako część płaszczyzny między dwoma półprostymi.
Oczywiście, dwie półproste o wspólnym początku rozbijają płaszcyznę na dwie części (czyli
kąty). Zgodnie z przyjętą definicją, kąt jest miarą „mniejszej” z tych dwóch części.

3 Izometrie

Jednym z najbardziej znanych pojęć geometrycznych jest przystawanie. Figury są przystające,
jeżeli jedną z nich można przekształcić na drugą używając izometrii.

Przyjmujemy, że funkcja f : Rn → Rn jest izometrią, jeżeli dla wszystkich ~x, ~y ∈ Rn

zachodzi równość
| f(~x) − f(~y) | = | ~x − ~y |.

Najprostszym przykladem izometrii jest przesunięcie (o pewien wektor). Przesunięcie o
wektor ~a jest to funkcja p(~x) = ~x + ~a.
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Lemat 3.1 Każde przesunięcie jest izometrią. Złożenie izometrii jest izometrią. 2

Lemat 3.2 Jeżeli f jest izometrią, to funkcja g(~x) = f(~x)−f(~0) też jest izometrią. Ponadto,
g(~0) = ~0. 2

Z lematu 3.2 wynika, że aby poznać wszystkie izometrie, wystarczy poznać izometrie prze-
kształcające ~0 na ~0. Pozostałe otrzymujemy stosując składanie z przesunięciami. Jest to kon-
sekwencja oczywistego wzoru f(~x) = (f(~x) − f(~0)) + f(~0).

Lemat 3.3 Jeżeli f : Rn → Rn jest izometrią, to dla dowolnych ~x, ~y ∈ Rn oraz dla dowolnych
nieujemnych a, b ∈ R takich, że a + b = 1 mamy

f(a~x + b~y) = af(~x) + bf(~y).

Dowód. Wynika to z lematu 2.2. Punkt ~z = a~x + b~y leży między punktami ~x i ~y. Mamy
bowiem

| ~z − ~x | = | a~x + b~y − a~x − b~x | = b| ~y − ~x |
oraz podobnie | ~y − ~z | = a| ~y − ~x | . Stąd

| ~z − ~x | + | ~y − ~z | = b| ~y − ~x | + a| ~y − ~x | = | ~y − ~x |.
Ponieważ f jest izometrią, więc f(~z) leży między f(~x) i f(~y) oraz

| f(~z) − f(~x) | = b| f(~y) − f(~x) |.
Ze wspomnianego lematu otrzymujemy, że

f(a~x + b~y) = f(~z) = f(~x) + b(f(~y) − f(~x)) = af(~x) + bf(~y). 2

Lemat 3.4 Jeżeli izometria f spełnia warunek f(~0) = ~0, to jest funkcją jednorodną.

Dowód. Załóżmy, że a ∈ (0, 1) oraz weźmy ~x. Zauważmy, że

a~x = (1 − a)~0 + a~x.

Stąd i z poprzedniego lematu otrzymujemy, że

f(a~x) = (1 − a)f(~0) + af(~x) = af(~x).

Przyjmijmy teraz, że a > 1. Wtedy

~x = (1 − 1

a
)~0 +

1

a
(a~x).

Ponownie korzystamy z poprzedniego lematu:

f(~x) = (1 − 1

a
)f(~0) +

1

a
f(a~x)

i teraz wystarczy przemnożyć stronami otrzymaną równość przez a.
Jeżeli a < 0, to postępujemy podobnie:

~0 =
1

1 − a
(a~x) +

−a

1 − a
~x.

Z poprzedniego lematu otrzymujemy, że

~0 = f(~0) =
1

1 − a
f(a~x) +

−a

1 − a
f(~x).

Mnożąc tę równość przez 1−a i przenosząc na drugą stronę jeden ze składników otrzymujemy
żądany wzór. 2
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Lemat 3.5 Jeżeli f jest izometrią taką, że f(~0) = ~0, to f jest funkcją addytywną.

Dowód. Z lematów 3.4 i 3.3 otrzymujemy, że

1

2
f(~x + ~y) = f(

~x + ~y

2
) = f(

1

2
~x +

1

2
~y) =

1

2
f(~x) +

1

2
f(~y).

Stąd otrzymujemy addytywność f . 2

Lemat 3.6 Izometria f taka, że f(~0) = ~0 zachowuje iloczyn skalarny, a więc

~x~y = f(~x)f(~y)

dla wszystkich ~x, ~y ∈ Rn.

Dowód. Oczywiście,

(~x − ~y)2 = | ~x − ~y |2 = | f(~x) − f(~y) |2 = (f(~x) − f(~y))2.

Wobec tego,
~x2 = (~x − ~0)2 = (f(~x) − f(~0))2 = (f(~x))2

oraz
~x2 − 2~x~y + ~y2 = f(~x)2 − 2f(~x)f(~y) + f(~y)2.

Stąd otrzymujemy tezę. 2

4 Wyznacznik macierzy izometrii

Pokażemy teraz, że wyznacznik macierzy przekształcenia zależy wyłącznie od przekształcenia,
a nie od bazy użytej w definicji macierzy przekształcenia.

Wyprowadzimy to z następującego twierdzenia.

Twierdzenie 4.1 Przypuśćmy, że V1, V2 i V3 są przestrzeniami liniowymi skończonego wy-
miaru, B1, B2 i B3 wybranymi bazami w tych (odpowiednio) przestrzeniach oraz g : V1 → V2

i f : V2 → V3 są przekształceniami liniowymi. Jeżeli A2 jest macierzą przekształcenia g wy-
znaczoną przez bazy B1 i B2, a A1 jest macierzą przekształcenia f wyznaczoną przez bazy B2

i B3, to A1A2 jest macierzą złożenia fg przekształcenia f i g wyznaczoną przez bazy B1 i B3.
2

Twierdzenie 4.2 Niech f : V → V będzie przekształceniem liniowym, a B1 i B2 dwoma
skończonymi bazami w V . Niech A1 i A2 będą bazami f wyznaczonymi odpowiednio przez bazy
B1 i B2 (dokładniej, wyznaczając Ai w przestrzeniach argumentów i wartości bierzemy tę samą
bazę Bi). Wtedy istnieje macierz C o niezerowym wyznaczniku taka, że

A2 = CA1C−1.

Dowód. Oczywiście, f = id ◦ f ◦ id. Niech C2 będzie macierzą przekształcenia identycznościo-
wego wyznaczoną przez bazy B2 i B1, a C1 – wyznaczoną przez bazy B1 i B2. Oczywiście, są
to macierze odwracalne. Z przytoczonego twierdzenia mamy, że

A2 = C1A1C2.

Z tego samego powodu macierz C1C2 jest macierzą przekształcenia identycznościowego wy-
znaczoną przez bazę B2 (czyli bazy B2 i B2). Z definicji macierzy przekształcenia otrzymujemy,
że C1C2 = I. Tak więc C2 = C−1

1 . Aby otrzymać tezę, wystarczy przyjąć, że C = C1. 2
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Wniosek 4.3 Wyznacznik macierzy przekształcenia nie zależy od wyboru bazy wyznaczającej
macierz.

Dowód. Aby dowieść ten wniosek, wystarczy skorzystać z faktu, że wyznacznik iloczynu
macierzy jest iloczynem ich wyznaczników. 2

Lemat 4.4 Jeżeli f jest izometrią taką, że f(~0) = ~0, to f jest funkcją liniową i wyznacznik
macierzy funkcji f jest równy ±1.

Dowód. Wyznacznik macierzy przekształcenia liniowego nie zależy od bazy użytej w definicji
macierzy przekształcenia. Będziemy więc rozważać bazę standardową.

Niech A będzie macierzą funkcji f wyznaczoną przez bazę standardową. Wtedy kolumnami
A są wektory f(~ei). Z tego powodu wierszami macierzy AT są też wektory tej postaci Wyliczmy
macierz AT A . Jej wyrazami są iloczyny skalarne f(~ei)f(~ej). Taki iloczyn jest równy iloczynowi
~ei~ej. Tak więc macierz AT A jest macierzą jednostkową. Stąd otrzymujemy, że

| A |2 = | AT A | = | I | = 1.

Ostatecznie, | A | = ±1. 2

5 Obroty w R2

Z elementarnej geometrii wynika, że obracając punkt o współrzędnych (x, y) o kąt ϕ dookoła
początku układu współrzędnych otrzymujemy punkt o współrzędnych

Oϕ(x, y) = (x · cos ϕ − y · sin ϕ, x · sin ϕ + y · cos ϕ).

Jest oczywiste, że przekształcenie to jest liniowe. Ponadto zachowuje długość wektora.
Liniowe przekształcenia zachowujące długość zachowują odległość. Jest więc to izometria i
to przekształcająca (0, 0) na (0, 0). Zauważmy też, że macierz tego przekształcenia w bazie
standardowej jest równa

[

cos ϕ − sin ϕ
sin ϕ cos ϕ

]

.

Wyznacznik tej macierzy jest równy 1.
Pokażemy teraz, że izometria f : R2 → R2 taka, że f(0, 0) = (0, 0), której macierz ma

wyznacznik 1, jest obrotem. Niech

A =

[

a b
c d

]

będzie macierzą tego przekształcenia w bazie standardowej. Tak więc f(1, 0) = (a, c). Ponieważ
izometria zachowuje długość wektora, więc a2 + c2 = 1. Dla takich liczb istnieje kąt ϕ taki, że
a = cosϕ i c = sin ϕ. Pozostaje wyliczyć b i d. Oczywiście f(0, 1) = (b, d). Ponieważ izometrie
zachowują iloczyn skalarny, więc

0 = (1, 0)(0, 1) = f(1, 0)f(0, 1) = (a, c)(b, d) = ab + cd.

Ponieważ wyznacznik A jest równy 1, więc

ad − bc = 1.

Z podanych równań łatwo wyznaczyć, że b = −c = − sin ϕ oraz d = a = cos ϕ.
W przestrzeni R2 obroty o środku w początku układu współrzędnych to dokładnie izome-

trie przekształcające (0, 0) na (0, 0), które mają macierz o wyznaczniku 1.



Antoni Kościelski, Kwaterniony i obroty 7

5.1 Obroty w R2 a liczby zespolone

Przestrzeń R2 jest w naturalny sposób izomorficzna z liczbami zespolonymi uważanymi za
przestrzeń liniową nad ciałem liczb rzeczywistych. Korzystając z tego izomorfizmu obroty w
R2 można uważać za funkcje przekształcające liczby zespolone w liczby zespolone. Nietrudno
zauważyć, że obrót Oϕ o kąt ϕ (dookoła zera) daje się wyrazić wzorem

Oϕ(x + iy) = (cos ϕ + isinϕ)(x + iy),

a więc jest iloczynem przez pewną liczbę zespoloną o module 1.
Liczby zespolone mogą być rozważane także jako algebra macierzy. Funkcja f zdefiniowana

wzorem

f(x + iy) =

[

x −y
y x

]

przekształca zbiór liczb zespolonych C na zbiór macierzy o wymiarach 2×2, mających podaną
postać. Ten zbiór jest R-algebrą izomorficzną z C, a f jest izomorfizmem tej algebry i C.
Zauważmy, że zbiór takich macierzy o wyznaczniku 1 to zbiór macierzy obrotów (dla bazy
standardowej). Ponadto zbiór ten przez izomorfizm f odpowiada zbiorowi liczb zespolonych o
module 1.

Będziemy teraz tworzyć podobną sytuację dotyczącą obrotów w R3.

6 Obroty w R3

Przypuśćmy, że f : R3 → R3 jest izometrią taka, że f(0, 0, 0) = (0, 0, 0), której macierz A (w
bazie standardowej) ma wyznacznik 1. Chcemy pokazać, że f jest obrotem.

Jeżeli jest to obrót w R3, to jest to obrót wokół pewnej osi. Najpierw znajdziemy tę oś.
Punkt ~x 6= ~0 z tej osi podczas obrotu nie ulega zmianie. Wobec tego, f(~x) = ~x = λ~x dla λ = 1.
Zaczynamy od szukania λ, dla których jest wektor ~x 6= ~0 spełniający podaną równość.

Zauważmy, że

Lemat 6.1 Przypuśćmy, że A jest macierzą przekształcenia f . Wyznacznik macierzy A − λI
jest równy 0 wtedy i tylko wtedy, gdy istnieje niezerowy wektor ~x taki, że f(~x) = λ~x.

Dowód. Równość | A − λI | = 0 oznacza, że układ równań

(A − λI)~x = ~0

ma wiele rozwiązań, w tym niezerowe rozwiązanie ~x. Nietrudno zauważyć, że niezerowymi
rozwiązaniami tego układu są dokładnie wektory ~x spełniające równość f(~x) = λ~x. 2

Jeżeli wyliczymy wyznacznik | A − λI |, to otrzymamy wyrażenie postaci

(a1,1 − λ)(a2,2 − λ)(a3,3 − λ) + . . . ,

gdzie zamiast . . . pojawia się pewien wielomian zmiennej λ drugiego stopnia. Wyrażenie to jest
wielomianem trzeciego stopnia i nazywa się wielomianem charakterystycznym przekształcenia
f , a jego pierwiastki – wartościami własnymi tego przekształcenia.

Tak więc otrzymaliśmy równanie na λ i jest to równanie trzeciego stopnia. Takie równanie
w liczbach rzeczywistych ma rozwiązanie.

Lemat 6.2 Izometria f : R3 → R3 taka, że f(0, 0, 0) = (0, 0, 0) ma wartości własne i wartości
te są równe ±1.
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Dowód. Niech λ0 będzie wartością własną izometrii f . Wtedy równanie liniowe (A−λ0I)~x = 0
ma przynajmniej dwa rozwiązania. Niech ~x0 będzie niezerowym roziwązaniem tego równania.
Wobec tego,

f(~x0) = A~x0 = λ0~x0.

Ponieważ f jest izometrią, więc zachowuje iloczyn skalarny. Stąd,

λ2

0~x0~x0 = (λ0~x0)(λ0~x0) = f(~x0)f(~x0) = ~x0~x0.

Stąd λ2
0 = 1 i ostatecznie otrzymujemy, że pierwiastkami wielomianów charakterystycznych

rozważanych przekształceń mogą być tylko liczby ±1. 2

Lemat 6.3 Niech ~f1, ~f2, ~f1 ∈ R3 będzie bazą złożoną z wektorów o długości 1 i takich, że
~fi

~fj = 0 dla i 6= j. Przypuśćmy, że

~x = (x, y, z) = a ~f1 + b ~f2 + c ~f3

oraz
~x′ = (x′, y′, z′) = a′ ~f1 + b′ ~f2 + c′ ~f3.

Wtedy
~x~x′ = xx′ + yy′ + zz′ = aa′ + bb′ + cc′.

Dowód. Jest to oczywista konsekwencja dwuliniowości iloczynu skalarnego i przyjętych wła-
sności rozważanej bazy. 2

Lemat 6.4 Liczba 1 jest wartością własną każdej izometrii f : R3 → R3 takiej, że f(0, 0, 0) =
(0, 0, 0), której macierz A (w bazie standardowej) ma wyznacznik 1.

Dowód. Niech f będzie izometrią spełniającą założenia lematu. Wiemy, że jedna z liczb ±1
jest wartością własną f . Jeżeli tą liczbą jest 1, to teza lematu zachodzi w sposób oczywisty.
Możemy więc założyć, że −1 jest wartością własną f .

Niech ~v3 będzie wektorem długości 1 takim, że f(~v3) = −~v3. Weźmy teraz dopełnienie
ortogonalne przestrzeni generowanej przez ~v3 i jeden z wektorów tej przestrzeni o długości 1.
Oznaczmy go symbolem ~v2. Niech ~v1 będzie wektorem długości 1 z dopełnienia ortogonalnego
przestrzeni generowanej przez ~v2 i ~v3. Mamy więc trzy wektory takie, że iloczyn skalarny
dowolnych dwóch z nich (różnych) jest równy 0, a kwadrat skalarny każdego jest równy 1.
Niech teraz A oznacza macierz przekształcenia f względem bazy ~v1, ~v2, ~v3, a więc

A = [f(~v1), f(~v2), −~v3] =







a b 0
c d 0
0 0 −1







(zamiast f(~vi) bierzemy kolumnę współrzędnych tego wektora w ustalonej bazie). Zauważmy,
że

| A − λI | =

∣

∣

∣

∣

∣

∣

∣

a − λ b 0
c d − λ 0
0 0 −1 − λ

∣

∣

∣

∣

∣

∣

∣

= − ((a − λ)(d − λ) − bc) (1 + λ) =

−
(

λ2 − (a + d)λ + ad − bc
)

(1 + λ) = −
(

λ2 − (a + d)λ − 1
)

(1 + λ).
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Tak jest, ponieważ 1 = | A | = −(ad − bc). Wyliczymy do końca wielomian charakterystyczny
f . Ponieważ f(~v1)f(~v2) = 0, więc ab + cd = 0 na mocy poprzedniego lematu. Zachodzi także
równość a2 + c2 = 1, gdyż długość wektora f(~v1) jest równa 1. Tak więc

−a = a2d − (ab)c = a2d + c2d = d.

Podstawiając otrzymaną równość do wzoru na wielomian charakterystyczny f otrzymujemy,
że

| A − λI | = −
(

λ2 − 1
)

(1 + λ).

Teraz jest oczywiste, że 1 jest wartością własną przekształcenia f i istnieje niezerowy wektor
~x taki, że f(~x) = ~x. 2

7 Kwaterniony

7.1 Rozważania wstępne

Chcemy skonstruować algebrę kwaternionów, która pozwalałaby na opisywanie obrotów w
przestrzeni R3 podobnie, jak ciało liczb zespolonych opisuje obroty na płaszczyźnie R2. Naj-
lepiej byłoby, gdyby ta algebra była ciałem, ale to okaże się niemożliwe. Chcemy, aby każde-
mu elementowi tej algebry (albo np. elementom o module 1) odpowiadał obrót i to w taki
sposób, aby mnożeniu odpowiadało składanie obrotów. Wtedy oczywiście kwaternionowi 1
(elementowi neutralnemu mnożenia w algebrze kwaternionów) będzie odpowiadać obrót o kąt
0. Zastanówmy się, jakie własności mają kwaterniony odpowiadające obrotom o kąt półpełny.
Jest oczywiste, że jest dużo takich obrotów i takich kwaternionów q też musi być dużo.

Naturalna hipoteza, że q2 = 1 jest nie do przyjęcia. W dowolnych pierścieniach z jednością,
bez dzielników zera równanie x2 = 1 ma najwyżej dwa rozwiązania: 1 i −1. Wynika stąd, że
odpowiedniość między kwaternionami i obrotami nie może być wzajemnie jednoznaczna. W
szczególności, obrót o 0 stopni musi być opisany przez kilka kwaternionów.

Przyjrzyjmy się rysunkom.
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Definiując obrót musimy podać oś i kąt obrotu. Z drugiej strony stwierdzenie, że chcemy
np. obrócić wektor jednostkowy i (albo koniec tego wektora) o 90 stopni (o π/2) wokół osi
y, nie definiuje jeszcze obrotu. Definiując obrót na płaszczyźnie dodalibyśmy, że ma być on
zgodny lub nie zgodny z ruchem wskazówek zegara. W przestrzeni taka informacja też nie
będzie wystarczająca. To, czy obrót jest zgodny z ruchem wskazowek zegara, zależy od miejsca
obserwacji. Aby opisać obrót, zamiast osi rozumianej jako pewna prosta, dobrze jest opisać
oś za pomocą wektora lub prostej o pewnym kierunku. Wtedy podany wyżej obrót f możemy
opisać w następujący sposób: obracamy o 90 stopni wokół osi wyznaczonej przez wektor j, i
jeżeli patrzymy w kierunku wektora j, to obracamy zgodnie z ruchem wskazówek zegara. Dalej
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tak będziemy rozumieć obroty: jako obroty wokół wektora, o podany kąt, zgodnie z ruchem
wskazówek zegara w podanym sensie.

Obrót f został już precyzyjnie zdefiniowany, ale to nie koniec kłopotów. Obrót ten możemy
różnie wyrazić wzorem algebraicznym, zależnie od wyboru wektorów opisujących przestrzeń.
Niech k będzie wektorem jednostkowym równoległym do osi z, jednym z dwóch możliwych.
Zależnie od wyboru wektora k, albo wzór algebraiczny na obrócony wektor i ma postać f(i) =
k, albo f(i) = −k. Na rysunku wektor k został tak wybrany, aby f(i) = −k.

Każdy obrót można opisać w podany sposób podając dwie różne informacje. Bierze się to
stąd, że obrót wokół wektora ~v o kąt ϕ jest także obrotem wokół wektora −~v o kąt 360 − ϕ.
Ta zależność ma szczególną postać w przypadku obrotów o 180 stopni. Obroty o taki kąt
wokół osi ~v i −~v są identyczne. Kwaterniony oddają przytoczony sposób definiowania obrotów.
Kwaterniony odpowiadające obrotom o 180 stopni można utożsamiać z osiami obrotu. Okaże
się jak należy się spodziewać, że kwaterniony różniące się znakiem opisują ten sam obrót, także
dla dowolnych kątów.

Niech q nadal będzie kwaternionem opisującym obrót wokół jakiegoś wektora o 180 stopni.
Przytoczone rozważania sugerują na dwa sposoby, że q2 = −1. Po pierwsze, −1 też opisuje
obrót o 0 stopni, a więc jeżeli q2 nie może być równe 1, to może okazać się równe −1. Kwaternion
q2 może być też interpretowany jako obrót o 360 stopni. Wtedy kwaternion (−q)q = −q2

powinien być interpretowany jako obrót o 0 stopni. Jeżeli −q2 = 1, to oczywiście także q2 = −1.
Wszytko wskazuje więc na to, że w algebrze kwaternionów powinno być dużo pierwiastków
kwadratowych z −1 i nie może zachodzić twierdzenie Bezout.

Analizując, dlaczego w ciałach są najwyżej dwa pierwiastki z dowolnej liczby, można za-
uważyć, że bardzo istotna jest przemienność mnożenia. Rezygnując z przemienności można
stworzyć algebrę kwaternionów zawierającą bardzo dużo pierwiastków z −1.

7.2 Kwaterniony jako algebra początkowa (lub ciekawostka)

Chcemy więc zbudować algebrę,

• która jest skończenie wymiarową R-algebrą (niekoniecznie przemienną),

• w której każdy różny od zera element ma (obustronny) element odwrotny,

• w której są dwa różne pierwiastki z −1 oznaczane i oraz I takie, że I 6= −i (i oczywiście
i2 = I2 = −1).

Przypuśćmy, że taka algebra istnieje i oznaczmy ją symbolem H. Algebrę H będziemy
nazywać algebrą kwaternionów, a jej elementy - kwaternionami. Czasem nazywa się ją (nie-
przemiennym) ciałem kwaternionów. Wtedy należy pamiętać, że w tej algebrze mnożenie nie
jest przemienne, a więc nie są spełnione wszystkie warunki wymienione w definicji ciała.

7.3 Pierwsze własności

Zrozumienia tego rozdziału wymaga bardzo dokładnego przypomnienia sobie definicji R-
algebry.

Przyjmijmy następujące oznaczenia: ·w i ·z to odpowiednio mnożenia wewnętrzne i ze-
wnętrzne w algebrze H, 1H i 1R to jedności w algebrze H i ciele R, a 0H i 0R to zera w tych
algebrach. Najpierw pokażemy, że dopisywanie tych indeksów jest niepotrzebne.

Lemat 7.1 Dla wszystkich x ∈ R achodzi równość x ·z 0H = 0H.
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Dowód. Zauważmy, że

x ·z 0H = x ·z (0H + 0H) = x ·z 0H + x ·z 0H.

Odejmując od tej równości stronami x ·z 0H otrzymujemy, że x ·z 0H = 0H. 2

Lemat 7.2 Algebra H zawiera podalgebrę izomorficzną z ciałem liczb rzeczwistych R.

Dowód. Funkcja J : R → H zdefiniowana wzorem J(x) = x ·z 1H jest monomorfizmem
ciała liczb rzeczywistych R w algebrę H. Łatwo dowieść, że J(x +R y) = J(x) +H J(y) oraz
J(x·Ry) = J(x)·HJ(y). Pokażemy tylko różnowartościowość J . Przypuśćmy, że x·z1H = 0H dla
pewnej liczby rzeczywistej x 6= 0. Pomnóżmy tę równość stronami przez x−1. Z poprzedniego
lematu otrzymujemy, że

0H = (x−1) ·z 0H = (x−1) ·z (x ·z 1H) = (x−1 · x) ·z 1H = 1R ·z 1H = 1H,

(pamiętajmy, że mnożenie zewnętrzne przez 1 jest funkcją identycznościową), a to nie jest
możliwe. Uzyskana sprzeczność dowodzi, że równość x ·z 1H = 0H zachodzi tylko dla x = 0.
Tak więc J jest monomorfizmem. 2

Udowodniony lemat pozwala utożsamiać liczbę rzeczywistą x z elementem postaci x ·z 1H.
Dalej przyjmujemy więc, że

x ·z 1H = x ∈ H
dla wszystkich liczb rzeczywistych x.

Lemat 7.3 Jednością algebry H jest liczba rzeczywista 1, czyli 1R ·z 1H. Zerem w algebrze H
jest liczba rzeczywista 0, czyli 0R ·z 1H.

Dowód. Mnożenie zewnętrzne przez liczbę 1 jest funkcją identycznościową. Tak więc

1H = 1R ·z 1H = 1R.

Druga podana własność dowodzimy podobnie:

1R ·z 1H = (1R + 0R) ·z 1H = 1R ·z 1H + 0R ·z 1H.

Stąd wynika, że
0H = 0R ·z 1H = 0R 2

Lemat 7.4 Mnożenie zewnętrzne jest mnożeniem wewnętrznym, a więc

x ·z h = (x ·z 1H) ·w h = x ·w h

dla wszystkich x ∈ R i h ∈ H.

Dowód. Zauważmy, że

x ·z h = x ·z (1H ·w h) = (x ·z 1H) ·w h = x ·w h. 2

Lemat 7.5 W algebrze H mnożenie przez liczby rzeczywiste jest przemienne, a więc

x ·w h = h ·w x

dla wszystkich x ∈ R i h ∈ H.

Dowód. Zauważmy, że

x ·w h = (x ·z 1H) ·w h = x ·z (1H ·w h) = x ·z (h ·w 1H) = h ·w (x ·z 1H) = h ·w x. 2

Dalej nie będziemy już stosować indeksów tak, jak w tym rozdziale.
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7.4 H jest sumą prostą

Lemat 7.6 Każdy element x algebry H można przedstawić w postaci

x =
x − ixi

2
+

x + ixi

2
.

Element x − ixi jest przemienny z i. Element x + ixi spełnia natomiast równość

i(x + ixi) = −(x + ixi)i.

Dowód. Mamy bowiem

(x − ixi)i = xi − ix(i2) = xi + ix oraz i(x − ixi) = ix − (i2)xi = ix + xi.

Drugą równość sprawdzamy równie łatwo, jak poprzednią. W algebrze z przemiennym mno-
żeniem element x + ixi musiałby być równy 0. 2

Przyjmijmy, że

H+ = {x ∈ H : ix = xi} oraz H− = {x ∈ H : ix = −xi}.

Twierdzenie 7.7 Zbiory H+ i H− są podprzestrzeniami liniowymi H i H jest sumą prostą
tych podprzestrzeni.

Dowód. Wobec poprzedniego lematu wystarczy sprawdzić, że jedynym elementem x ∈ H+ ∩
H− jest wektor zerowy. Zauważmy, że ix = xi = −ix. Mnożąc otrzymaną równość stronami
przez i otrzymujemy, że −x = x, a więc x = 0. 2

Zauważmy też, że

Lemat 7.8 Zbiór H+ jest zamknięty ze względu na mnożenie, a więc jest R-algebrą. 2

7.5 Charakteryzacja H+

Przyjmijmy, że C = {r + si ∈ H : r, s ∈ R}. Łatwo dowodzi się następujący fakt.

Lemat 7.9 Zbiór C jest algebrą izomorficzną z ciałem liczb zespolonych. 2

Będziemy więc utożsamiać elementy C z liczbami zespolonymi.

Twierdzenie 7.10 Algebra H+ jest ciałem liczb zespolonych C.

Dowód. Oczywiście, C ⊆ H+. Wystarczy więc dowieść, że H+ ⊆ C. Weźmy więc h ∈ H+.
Niech R[x] będzie pierścieniem wielomianów o współczynnikach rzeczywistych. Przyjmij-

my, że val(x) = h. Warunek ten pozwala zdefiniować wartość wielomianów w algebrze H+

przy takim właśnie wartościowaniu. Niech val : R[x] → H+ będzie tak zdefiniowaną warto-
ścią wielomianów. Funkcja ta jest homomorfizmem algebry wielomianów R[x] w algebrę H+.
Pierwsza z tych algebr ma wymiar nieskończony, druga - przeciwnie. Istnieje więc niezerowy
wielomian w(x) ∈ R[x] taki, że w(h) = val(w(x)) = 0. O tym wielomianie możemy założyć, że
jest stopnia nie większego niż 2. Wynika ze znanego twierdzenia mówiącego, że każdy wielo-
mian o współczynnikach rzeczywistych jest iloczynem wielomianów stopnia ¬ 2. Jest to tzw.
zasadnicze twierdzenie algebry.
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Pierwiastki wielomianu stopnia 1 o współczynnikach rzeczywistych są liczbami rzeczywi-
stymi. Możemy więc założyć, że w(x) jest stopnia 2. Możemy także przyjąć, że współczynnik
tego wielomianu przy x2 jest równy 1. Niech

w(x) = x2 + ax + b.

Mamy więc
w(h) = h2 + ah + b = 0.

Z drugiej strony wiemy, że wielomian w ma dwa pierwiastki zespolone z, z ′ ∈ C. Wiedząc to,
łatwo wyliczyć współczynniki wielomianu w:

a = z + z′ oraz b = zz′.

Stąd otrzymujemy, że

0 = h2 + (z + z′)h + zz′ = (h − z)(h − z′).

Ponieważ w algebrze H każdy niezerowy element ma element odwrotny, więc nie ma dzielników
zera, a także h = z lub też h = z′. W obu przypadkach, h ∈ C. 2

7.6 Własności H−

Przypomijmy, że I oznacza trzeci pierwiastek z −1 w algebrze kwaternionów.

Lemat 7.11 Pewien pierwiastek z −1 należy do zbioru H−.

Dowód. Ten lemat ma rachunkowy dowód. Wprowadźmy następujące oznaczenia:

a =
I − iIi

2
oraz b =

I + iIi

2
.

Zachodzą więc następujące równości

I = a + b, ai = ia oraz bi = −ib.

Element b spełniający równość bi = −ib nie może być liczbą zespoloną, tym bardziej nie
może być liczbą rzeczywistą, ani zerem.

Zauważmy, że

(I − iIi)(I + iIi) = I2 + IiIi − iIiI − iIiiIi = IiIi − iIiI

oraz
(I + iIi)(I − iIi) = I2 − IiIi + iIiI − iIiiIi = −(IiIi − iIiI).

Stąd otrzymujemy, że
ab = −ba.

Ta ostatnia równość ma dwie konsekwencje. Po pierwsze,

−1 = I2 = (a + b)2 = a2 + ab + ba + b2 = a2 + b2.

Ponadto, ponieważ a ∈ H+ = C, więc a = r + si oraz

rb + sib = (r + si)b = ab = −ba = −b(r + si) = −rb − sbi = −rb + sib.
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Oznacza to, że rb = 0. Tak więc r = 0 oraz a = si dla pewnej liczby rzeczywistej s.
Po połączeniu tych dwóch konsekwencji otrzymujemy, że

b2 = −1 − a2 = −1 + s2 ∈ R.

Łatwo też wykazać, że kwadrat kwaternionu jest nieujemną liczbą rzeczywistą tylko wtedy,
gdy ten kwaternion jest liczbą rzeczywistą. Nieujemne liczby rzeczywiste są kwadratami liczb
rzeczywistych. Jeżeli b2 = r2 dla liczby rzeczywistej r, to

(b + r)(b − r) = b2 + rb − br − r2 = b2 + rb − rb − r2 = b2 − r2 = 0,

gdyż iloczyn przez liczbę rzeczywistą niezależy od kolejności czynników. Stąd wynika, że b =
±r ∈ R, a to nie jest możliwe. Ostatecznie,

b2 = −1 + s2 < 0.

Przyjmijmy, że

j =
b√

1 − s2
.

Oczywiście, j ∈ H− oraz j2 = −1. 2

Dalej j będzie oznaczać jeden z pierwiastków z −1 należący do H−.

Lemat 7.12 Funkcja f(x) = xj jest liniowa i różnowartościowa, przekształca przestrzeń li-
niową H na H, a także przekształca H+ w H− oraz H− w H+.

Dowód. Podane własności funkcji f wynikają natychmiast z definicji R-algebry. Fakt, że f jest
typu „na” jest wynika ze znanych własności funkcji liniowych przekształcających przestrzenie
skończonego wymiaru. Pozostałe własności f wynikają z banalnych rachunków. 2

Wniosek 7.13 Przestrzenie H+ i H− (nad ciałem liczb rzeczywistych) są tego samego wy-
miaru i mają wymiar 2. Przestrzeń H ma wymiar 4.

Dowód. Równość wymiarów podanych przestrzeni wynika z poprzedniego lematu. Oczywiście,
wymiar przestrzeni H+ = C jest równy 2. Przestrzeń liniowa H jest sumą prostą przestrzeni
wymiaru 2, ma więc wymiar 4. 2

7.7 Grupa kwaternionów

Rozważmy trzy następujące elementy algebry H: i, j oraz ij. Zauważmy np., że

jij = −jji = i.

Tak więc prawdziwe są następujące równości:

i · j = ij,

j · (ij) = i,

(ij) · i = j.

Wśród kwaternionów są więc trzy elementy a, b i c takie, że

ab = c, bc = a oraz ca = b.

Algebrę początkową w klasie grup generowanych przez takie trzy elementy nazywamy grupą
kwaternionów. W tym rozdziale opiszemy grupy generowane przez takie trzy elementy.
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Lemat 7.14 Niech G oznacza grupę generowaną przez elementy a, b i c spełniające podane
równości. Wtedy kwadraty generatorów są równe, a czwarte potęgi generatorów grupy są równe
jedności.

Dowód. Zauważmy, że

a2 = a(bc) = (ab)c = c2 oraz b2 = (ca)b = c(ab) = c2.

Ponadto,
a5 = c4a = ca2ca = (ca)a(ca) = (ca)(ab) = bc = a.

Stąd a4 jest elementem neutralnym. 2

Lemat 7.15 W grupach rozważanych w tym rozdziale rząd elementu c jest ¬ 2 wtedy i tylko
wtedy, gdy ab = ba.

Dowód. Przypuśćmy, że c2 jest jednością grupy. Wtedy abab = e. Pomnóżmy tę równość z
lewej strony przez a i z prawej przez b. Wtedy z poprzedniego lematu otrzymujemy, że

ab = a2bab2 = b2bab2 = bb2ab2 = ba2ab2 = baa2b2 = bab4 = ba,

czyli a i b komutują.
Zauważmy też, że jeżeli ab = ba, to c2 = abab = a2b2 = a4 = e. 2

Jeżeli dwa z generatorów są równe jedności, to trzeci też jest równy jedności i cała grupa
jest jednoelementowa.

Jeżeli dokładnie jeden z generatorów jest równy jedności, to pozostałe są sobie równe i
grupa składa się z jedności i drugiego generatora.

Jeżeli żaden z generatorów nie jest jednością, to są one parami różne. Jeżeli wśród gene-
ratorów jest element rzędu 2, to generatory są przemienne i cała grupa jest przemienna. Taka
grupa ma cztery elementy i następującą (wymagającą uzupełnienia) tabelkę :

e a b c

e e a b c
a a e c
b b e a
c c b e

Jeżeli generatory mają rząd 4, to nie mogą komutować i grupa ma rząd 8. Jeżeli przez
ε oznaczamy kwadrat np. generatora a, to grupa ma następującą, wymagającą uzupełnienia
tabelkę.

e a b c ε εa εb εc

e e a b c ε εa εb εc
a a ε c εa e εc
b b ε a εb e εa
c c b ε εc εb e
ε ε εa εb εc e a b c
εa εa e εc a ε c
εb εb e εa b ε a
εc εc εb e c b ε
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7.8 Opis algebry kwaternionów H
W przestrzeni liniowej H+ = C łatwo podać bazę: składa się ona z liczb zespolonych 1 oraz
i. Funkcja f(x) = xj jest izomorfizmem H+ i H−. Wobec tego jedna z baz przestrzeni H−
składa się z elementów f(1) i f(i), czyli j oraz ij. Oznaczmy iloczyn ij przez k. Wtedy bazą
H− jest np. para j i k. Natomiast jedna z baz przestrzeni H składa się z elementów 1, i, j, k.
Każdy element H daje się więc przedstawić w postaci

α + βi + γj + δk

dla pewnych α, β, γ, δ ∈ R. Jest to pierwszy ze sposobów reprezentowania kwaternionów.
Mnożenie tak reprezentowanych kwaternionów sprowadza się do liczenia iloczynów takich jak
ij. Iloczyny te obliczamy zgodnie z następującymi regułami:

ij = k = −ji, jk = i = −kj, ki = j = −ik

oraz
i2 = j2 = k2 = −1.

Zbiór {±1, ±i, ±j, ±k} ⊆ H tworzy grupę. Jest to tzw. grupa kwaternionów. Grupa ta ma
następującą tabelkę:

· 1 i j k −1 −i −j −k

1 1 i j k −1 −i −j −k
i i −1 k −j −i 1 −k j
j j −k −1 i −j k 1 −i
k k j −i −1 −k −j i 1

−1 −1 −i −j −k 1 i j k
−i −i 1 −k j i −1 k −j
−j −j k 1 −i j −k −1 i
−k −k −j i 1 k j −i −1

Kwaterniony możemy przedstawiać jeszcze w inny sposób. Przypuśćmy, że mamy kwater-
nion

a + bi + cj + dk ∈ H,

gdzie a, b, c, d ∈ R. Przyjmijmy, że w = a + bi oraz z = c + di. Elementy w i z możemy uważać
zarówno za kwaterniony, jaki i za liczby zespolone. Zauważmy, że

a + bi + cj + dk = w + zj.

Jest to inny, skrócony sposób przedstawiania kwaternionów. Tak przedtawione kwaterniony
mnożymy w zwykły sposób. Należy jednak pamiętać, że dla w ∈ C zachodzą równości

jw = j(a + bi) = ja + jbi = aj − bij = (a − bi)j = wj, (2)

gdzie w oznacza liczbę zespoloną sprzężoną z w.

7.9 Istnienie ciała kwaternionów

Na początku założyliśmy, że mamy algebrę spełniającą pewną listę postulatów i staraliśmy
się wyobrazić sobie, jak taka algebra wygląda. Nie mamy jednak żadnych gwarancji, że wśród
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przyjętych aksjomatów nie ma dwóch sprzecznych. Nie udało się nam wyprowadzić z tych
postulatów sprzeczności, ale to nie dowodzi, że nigdy nie uda się uzyskać sprzeczności. Jest
więc potrzebny dowód istnienia algebry kwaternionów.

Przypuśćmy, że mamy kwaternion

a + bi + cj + dk ∈ H

gdzie a, b, c, d ∈ R. Niech

ϕ(a + bi + cj + dk) =

[

a + bi −c − di
c − di a − bi

]

.

Jeżeli przyjmijmy, że w = a + bi oraz z = c + di, to definicję ϕ można wyrazić następująco:

ϕ(a + bi + cj + dk) = ϕ(w + zj) =

[

w −z
z w

]

.

Nietrudno zauważyć, że ϕ jest funkcją liniową, i to różnowartościową. Trudniej zauważyć,
że ϕ zachowuje mnożenie. Z wzoru (2) wynika, że

(w + zj)(v + xj) = wv + zjv + wxj + zjxj = (wv − zx) + (zv + wx)j. (3)

Zauważmy także, że
[

w −z
z w

] [

v −x
x v

]

=

[

wv − zx −(zv + wx)
zv + wx wv − zx

]

.

Wzór ten oznacza, że ϕ zachowuje mnożenie. Tak więc ϕ jest izomorfizmem algebry H i pewnej
algebry macierzy

H′ = {
[

w −z
z w

]

: w, z ∈ C}

Twierdzenie 7.16 R-algebra H′ ma własności wymagane od algebry kwaternionów.

Dowód. Zbiór H′ jest oczywiście podzbiorem algebry macierzy o wymiarach 2 × 2 i wyrazach
zespolonych. Jest to podalgebra. Zamkniętość ze względu na dodawanie i zewnętrzne mnożenie
jest oczywiste, a ze względu na mnożenie – wynika z wyżej przytoczonego wzoru.

Łatwo też wymienić kilka pierwiastków z −1 (z elementu przeciwnego do jedności algebry,
czyli macierzy jednostkowej. Np. są to

ϕ(i) =

[

i 0
0 −i

]

, ϕ(j) =

[

0 −1
1 0

]

oraz ϕ(k) =

[

0 −i
−i 0

]

.

Aby wykazać istnienie elementów odwrotnych zauważmy, że wyznacznik
∣

∣

∣

∣

∣

w −z
z w

∣

∣

∣

∣

∣

= | w |2 + | z |2

i jest dodatnią liczbą rzeczywistą dla wszystkich niezerowych elementów H′. Ponadto macierz
odwrotna wyrazą się wzorem

[

w −z
z w

]−1

=
1

| w |2 + | z |2
[

w z
−z w

]

. 2

Przedstawione dotychczas rozumowania świadczą także o tym, że każda algebra spełniająca
podane na początku postulaty (algebra kwaternionów) jest izomorficzna z algebrą H′.
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7.10 Podstawowe pojęcia dotyczące kwaternionów

Podobnie jak dla liczb zespolonych, definiujemy kwaternion sprzężony z danym i moduł kwa-
ternionu.

Kwaternionem sprzężonym do kwaternionu h = a + bi + cj + dk nazywamy kwaternion

h = a − bi − cj − dk.

Modułem kwaternionu h = a + bi + cj + dk nazywamy zaś liczbę rzeczywistą

| h | =
√

a2 + b2 + c2 + d2.

Pojęcia te mają oczekiwane własności. Tak więc

h1 + h2 = h1 + h2, ch = ch (c ∈ R) oraz h1h2 = h1h2.

Ponadto
| h1h2 | = | h1 || h2 | oraz | w + zj |2 = | w |2 + | z |2 (w, z ∈ C)

Zachodzi też wzór
hh = | h |2.

Wzór ten pozwala łatwo obliczać odwrotność kwaternionu. Wynika bowiem z niego, że

h−1 =
1

| h |2 h.

Definiujemy też część rzeczywistą Re(h) i urojoną Im(h) kwaternionu h: jeżeli h = a +
bi + cj + dk, to

Re(h) = a oraz Im(h) = bi + cj + dk.

Zachodzą oczywiste wzory

Re(h) =
h + h

2
oraz Im(h) =

h − h

2
.

Cała algebra kwaternionów ma też część rzeczywistą Re(H) identyczną (lub izomorficzną) z
ciałem liczb rzeczywistych R i część urojoną

Im(H) = {Im(h) : h ∈ H} = {bi + cj + dk ∈ H : a, b, c ∈ R},

która – uważana za przestrzeń liniową – jest izomorficzna z przestrzenią R3.
Algebrę kwaternionów w naturalny spoób można utożsamiać ze zbiorem R4. Można więc

wprowadzić też iloczyn skalarny kwaternionów. Aby nie doszło do kolizji oznaczeń, iloczyn ten
powinien być oznaczany inaczej niż w przypadku wektorów. Dla kwaternionów

h1 = a1 + b1i + c1j + d1k oraz h2 = a2 + b2i + c2j + d2k

przyjmijmy więc, że ich iloczyn skalarny 〈h1, h2〉 jest dany wzorem

〈h1, h2〉 = a1a2 + b1b2 + c1c2 + d1d2.
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7.11 Iloczyn wektorowy

Zauważmy, że
∣

∣

∣

∣

∣

∣

∣

x y z
a b c
r s t

∣

∣

∣

∣

∣

∣

∣

= x ·
∣

∣

∣

∣

∣

b c
s t

∣

∣

∣

∣

∣

+ y ·
∣

∣

∣

∣

∣

c a
t r

∣

∣

∣

∣

∣

+ z ·
∣

∣

∣

∣

∣

a b
r s

∣

∣

∣

∣

∣

.

Przyjmijmy więc, że

(a, b, c) × (r, s, t) =

(∣

∣

∣

∣

∣

b c
s t

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

c a
t r

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a b
r s

∣

∣

∣

∣

∣

)

.

Zdefiniowaną operację przekształcającą R3 w siebie nazywamy iloczynem wektorowym.

Lemat 7.17 Zachodzi równość

〈(a, b, c), (a, b, c) × (r, s, t)〉 = 0,

a więc iloczyn wektorowy dwóch wektorów jest wektorem prostopadłym (ortogonalnym) do tych
wektorów. 2

Lemat 7.18 Zachodzi wzór
∣

∣

∣

∣

∣

b c
s t

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

c a
t r

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

a b
r s

∣

∣

∣

∣

∣

2

= (a2 + b2 + c2)(r2 + s2 + t2) − (ar + bs + ct)2.

Wynika z niego, że długość iloczynu wektorowego jest iloczynem długości mnożonych wektorów
i wartości bezwzględnej sinusa kąta między tymi wektorami. 2

Iloczyn wektorowy kwaternionów z Im(H) wprowadzany analogicznie, tak aby był zachowy-
wany przez izomorfizm tej przestrzeni i R3. Przyjmujemy więc, że

(ai + bj + ck) × (ri + sj + tk) =

∣

∣

∣

∣

∣

b c
s t

∣

∣

∣

∣

∣

i +

∣

∣

∣

∣

∣

c a
t r

∣

∣

∣

∣

∣

j +

∣

∣

∣

∣

∣

a b
r s

∣

∣

∣

∣

∣

k.

Wniosek 7.19 Jeżeli u, v ∈ Im(H), to

| u × v |2 = | u |2| v |2 sin2 ϕ,

gdzie ϕ jest kątem między wektorami współrzędnych kwaternionów u i v. 2

Twierdzenie 7.20 Jeżeli u, v ∈ Im(H), to

uv = −〈u, v〉 + u × v.

Dowód. Wystarczy napisać wzór na iloczyn dwóch urojonych kwaternionów. 2

Wniosek 7.21 Jeżeli u, v ∈ Im(H), to

uv + vu = −2〈u, v〉. 2
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7.12 Analiza pewnych przekształceń

Przyjmijmy, że q = a + bi + cj + dk jest kwaternionem o module 1. Po pierwsze zajmiemy się
przekształceniami αq : H → H zdefiniowanymi wzorami

αq(x) = qx.

Są to oczywiście przekształcenia liniowe. Zauważmy, że

αq(1) = a + bi + cj + dk,

αq(i) = −b + ai + dj − ck,

αq(j) = −c − di + aj + bk,

αq(k) = −d + ci − bj + ak.

Łatwo sprawdzić, że iloczyn skalarny każdej pary złożonej z dwóch różnych takich wektorów
jest równy 0, zaś kwadrat skalarny każdego z tych wektorów, czyli kwadrat modułu jest równy
| q |2 = a2 + b2 + c2 + d2.

Macierzą przekształcenia αq w bazie 1, i, j, k jest

Aq =











a −b −c −d
b a −d c
c d a −b
d −c b a











.

Z faktów przytoczonych w poprzednim akapicie wynika, że

| Aq | = ±| q |4 = ±1.

Aby się o tym przekonać, wystarczy wyliczyć iloczyn AT
q Aq.

Teraz zajmiemy się przekształceniami βq : H → H zdefiniowanymi wzorami

βq(x) = xq−1.

Oczywiście, to też są przekształcenia liniowe. Ponieważ |q | = 1, więc q−1 = q = a−bi−cj−dk.
Zauważmy, że

βq(1) = a − bi − cj − dk,

βq(i) = b + ai + dj − ck,

βq(j) = c − di + aj + bk,

βq(k) = d + ci − bj + ak.

Macierzą przekształcenia βq jest

Bq =











a b c d
−b a −d c
−c d a −b
−d −c b a











.

Porównując macierze Aq i Bq można zauważyć, że jedną z nich można otrzymać drugą
mnożąc pierwszą kolumnę przez −1, a następnie mnożąc przez −1 pierwszą kolumnę. Te
operacje nie zmieniają wyznacznika. Tak więc |Aq | = |Bq |. Wobec tego, wyznacznik macierzy
AqBq jest równy 1.
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Zauważmy, że

AqBq =











a −b −c −d
b a −d c
c d a −b
d −c b a





















a b c d
−b a −d c
−c d a −b
−d −c b a











=











1 0 0 0
0
0 Cq

0











.

Macierz AqBq jest macierzą przekształcenia

Oq(x) = qxq−1.

Oczywiście, dla każdej liczby rzeczywistej c 6= 0 mamy

Ocq(x) = Oq(x).

Pozwala to analizować dalej tylko przekształcenia Oq dla kwaternionów q o module 1.

Lemat 7.22 Funkcja Oq jest obrotem w przestrzeni Im(H), a więc Oq : =(H) → Im(H), jest
to przekształcenie liniowe i wyznacznik macierzy tego przekształcenia jest równy 1.

Dowód. Macierzą przekształcenia Oq (wyznaczoną przez bazę 1, i, j, k) jest AqBq. Z wzoru na
tę macierz wynika, że funkcja Oq na zbiorze Im(H) przyjmuje wartości należące do Im(H), a
macierzą obcięcia tej funkcji do Im(H) jest macierz Cq. Oczywiście, | Cq | = | AqBq | = 1. 2

7.13 Oś i kąt obrotu Oq

Przypuśćmy, że Re(q) = r i Im(q) = u, a ponadto, że a ∈ Im(H). Wtedy

(r + u)a(r − u) = rar − rau + uar − uau = r2a + r(ua − au) − uau =

= r2a + r((−〈u, a〉 + u × a) − (−〈a, u〉 + a × u)) − (−au − 2〈u, a〉)u =

= r2a + 2r(u × a) − 〈u, u〉a + 2〈a, u〉u.

Równości te wynikają z twierdzenia 7.20 i wniosku 7.21, oraz z oczywistych równości u =
−u dla u ∈ Im(H) i u × a = −a × u.

Twierdzenie 7.23 Jeżeli moduł q ∈ H\{±1} jest równy 1 i Re(q) = cos ϕ, to przekształcenie
Oq (przestrzeni Im(H) w siebie) jest obrotem o kąt 2ϕ względem osi Im(q).

Dowód. Przyjmujemy wyżej wprowadzone oznaczenia i będziemy korzystać z udowodnionego
wzoru. Zauważmy, że

Oq(u) = (r + u)u(r − u) = r2u + 2r(u × u) − 〈u, u〉u + 2〈u, u〉u = (r2 + 〈u, u〉)u = | q |2u = u.

Oznacza to, że wektor u = Im(q) jest osią obrotu przekształcenia Oq.
Aby ustalić kąt obrotu weźmy dowolne a ∈ Im(H) prostopadłe do u, a więc spełniające

〈a, u〉 = 0. Wtedy

Oq(a) = r2a + 2r(u × a) − 〈u, u〉a + 2〈a, u〉u(r2 − 〈u, u〉)a + 2r| u |( u

| u | × a) =

= (cos2 ϕ − sin2 ϕ)a + 2 cos ϕ sin ϕ(
u

| u | × a) = cos 2ϕ a + sin 2ϕ(
u

| u | × a)
(4)
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(pamiętajmy, że wektor
u

| u | × a jest prostopadły do u i a). Udowodniony wzór świadczy o

tym, że przekształcenie Oq obraca wektory prostopadłe do u o kąt 2ϕ.
W tej chwili nie potrafimy dokładniej opisać obrotu Oq, głównie dlatego, że nie został wpro-

wadzony aparat pozwalający zbadać, czy Oq obraca zgodnie z „ruchem wskazówek zegara”,
czy przeciwnie. 2

Z wyprowadzonych wzorów można też wywnioskować, że każdy obrót w przestrzeni Im(H)
(dookoła zera) jest funkcją postaci Oq. Jeżeli chcemy zdefiniować obrót o kąt ϕ względem osi u,
to obliczamy r = cos ϕ

2
, mnożąc u przez odpowiednią liczbę gwarantujemy, aby r2 + 〈u, u〉 = 1

i definiujemy q jako r + u.

7.14 Grupa obrotów w R3

Niech S oznacza zbiór kwaternionów o module 1. Nietrudno zauważyć, że S jest grupą. Przyj-
mijmy, że

h(q) = Oq|Im(H).

Tak więc h przekształca S w grupę obrotów (dookoła 0) w przestrzeni Im(H), a wartość h(q)
to obcięcie Oq do odpowiedniej przestrzeni).

Twierdzenie 7.24 Funkcja h jest epimorfizmem grupy S na grupę obrotów przestrzeni Im(H)
o jądrze złożonym z dwóch elementów ±1 (a więc każdy obrót jest wyznaczony przez dwa kwa-
terniony różniące się znakiem).

Dowód. Prawie cała teza wynika z poprzedniego rozdziału. Udowodnię więc tylko ostatnią
część tezy. W tym celu wystarczy wykazać, że jeżeli qxq−1 = x dla wszystkich x, to q = ±1.
Przypuśćmy więc, że q spełnia podany warunek. Wtedy w szczególności qi = iq. Oznacza to,
że q ∈ C. Przyjmijmy więc, że q = a + bi. Teraz równość qj = jq jest równoważna równości
aj + bk = aj − bk. Wynika z niej, że b = 0 i q = a ∈ R. Ponieważ moduł q jest równy 1, więc
q = ±1. 2

8 Przykłady obliczeń

8.1 Pierwiastki z −1

Przedstawione wcześniej rozważania sugerują, że obrót o 180 stopni wyznacza kwaternion,
który jest pierwiastkiem z −1. Zbadajmy więc pierwiastki z −1.

Oczywiście,

(a + bi + cj + dk)2 =

= a2 − b2 − c2 − d2 + 2abi + 2acj + 2adk + bc(ij + ji) + bd(ik + ki) + cd(jk + kj) =

= a2 − b2 − c2 − d2 + 2abi + 2acj + 2adk.

Jeżeli więc (a + bi + cj + dk)2 = −1, to a2 − b2 − c2 − d2 = −1 oraz ab = ac = ad = 0.
Zauważmy, że założenie a 6= 0 prowadzi do sprzeczności. Wtedy bowiem b = c = d = 0 i liczba
rzeczywista a byłaby pierwiastkiem z −1. Wobec tego, a = 0 i b2 + c2 + d2 = 1. Pierwiastkami
z −1 są więc kwaterniony o części rzeczywistej 0 i module 1. Łatwo też zauważyć, że wszystkie
takie kwaterniony są pierwiastkami z −1.
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8.2 Przykład obrotu

Spróbujmy znaleźć kwaternion q opisujący obrót o 90 stopni dookoła osi (przechodzącej przez
początek układu współrzędnych, tylko takimi obrotami zajmowaliśmy się do tej pory) o kie-

runku wektora j. Część rzeczywista kwaternionu q to cos(45◦) =
√

2

2
. Cały kwaternion ma

postać
√

2

2
+ bj. Aby miał moduł 1, to należy przyjąć, że b = ±

√
2

2
. Przyjęcie, że b = −

√
2

2

zmieni kierunek osi na przeciwny. Interesującym nas kwaternionem jest więc

q =

√
2

2
+

√
2

2
j.

Spróbujemy teraz ustalić, jak obrót Oq przekształca punkt i. W tym celu należy wyliczyć
qiq−1. Dla kwaternionów o module 1 zachodzi wzór q−1 = q. Tak więc

Oq(i) = qiq−1 = qiq =

(√
2

2
+

√
2

2
j

)

i

(√
2

2
−

√
2

2
j

)

=
1

2
(1 + j)i(1 − j) =

=
1

2
(1 + j)(i − k) =

1

2
(i − k + ji − jk) =

1

2
(i − k − k − i) = −k.

Okazało się więc, że zgodnie z rysunkiem ze strony 7.1, kwaternion q opisuje obrót o 90 stopni
zgodnie z ruchem wskazówek zegara wokół osi o kierunku j.

8.3 Składanie obrotów

Spróbujemy teraz ustalić, czemu jest równe złożenie dwóch obrotów: najpierw obrotu o 90
stopni wokół osi o kierunku j, a następnie też o 90 stopni wokół osi o kierunku i (i osie
przechodzą przez 0, a obroty są zgodne z ruchem wskazówek zegara). Obroty te są wyznaczone
przez kwaterniony

q =

√
2

2
+

√
2

2
j

oraz odpowiednio

q′ =

√
2

2
+

√
2

2
i.

Najpierw zbadajmy, co te obroty przekształcają punkt k + j. Okazuje się, że

Oq(j + k) =
1

2
(1 + j)(j + k)(1 − j) =

1

2
(1 + j)(j − j2 + k − kj) =

1

2
(1 + j)(i + j + k + 1) =

=
1

2
(i + j + k + 1 + ji + j2 + jk + j) =

1

2
(i + j + k − k + i + j) = i + j.

Podobnie,
Oq′(Oq(i)) = Oq′(i + j) = k + i = i + k.

Złożenie tych obrotów jest opisane przez kwaternion

q′q =

(√
2

2
+

√
2

2
i

)(√
2

2
+

√
2

2
j

)

=
1

2
(1 + i)(1 + j) =

1

2
+

1

2
(i + j + k).

Oczywiście, 1

2
= cos(60◦). Tak więc złożenie tych obrotów jest obrotem o 120 stopni wokół osi

o kierunku i + j + k.
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8.4 Orientacja trójki wektorów

8.4.1 Podstawowe definicje

Będziemy zajmować się teraz następującym problemem: mamy dany kwaternion q (na przykład
o module 1) i chcemy narysować lub wyobrazić sobie wektor Oq(x) dla danego wektora x.
Albo inaczej, chcemy dokładnie opisać obrót wyznaczony przez kwaternion q. Wymaga to
wprowadzenia pojęcia orientacji trójki wektorów. Będziemy teraz rozważać wyłącznie trójki
wektorów z przestrzeni R3, które nie są zawarte w pewnej płaszczyźnie, a więc składające się
z wektorów liniowo niezależnych. Można je jeszcze inaczej scharakteryzować jako trójki ~a,~b,~c
takie, że wyznacznik macierzy [~a,~b,~c] (w której współrzędne danych wektorów są zapisane w
kolejnych kolumnach) jest różny od zera.

Będziemy mówić, że trójki ~a1,~b1,~c1 i ~a2,~b2,~c2 mają tę samą orientację, jeżeli wyznaczniki
macierzy [~a1,~b1,~c1] i [~a2,~b2,~c2] są tego samego znaku.

Będziemy też mówić, że trójka wektorów ~a,~b,~c ma orientację dodatnią (ujemną), jeżeli

macierz [~a,~b,~c] ma wyznacznik dodatni (lub odpowiednio: ujemny).

8.4.2 Trójki tak samo zorientowane

Spróbujemy teraz zrozumieć te pojęcia. Zauważmy najpierw, że trójka wektorów z bazy stan-
dardowej ~e1, ~e2, ~e3 ma orientację dodatnią.

Przyjmijmy teraz, że mamy dwie trójki ~a1,~b1,~c1 i ~a2,~b2,~c2 ortonormalne, a więc spełniające
dodatkowe warunki: ~ai

~bi = ~ai~ci = ~bi~ci = 0 oraz ~a2
i = ~b2

i = ~c2
i = 1 dla i = 1, 2 (czyli złożone z

wektorów długości 1 i parami prostopadłych).

Niech f będzie funkcją liniową zdefiniowaną wzorami f(~a1) = ~a2, f(~b1) = ~b2 oraz f(~c1) =
~c2.

Lemat 8.1 Funkcja f jest dobrze zdefiniowaną funkcją liniową i macierz tej funkcji ma wy-
znacznik równy albo 1, albo −1.

Dowód. Ortonormalny układ wektorów jest liniowo niezależny. Wektory ~a1,~b1,~c1 stanowią
więc bazę. Implikuje to, że definicja funkcji f jest poprawna i w rzeczywistości została zdefi-
niowna bijekcja przestrzeni R3. Niech A będzie macierzą funkcji f w bazie standardowej.

Wyznacznik macierzy [~a,~b,~c] (której kolumny są wymienione współrzędnymi podanych
wektorów w wybranej bazie) nie zależy od wyboru bazy, w której przedstawiamy poszczególne
wektory. Także wyznacznik macierzy funkcji f nie zależy od wyboru bazy. Stąd wynika, że
wyznacznik macierzy A jest taki sam jak wyznacznik macierzy f w bazie ~a1,~b1,~c1, a więc jest
taki sam jak wyznacznik macierzy B = [~a2,~b2,~c2].

Wyznacznik macierzy B łatwo można obliczyć. Wystarczy zauważyć, że iloczyn BT B jest
macierzą jednostkową. Stąd | B |2 = 1. 2

Wniosek 8.2 Ortonormalne trójki ~a1,~b1,~c1 i ~a2,~b2,~c2 mają tę samą orientację wtedy i tylko
wtedy, gdy funkcja f jest obrotem.

Dowód. Wyznaczniki macierzy o ortonormalnych kolumnach są równe ±1, jeżeli dla dwóch
takich macierzy wyznaczniki są tego samego samego znaku, to są równe. Jeżeli A jest macierzą
funkcji f , to także

A[~a1,~b1,~c1] = [~a2,~b2,~c2].

Stąd, po przejściu do wyznaczników otrzymujemy, łatwo wywnioskować tezę. 2

Tak więc dla ortonormalnych trójek wektorów zgodność orientacji oznacza, że jedną z tych
trójek można tak obrócić, aby otrzymać drugą. Mamy także oczywisty
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Lemat 8.3 Jeżeli α, β, γ > 0, to trójki α~a, β~b, γ~c oraz ~a,~b,~c mają tę samą orientację. 2

Tak więc skrócenie bądź wydłużenie wektorów nie zmienia orientacji, Co więcej, orientacji
nie zmienia ortogonalizacja trójki.

Lemat 8.4 Trójki ~a,~b,~c oraz

~a,~b − ~a~b

~a~a
~a,~c − ~a~c

~a~a
~a −

~d~c

~d~d
~d

dla ~d = ~b − ~a~b

~a~a
~a, mają tę samą orientację.

Dowód. Ta druga trójka powstaje w wyniku zastosowania do pierwszej metody ortoganaliza-
cji Grama-Schmita. Łatwo sprawdzić bezpośrednio, że ma ortogonalne elementy. Tezę lematu
dowodzimy bez trudu korzystając ze znanego faktu, że dodając do wiersza macierzy wielo-
krotność innego nie zmieniamy wyznacznika. 2

Teraz możemy intuicyjnie wyjaśnić pojęcie tej samej orientacji. Dwie trójki mają tę samą
orientację, jeżeli po „wyprostowaniu” (czyli ortogonalizacji) i wyrównaniu długości, jedną z
nich można tak obrócić, aby otrzymać drugą.

8.4.3 Potrzebne własności kwaternionów

Jak wiemy, kwaterniony urojone z Im(H) można uważać za elementy przestrzeni R3. Ba-
zą standardową w przestrzeni Im(H) jest układ złożony z wektorów i, j, k. Można więc do
kwaternionów urojonych stosować wprowadzone pojęcia. W dalszych rozważaniach będą nam
potrzebne dwa fakty dotyczące kwaternionów.

Lemat 8.5 Jeżeli kwaterniony u, v ∈ Im(H) utożsamimy z ciągiem współrzednych względem
bazy i, j, k, to wyznacznik macierzy [u, v, u × v] jest równy 0 wtedy i tylko wtedy, gdy u jest
wielokrotnością v lub odwrotnie (gdy u i v są współliniowe). Co więcej, jeżeli u i v nie są
współliniowe, to trójki u × v, u, v oraz u, v, u × v mają orientację dodatnią.

Dowód. Przyjmijmy, że u = ai + bj + ck oraz v = ri + sj + tk. Jeżeli teraz przyjmiemy, że
u × v = xi + yj + zk, to zgodnie z definicją iloczynu wektorowego (str. 19) otrzymujemy, że

| [u × v, u, v]T | =

∣

∣

∣

∣

∣

∣

∣

x y z
a b c
r s t

∣

∣
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∣
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∣

=

∣
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+
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∣

∣

∣
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Stąd już łatwo otrzymać tezę lematu. 2

Lemat 8.6 Przypuśćmy, że q jest kwaternionem różnym od ±1, o module 1, o części rzeczywi-
stej r = cos ϕ > 0 (ϕ ∈ (0, π/2)) i części urojonej u. Niech a będzie niezerowym kwaternionem
urojonym, który nie jest współliniowy z u. Wtedy trójka u, a, Oq(a) ma orientację dodatnią.

Dowód. Mamy więc kwaternion q opisujący obrót wokół osi u o kąt 2ϕ i interesuje nas trójka
złożona z osi obrotu, obracanego wektora a (nie leżącego na osi obrotu) i wektora Oq(a)
otrzymanego z a w wyniku wykonania obrotu opisanego kwaternionem q.

Aby dowieść lemat, wyliczymy wyznacznik |u, a, Oq(a)| macierzy [u, a, Oq(a)] (z kolumnami
wypełnionymi współrzędnymi podanych kwaternionów). Zgodnie ze wzorem (4) mamy

| u, a, Oq(a) | = | u, a, cos 2ϕ a +
sin 2ϕ

| u | (u × a) | =
sin 2ϕ

| u | | u, a, u × a |.

Teraz wystarczy skorzystać z poprzedniego lematu i oczywistych własności funkcji trygono-
metrycznych. 2
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8.4.4 Kwaterniony a przestrzeń fizyczna

Przypuśćmy, że w przestrzeni (fizycznej) wybraliśmy początek układu współrzędnych i trzy
osie. Zamierzamy teraz wybrać trzy wektory jednostkowe wyznaczające kierunki osi. Możemy
to zrobić na dwa sposoby:

-�
�

�
�3

6

~a

~b
~c

-
�

�
�

�+

6

~a

~b

~c

Na pierwszym rysunku wektory ~a,~b,~c są ułożone tak, jak kciuk, palec wskazujący i odpowiednio
palec środkowy prawej ręki (wektor ~b jest prostopadły do pozostałych i wskazuje kierunek, w
którym oddalamy się od osoby obserwującej). Na drugim rysunku, układ wektorów jest taki,
jak palców lewej ręki.

O wektorach ~a,~b,~c z pierwszego (lewego) rysunku mówimy, że mają orientację prawostron-
ną. O wektorach z drugiego rysunku, że mają orientację lewostronną.

Wektory z bazy standardowej zawsze mają orientację dodatnią. Na rysunku lub w rzeczy-
wistości możemy im nadać albo orientację lewostronną, albo prawostronną.

Mając na dwa sposoby zdefiniowane pojęcie orientacji, także na dwa sposoby możemy
definiować pojęcie tej samej orientacji. Oba zdefiniowane pojęcia tej samej orientacji powinny
się pokrywać. Po pierwsze dlatego, że opisany w rozdziale 8.4.2 sposób testowania tej samej
orientacji („wyprostowanie”, wyrównanie i stosowne obrócenie trójki) powinien zachowywać
także orientację zdefiniowaną za pomocą układów palców. Po drugie dlatego, że trudno sobie
wyobrazić trójkę, która jest jednocześnie prawo- i lewostronna. Oznacza to, że jeżeli wektory
bazowe mają orientację prawostronną, to trójki wektorów o orientacji dodatniej pokrywają się
z trójkami prawostronnymi. Jeżeli wektory bazowe mają orientację lewostronną, to sytuacja
jest analogiczna: trójki o orientacji dodatniej to trójki lewostronne.

Przyjmijmy, że trójka kwaternionów i, j, k (czyli wektorów w trójwymiarowej przestrzeni
Im(H)) ma orientację prawostronną, a więc taką, jak na poniższym rysunku.
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a �
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Wtedy wszystkie trójki o orientacji dodatniej też mają orientację prawostronną. Zgod-
nie z lematem 8.6, zachowując oznaczenia i założenia sformułowane w tym lemacie, trójka
kwaternionów u, a, Oq(a) złożona z osi obrotu opisanego kwaternionem q, wybranego wektora
(kwaternionu) a i wektora obróconego Oq(a) ma orientację dodatnią. Powinna więc zostać
narysowana jako trójka o orientacji prawostronnej. A więc tak, jak na rysunku. Nietrudno za-
uważyć, że kwaternion q = cos ϕ + u, spełniający założenia lematu 8.6, definiuje obrót wokół
osi u, o kąt 2ϕ, w kierunku zgodnym z ruchem wskazówek zegara.
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