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1 Co to sg liczby naturalne?

Indukcja matematyczna wiaze si¢ bardzo z pojeciem liczby naturalnej. W szkole zwykle
najpierw uczymy sie poshugiwaé liczbami naturalnymi, ale nikt nie stara sie ich zdefi-
niowa¢. Potem poznajemy liczby wymierne i catkowite. W koncu zaczynamy liczy¢ na
liczbach rzeczywistych. Wtedy tez zaczynamy klasyfikowac liczby i pojawiaja sie wyja-
$nienia, jakie liczby uwazamy za naturalne. Podobnie, jak w szkole, przyjmiemy, ze liczby
rzeczywiste sg nam doskonale znane i precyzyjnie zdefiniujemy liczby naturalne.

Uproszczona definicja mowi, ze 0 jest liczba naturalng, a pozostate otrzymujemy wie-
lokrotnie dodajac do 0 jedynke. Naturalnymi sg wiec liczby 0, 1 =0+1,2 =0+1+1, 3, 4,
itd. Ta definicja nie jest zbyt precyzyjna. Wynika z niej jednak, ze zbior liczb naturalnych
N ma nastepujace wtasnosci:

1) 0 € N oraz
2) dla jakiegokolwiek n, jezeli n € N, to takze n+1 € N.

Kazdy zbior liczb rzeczywistych, ktéory ma te dwie wlasnosci, bedziemy nazywac¢ induk-
tywnym. Tak wiec zbior liczb naturalnych N powinien by¢ induktywny.

Latwo podaé¢ wiele przyktadow zbioréw induktywnych. Takim jest zbior wszystkich
liczb rzeczywistych R, réwniez zbiér nieujemnych liczb rzeczywistych. Zbiory
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tez sa induktywne. Mozna zauwazy¢, ze przekrdj zbiorow induktywnych rowniez jest
induktywny. Wobec tego, przekrdj
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jest kolejnym zbiorem induktywnym.

Jezeli wiemy, ze zbior liczb naturalnych jest szczegdlnym zbiorem induktywnym, to
mozemy wymieni¢ wiele liczb naturalnych: takimi sa np. 0, 1, 2, 3 itd. Musimy jeszcze
jakos rozstrzygac, czy inne liczby, takie jak % lub 7, sa naturalne. Zgodnie z naszymi
intuicjami, za naturalne chcemy uwazaé¢ jedynie 0 i te liczby, ktore mozna otrzymac



dodajac do 0 liczbe 1. Zadne inne liczby nie powinny zostaé¢ uznane za naturalne, a wiec
zbiér liczb naturalnych powinien by¢ mozliwie maty.

Przyjmijmy wiec, ze zbiér liczb naturalnych N jest najmniejszym zbiorem induk-
tywnym, zawartym w kazdym innym zbiorze induktywnym. Spelnia wiec nastepujace
warunki:

1) N jest induktywny oraz
2) jezeli X jest jakimkolwiek zbiorem induktywnym, to N C X.

W szczegblnosci, w tej definicji zostato powiedziane, ze jezeli jaka$ liczba nie nalezy
do pewnego zbioru induktywnego, to nie jest ona naturalng. Tak wiec liczba é nie jest
naturalng, gdyz nie nalezy do zbioru {0} U (%, o0). Podobnie mozna pokazaé, ze 7 nie jest
liczba naturalna (jak?). Natomiast liczby 0, 1, 2, 3 itd. sa naturalne, poniewaz naleza do
kazdego zbioru induktywnego, w tym N.

Tego typu definicje, polegajace na wymienieniu wtasnosci definiowanego obiektu, nie
muszg by¢ poprawne. Sa jednak poprawne dla takich wtasnosci, jak definiujaca zbior N.
W szczegoblnosei, definicja zbioru N jest poprawna. W tej chwili nie bedziemy rozwijac
tego tematu.

2 Zasada indukcji, metoda indukcji

Podstawowa zasada indukcji matematycznej to nic innego, jak drugi punkt z definicji
zbioru liczb naturalnych. Jest to wiec wrecz oczywista konsekwencja definicji zbioru N:

Twierdzenie 2.1 (Zasada indukcji matematycznej 1) Jezeli X jest jakimkolwiek zbio-
rem induktywnym, to N C X.

Mozna ja tez sformutowaé nieco inaczej:

Twierdzenie 2.2 (Zasada indukcji matematycznej 2) Jezeli X jest jakimkolwiek in-
duktywnym zbiorem liczb naturalnych, to X = N.

Chyba najczesciej formutuje sie ja w nastepujacy sposob:

Twierdzenie 2.3 (Zasada indukcji matematycznej 3) Przypusémy, Ze ¢ jest wla-
snosciq, ktora moze przystugiwac liczbom naturalnych. Zatozimy, ze liczba 0 ma wiasnosé
@ 1 dla dowolnej liczby n € N, z tego zZe n ma wlasnos¢ ¢, wynika, ze wiasnosé p przy-
stuguge tez liczbie n + 1. Wtedy wszystkie liczby naturalne majg wlasnosc .

Dowéd. Rozwazmy zbior
{n € N : n ma wlasnos¢ ¢}.

Z przyjetych zatozen bardzo tatwo wynika, ze jest to zbior induktywny. Jako ze jest
induktywny, zawiera zbiér wszystkich liczb naturalnych. Stad teza. O

7 tej ostatniej zasady indukcji matematycznej wynika metoda dowodzenia wlasnosci
liczb naturalnych zwana indukcjg matematyczng. Metoda ta pozwala dowodzi¢ wytacznie
uniwersalne wtasnosci liczb naturalnych, czyli stwierdzenia postaci "kazda liczba natu-
ralna ma wlasnos¢ ¢”. Zgodnie z ta metoda:



1) Najpierw dowodzimy, ze 0 ma wtasnosé ¢. Jest to tzw. pierwszy krok dowodu
indukcyjnego.

2) Drugi krok polega na udowodnieniu, ze dla dowolnej liczby naturalnej n, z zatozenia,
ze n ma whasno$é¢ ¢ (czyli z tzw. zatozenia indukcyjnego) wynika, ze takze liczba
n + 1 ma wtasnos¢ ¢.

Jezeli uda nam sie to zrobi¢, to na mocy zasady indukcji matematycznej mozemy
stwierdzi¢, ze kazda liczba naturalna ma wtasnos$é . Nic dziwnego, sprawdziliSmy przeciez
zalozenia zasady indukcji 3 (twierdzenia 2.3). Jezeli sa prawdziwe, prawdziwa jest tez teza.

Indukcyjny dowod stwierdzenia ”kazda liczba naturalna ma wlasnos¢ ¢” w rzeczywi-
stosci polega na wykazaniu, ze zbiér

{n € N : liczba n ma wlasnosé¢ ¢}

jest zbiorem induktywnym, a wigc réwnym zbiorowi N.
Dla przyktadu sprawdzimy, ze

tez jest naturalna.

n(n+1)
2

na”. Dla podkreslenia, ze rozumiemy je jako wtasnosé liczby n zamiast ¢ piszemy zwykle

p(n).
Najpierw powinnismy dowiesé, ze 0 ma wlasnos$é ¢, czyli ¢(0), a wiec, ze

Fakt 2.4 Dla dowolnej liczby naturalnej n, liczba n

(n+1)
2

Dowdéd. Wtasnoscig ¢ w tym przypadku jest stwierdzenie ” jest liczba natural-

00+1
(7—’_) jest liczba naturalna.

Latwo sie przekonac o prawdziwosci tego stwierdzenia. Wystarczy wyliczy¢ wartosé¢ utam-
ka, jest nig liczba 0, ktora oczywiscie jest naturalna.

W drugim kroku indukcyjnym dowodzimy, ze dla dowolnej liczby naturalnej n liczba
n + 1 ma wtasnos$¢ ¢ (dowodzimy p(n + 1)). Mamy wiec sprawdzi¢, czy

(n+1)((n+1)+1)
2

jest liczbag naturalna.

Robiac to mamy prawo korzysta¢ z zatozenia indukcyjnego dla liczby n, ktore w tym
przypadku moéwi, ze
n(n+1
g jest liczbg naturalna.
Sprobujmy znalezé zwiazek miedzy tymi dwoma utamkami:

n+1)((n+1)+1) _ (n+2)(n+1) :n(n—l—l)—i—?(n—i-l) :n(n—i-l) a4l
2 2 2 2

Pierwszy z tych utamkéw jest wiec liczba naturalna, gdyz jest suma trzech liczb natural-
nych, w tym liczby w, ktora jest naturalna na mocy zatozenia indukcyjnego.

Zrobilismy wszystko, co jest wymagane przez metode indukcji matematycznej i tak
dowiedliémy fakt 2.4. O

Przedstawiony dowdéd moze wydawac sie niepetny. Co prawda méwimy o liczbach na-
turalnych, ale zostaty one zdefiniowane w jakis dziwny sposéb i nie jest jasne, czy maja



znane wilasnodci, na przyktad, czy dodajac dwie tak rozumiane liczby naturalne otrzy-
mujemy liczbe naturalng. Jezeli sg takie watpliwosci, to oczywiscie mozna je rostrzygnaé
(stosujac rowniez metode indukeji matematycznej).

Dowodzac prawie kazda wtasnosé liczb naturalnych, gdzies po drodze bedziemy musieli
skorzysta¢ z indukeji matematycznej. Jest to bowiem metoda bardzo bliska definicji liczb
naturalnych.

2.1 Kolejne zasady indukcji

W tym rozdziale ¢ bedzie wtasnoscia, ktéra moze przystugiwac liczbom naturalnych.
Znamy wiele innych zasad indukcji. Na przyktad:

Twierdzenie 2.5 (Zasada indukcji matematycznej 4) Zalézmy, Ze liczba my ma wia-
snosc¢ ¢ i dla dowolnej liczby naturalnej n > mgy z tego, Ze n ma wtasnosé ¢ wynika, ze
wlasnosé ¢ przystuguje tez liczbie n + 1. Wtedy wszystkie liczby naturalne > mg majg
wlasnosé .

Dowéd. Z przyjetych zatozen wynika, ze zbiér
{n € N :jezeli n > my, to n ma wlasnosé¢ ¢}
jest induktywny. Teza wynika ze zwyklej zasady indukcji (np. z twierdzenia 2.2). O

Twierdzenie 2.6 (Zasada indukcji matematycznej 5) Zaléimy, zZe liczby 0 i 1 ma-
ja wtasnosé ¢ i dla dowolnej liczby n € N, z tego, ze n i n+ 1 majg wlasnosé p wynika,
ze wiasnosé ¢ przystuguje tez liczbie n + 2. Wtedy wszystkie liczby naturalne majg wia-
snosc .

Dowdd. Z zatozen tej zasady indukcji wynika, ze zbidr
{n € N :liczby n i n + 1 maja wlasnosé¢ ¢}

jest induktywny. Ze zwyktej zasady indukcji 2.2 otrzymujemy, ze dla kazdej liczby natu-
ralnej n, zaréwno n, jak i n+1 maja wtasnos¢ ¢. Tym bardziej wszystkie liczby naturalne
maja wlasnosé ¢. O

Twierdzenie 2.7 (Zasada indukcji matematycznej 6) Zalézmy, ze dla dowolnej licz-
byn € N, z tego, ze wszystkie liczby naturalne < n majg wlasnosé ¢ wynika, ze wlasnosé
@ przystuguje tez liczbie n. Wtedy wszystkie liczby naturalne majg wiasnosé p.

Dowdéd. Podobny do poprzednich. Z zalozen wynika, ze zbior
{n € N : wszystkie liczby i < n maja wlasnosé¢ ¢}

jest induktywny (wszystkie liczby naturalne mniejsze od 0 maja wlasnos$¢ ¢, poniewaz
ich nie ma). Wobec tego, dla kazdej liczby naturalnej n, wszystkie mniejsze od niej liczby
naturalne maja wtasno$¢ ¢. Poniewaz kazda liczba naturalna jest mniejsza od jakiejs
liczby naturalnej, wiec kazda liczba naturalna ma wlasnos¢ ¢. O

To nie sg wszystkie zasady indukcji matematycznej. Po zdobyciu pewnego do$wiad-
czenia bez trudu formutujemy, weryfikujemy oraz stosujemy odpowiednie wersje.



3 Tzw. indukcja strukturalna

Zasada indukcji matematycznej dotyczy nie tylko liczb naturalnych. Jest $cisle zwiazana
raczej nie z tymi liczbami, ale z postacig ich definicji. A w ten sposéb definiujemy bardzo
duzo pojec. Ich wtasnosci réwniez dowodzimy przez indukcje.

3.1 Zbidr stow

Formuta rachunku zdan to podstawowe pojecie logiki matematycznej. Aby to pojecie zde-
finiowa¢ musimy mie¢ zmienne zdaniowe. Bedziemy je oznaczaé polskimi literami takimi
jak p,q,r, ale powinno by¢ ich nieskonczenie wiele. Nie jest specjalnie istotne, czym one
sa, zwykle traktuje sie je tak, jak znaki. Musimy je tylko odréznia¢ od innych znakéw (i
innych obiektéw), w tym nawiaséw i spéjnikéw. Bedziemy stosowaé dwa nawiasy: otwie-
rajacy (oraz zamykajacy ). Przyjmujemy, ze w formutach wystepuja nastepujace spéjniki:
negacja — (lub lepiej: symbol oznaczajacy negacje albo symbol negacji), koniunkcja A,
alternatywa V, implikacja — oraz réwnowaznos¢ <. Czasem do wymienionych dodaje si¢
jeszcze dwa symbole T oraz L, ktére maja oznaczaé proste zdania, z ktorych pierwsze
jest prawdziwe niezaleznie od czegokolwiek, a drugie — falszywe. Wszystkie te elementy
uwazamy za znaki, a przynajmniej moéwimy o nich jak o znakach.

Ze znakow tworzymy stowa, ktére bywajg nazywane takze napisami. Sa to skoniczone
ciagi znakow. Zbiér stéw bedziemy oznaczaé litera S. Przyktadami stéw sa V)p—A) oraz
prr). Nic nie wskazuje, ze sa to sensowne napisy. Bardziej sensownym stowem jest (—p)Vp.

Stowa nalezace do S mozemy taczyé, czyli konkatenowac. Jezeli taczymy dwa ciggi, to
otrzymujemy inny ciag, ktérego poczatkowe wyrazy sa identyczne z wyrazami pierwszego
ciagu, a kolejne — z wyrazami drugiego. Jezeli potaczymy trzy wyzej wymienione stowa
w kolejnosci, w jakiej zostaly podane, to otrzymamy napis V)p—A)prr)(—=p) V p.

3.2 Formuly rachunku zdan

Definiujgc formuty malo precyzyjnie mozna powiedzie¢, ze zmienne zdaniowe sg formu-
tami, a inne formuty powstaja ze zmiennych zdaniowych przez wielokrotne taczenie spoj-
nikami logicznymi wczesniej otrzymywanych w ten sposéb napiséw. Bardziej precyzyjna
definicja wymaga zdefiniowania najpierw zbioru formut rachunku zdan F.

Zbior F bedzie jednym ze zbioréw X C S o nastepujacych wlasnosciach:

1) wszystkie zmienne zdaniowe naleza do X,

2) jednoznakowe stowa T i L naleza do X,

3) jezeli A nalezy do X, to takze —A nalezy do X oraz
)

4) jezeli A1 B naleza do X, to takze napisy (AA B), (AV B), (A — B)i (A < B)
nalezg do X.

Napis (A V B) oznacza tu ztaczenie ztozonego z jednego znaku stowa (, stowa A, stowa
(znaku) V, stowa B oraz jednoznakowego stowa ). Pozostate wzory z przytoczonej definicji
rozumiemy analogicznie. Nietrudno tez zauwazy¢ analogie tych wlasnosci z wystepujacy-
mi w definicji zbioréw induktywnych.

Jest oczywiscie wiele zbiorow majacych te cztery wlasnosci. Ma je na przyktad zbiér
S. Takze ma je zbiér otrzymany z S przez usuniecie z niego wszystkich spojnikéw logicz-
nych, czyli jednoznakowych stow takich, jak V (kazdy znak utozsamiamy z odpowiednim,



jednoznakowym stowem). Takze te wlasnosci ma zbior, ktérego elementami sg doktadnie
zmienne zdaniowe, jednoznakowe stowa T i L, oraz przynajmniej dwuznakowe stowa za-
czynajace sie nawiasem otwierajacym. Przekr6j zbioréw majacych wtasnosci od 1) do 4)
tez ma te wlasnosci.

Zbioér formut rachunku zdan F jest najmniejszym podzbiorem S majacym wlasnosci
od 1) do 4). Formuly rachunku zdan to oczywiscie elementy zbioru F.

Definicje zbioru F wyrazimy raz jeszcze w zwarty sposob, troche innym jezykiem.
Przyjmujemy, ze

1) wszystkie zmienne zdaniowe naleza do F,

2) stowa T i L naleza do F,

3) jezeli A nalezy do F, to takze —A nalezy do F,
)

4) jezeli A1 B naleza do F, to takze napisy (AA B), (AV B), (A — B)i (A < B)
naleza do F oraz

5) zbiér F jest zawarty w kazdym zbiorze majacy cztery wyzej wymienione wlasnosci.

Wyzej wyrazong, bardzo precyzyjng definicje formuty rachunku zdan podaje sie czesto
w postaci uproszczonej, takiej jak:

1) wszystkie zmienne zdaniowe sg formutami (rachunku zdan),

)
2) stowa T i L sa formutami,
3) jezeli A jest formula, to takze = A jest formula,
)

4) jezeli A1 B sa formutami, to takze napisy (AA B), (AV B), (A — B)i (A < B)
sg formutami oraz

5) zadne inne stowa, poza otrzymanymi zgodnie z wyzej wymienionymi regutami, nie
sg formutami.

Te ostatnig definicje czasami upraszcza sie jeszcze bardziej pomijajac wiasno$é 5, uwazang
za tak oczywista, ze nie warto jej przytaczac¢, mimo ze jest ona niezbedna.

3.3 Twierdzenie o dowodzeniu przez indukcje

Symbol ® bedzie oznacza¢ wlasnos¢, ktora moze przystugiwaé formutom. Taka wtasno-
Scia moze by¢ stwierdzenie, ze (w formule) jest tyle samo nawiaséw otwierajacych, co
zamykajacych. Innym przyktadem takiej wlasnosci moze byé stwierdzenie, ze taczna licz-
ba wystapien zmiennych oraz symboli T i L jest (w formule) o jeden wieksza od liczby
wystapien spojnikow dwuargumentowych.

Formuty sg skonczonymi ciggami. Dla takich ciggow jest zdefiniowane pojecie dtugosci.
Dzieki temu wlasnosci formut mozna dowodzi¢ przez zwykta indukcje. Aby dowiesé¢, ze

kazda formuta ma wlasnosé¢ @,
wystarczy przez indukcje uzasadnic, ze

dla dowolnej liczby naturalnej n, kazda formuta o dtugosci < n ma wlasnos¢ .



W takich rozumowaniach mozna tez wykorzysta¢ specjalna zasade indukcji pozwalaja-
ca dowodzi¢ wtasnosci formut, wynikajaca z definicji zbioru formut F i wykorzystujaca
nastepujace

Twierdzenie 3.1 (Zasada indukcji dla F) Przypusémy, zZe
1) wszystkie zmienne zdaniowe majg wtasnosé ®,
2) formuly T i L majg wlasnosé @,
3) jezeli formula A ma wlasno$é @, to takie A ma te wlasnosé,

4) jezeli formuly A i B majg wlasnos$é ®, to takie (AN B), (AV B), (A — B) i
(A < B) majg wlasnosé .

Witedy wszystkie formuly rachunku zdan majg wltasnosé ® (czyliVeo € F ®(¢)).

Dowdéd. Dowdd tego twierdzenia jest podobny do dowodu zasady indukcji 3 dla liczb
naturalnych (twierdzenie 2.3). Rozwazmy zbi6r

X ={p € F:p ma wlasnos¢ P}.

Przyjete zatozenia stwierdzaja, ze ten zbiér ma cztery pierwsze wltasnosci wymagane w
definicji od zbioru wszystkich formut F. Zbior F, jako najmniejszy zbior o tych wtasno-
Sciach, jest zawarty w zbiorze X. To zawieranie w szczegdlnosci oznacza, ze wszystkie
elementy zbioru F maja wtasnos¢ ¢. O

3.4 Przyklady dowodéw indukcyjnych

Korzystajac z twierdzenia 3.1 bez trudu wyprowadzamy dla dowolnej formutly obie wta-
snosci @ przytoczone jako przyktady. W szczegdlnosci, ani zmienne zdaniowe, ani znaki T
i 1 (a whasciwie odpowiednie, jednoliterowe stowa) nie zawieraja ani nawiasow otwieraja-
cych, ani zamykajacych. W tych formutach jest tyle samo nawiaséw obydwdch rodzajow
(doktadniej: jest po 0 nawiaséw). Jezeli w stowach A i B jest tyle samo nawiaséw otwie-
rajacych, co zamykajacych, to to samo jest prawda dla napisu (A A B), poniewaz do A i
B dopisalismy (oprécz znaku koniunkeji) po jednym nawiasie otwierajacym i zamykaja-
cym. Analogiczne argumenty sg stuszne dla formul budowanych za pomoca pozostatych
spojnikow. Zgodnie z twierdzeniem 3.1, w dowolnej formule jest wiec tyle samo nawiaséw
otwierajacych, co zamykajacych.

Wazniejsza wtasnos¢ zbioru formut F wyraza nastepne twierdzenie. Jest dos¢ oczywi-
ste. Co wigcej, analogiczne twierdzenia sa prawdziwe takze dla innych, podobnie definio-
wanych zbioréw. Na przyktad, ze kazda liczba naturalna jest albo rowna 0, albo mozna jg
otrzymaé dodajac 1 do innej liczby naturalnej (lub innymi stowy, odejmujac 1 od dowol-
nej niezerowej liczby naturalnej otrzymujemy liczbe naturalna). Twierdzenie to wyraza
pewnien fakt charakterystyczny dla zbioréw definiowanych w rozwazany sposob.

Twierdzenie 3.2 Dowolna formuta rachunku zdan jest albo zmienng zdaniowq, albo jed-
ng z formul T lub L, albo negacjq (czyli stowem postaci ~A dla pewnej formuly A), albo
koniunkcjq (czyli jest postaci (AANB) dla pewnych formul A i B), albo tez jest alternatywaq,
implikacjg lub rownowaznosciq.



Dowdéd. Twierdzenie to méwi, ze dowolna formuta X ma nastepujaca wtasnosé ¢(X):
X jest zmienng zdaniowg lub X = T lub X = |

lub istnieje A € F takie, ze X = —A
lub istniejg A, B € F takie, ze
X =(AAB)lub X = (AVB) lub X = (A — B) lub X = (A < B)].

W oczywisty sposob przekonujemy sie, ze dla wtasnosci @ spelnione sa zatozenia twier-
dzenia 3.1. Na przyklad, jezeli A jest zmienng zdaniowa, to zachodzi whasnosé ®(A).
Tak jest, poniewaz poprzednik tej implikacji jest jednym z cztondéw alternatywy, jaka jest
wlasnosé ®. Podobnie, jezeli A jest formuta, to napis =A ma jedng z dopuszczalnych
postaci wymienionych we wlasnosci ®. Analogiczne argumenty sg stuszne w pozostatych
przypadkach. Tak wiec teza jest konsekwencjg twierdzenia 3.1. O

Przez indukcje mozna tez dowies¢ kolejna wtasnosé formut rachunku zdan:

Twierdzenie 3.3 Jezeli A i B sq formutami rachunku zdan i AY = BZ dla pewnych
stowY i Z, to A=B.

Dowdéd. Mamy wiec wykazaé, ze jezeli przez dopisanie do formut pewnych znakéw, by¢
wielu, potrafimy uzyska¢ identyczne napisy, to te formuty sa identyczne. Aby to zrobié¢
wezmy wlasno$¢ ®(X) stwierdzajaca, ze

dla kazdego B € F, dla wszystkich Y, Z € S [jezeli XY = BZ, to X = B.

Teraz wystarczy sprawdzi¢, ze spelnione sa zalozenia twierdzenia 3.1. Jest proste, ale
do$¢ zmudne i wymaga skorzystania z poprzedniego twierdzenia. O

Oba wspomniane twierdzenia wyrazaja juz wazng wlasnos¢ formut rachunku zdan.
Formuty zostaly zdefiniowane w taki sposéb, ze z wyjatkiem najprostszych, a wiec zmien-
nych zdaniowych i formut T i L, dzielg sie na roztaczne zbiory negacji, koniunkcji, alter-
natyw, implikacji i réwnowaznosci, w szczegdlnosci zadna formuta nie moze by¢ jednocze-
$nie, powiedzmy, koniunkcja i alternatywa. Co wiecej, jezeli na przyktad jakas formuta
jest koniunkcja, to daje sie przedstawié¢ jako koniunkcja w dokltadnie jeden sposéb, a jej
cztony sg jednoznacznie wyznaczone.

Przytoczone wlasnosci formut rachunku zdan sg konsekwencjg zapisania w definicji F
wymogu petnego nawiasowania. W praktyce formuly definiujemy inaczej, wprowadzajac
miedzy innymi rézne zasady opuszczania nawiasow.

4 Indukcja w postaci bardzo abstrakcyjnej

Bedziemy w tym rozdziale rozwazaé zbior A i dowolna relacje R okreslong w zbiorze A,
czyli spetniajacg warunek R C A x A. Jezeli mamy méwi¢ o indukcji, to bytoby dobrze
podaé jakas interpretacje tej sytuacji.

Mozemy wyobrazaé sobie, ze mamy zbior A, w ktérym sg okreslone pewne operacje
pozwalajace — majac dane jakies elementy A — konstruowaé inne elementy A. W zbiorze
S jedna z takich operacji mogtaby parze stéw X 1 Y przyporzadkowywaé napis (X AY).
W zbiorze A te operacje jakie$ sa, ale nie sa jasno okreslone. Nie wiemy, ile ich jest,



nie znamy liczb argumentow tych operacji. Dopuszczamy operacje o zmiennej liczbie ar-
gumentow, wykorzystujace nieskonczenie wiele argumentéw, takze zalezne od dowolnego
zbioru argumentéw ze zbioru A itp.

Warunek yR = bedziemy interpretowac jako stwierdzenie, ze

konstruujac x uzyliSmy y jako argumentu zastosowanej operacji.
Wobec tego, dla x € A bardzo wazny bedzie zbior!
R Yz)={yc A:yRa}.

Mozna go interpretowac jako zbior argumentéw potrzebnych do utworzenia elementu x.

4.1 Twierdzenie o dowodzeniu przez indukcje

Bedziemy teraz rozwazaé zbiory X C A spelniajace nastepujacy warunek:
dla dowolnego x € A, jezeli R~}(z) C X, tox € X. (1)

Symbolem Ay oznaczamy najmniejszy zbiér spelniajacy warunek (1), zawarty w kazdym
innym takim zbiorze.

Podana definicja Ag jest poprawna pod warunkiem, ze w jaki$ sposéb zostanie wy-
kazane istnienie tego zbioru®?. Mozna go latwo skonstruowaé. Trzeba wiedzie¢, ze jest
przynajmniej jeden zbiér spetiajacy warunek (1). Takim jest na przyktad zbiér A. Po-
nadto przekrdj dwoch zbioréw, a takze dowolnej ilosci zbioréw spehiajacych warunek (1)
tez spetnia ten warunek. W tej sytuacji Ay mozna zdefiniowaé jako przekrdj wszystkich
podzbioréw A spelniajacych warunek (1).

Wtasnoséci elementéw zbioru Ay mozna dowodzi¢ takze przez indukcje, wykorzystujac

Twierdzenie 4.1 Niech ¢ bedzie wlasnoscig, ktora moze przystugiwac elementom zbioru
Ag. Przypusémy, ze dla kazdego elementu x € Agy z tego, Ze wszystkie elementy zbioru
R7Y(x) majg wlasnosé ¢ wynika, Ze takie element x ma wlasnosé p. Wtedy wszystkie
elementy zbioru Ag majg wlasnosc .

Dowéd. Wezmy zbior
X ={z € Ay : v ma wlasnos¢ ¢}.

Dowiedziemy, ze zbiér X spetnia warunek (1). Poniewaz A jest najmniejszym zbiorem
spelniajacym ten warunek, stad otrzymamy, ze Ay C X. Wobec tego kazdy element zbioru
Ag nalezy do X, a wiec w szczegblnos$ci ma wtasnosé ¢.

Dowdd, ze X spelnia warunek (1) jest teraz nieco bardziej skomplikowany. Wezmy
r € Aizaldézmy, ze R™'(z) C X.

7Z definicji X otrzymujemy, ze R™'(x) C Ay, a poniewaz Ay spelnia warunek (1),
wigc © € Ay. Wszystkie elementy zbioru R~!(z) maja wtasno$¢ ¢ (na mocy zawierania
R7!(x) C X). Dla elementu z mozemy wiec skorzysta¢ z zalozenia twierdzenia. Wobec
tego, x ma wtasnos¢ ¢ i w konsekwencji x spelnia oba warunki wymagane od elementéw
zbioru X. Tak wiec x € X. W ten sposéb dowiedliSmy spetnianie warunku (1) przez X.O

1Oczywidcie, zapis yR = oznacza, ze (y,z) € R. Wzér R™!(z) oznacza przeciwobraz R~1({z}) zbioru
{z} wyznaczony przez relacje R i ma taka posta¢ dla uproszczenia zapisu.

2Ta sama uwaga dotyczy takze zbioréw N i F, a takze innych zbioréw podobnie definiowanych (a
wigc definiowanych przez indukeje). Zbidr Ag tez jest definiowany przez indukcje, bardzo ogdlna. Szkic
dowodu istnienia takich zbioréw jest taki sam we wszystkich omawianych przypadkach.
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4.2 Indukcja dla relacji regularnych

Dalsze rozwazania wymagajg wprowadzenia pojecia elementu minimalnego. Jest to zna-
ne pojecie, zwykle wykorzystywane dla relacji porzadkujacych, ktére — w zaleznosci od
podejscia — sa albo zwrotne, albo antyzwrotne.

Przypuéémy, ze X C A. Elementem R-minimalnym w zbiorze X nazywamy taki
x € X, dla ktorego nie istnieje y € X spetniajacy warunek yR z. Méwiac inaczej: z € X
jest elementem R-minimalnym w zbiorze X, jezeli zbiory R™(x) oraz X sa rozlaczne.
Zwykle tak definiujemy elementy minimalne dla relacji antyzwrotnych. Teraz te definicje
bedziemy stosowaé dla dowolnych relacji, nawet dla porzadkow zwrotnych.

Pojecie elementu minimalnego jest wykorzystywane w definicji relacji regularnych.
Przyjmujemy, ze relacja R C A x A jest regularna, jezeli w kazdym niepustym podzbiorze
zbioru A jest element R-minimalny:.

Dla relacji regularnych tatwo potrafimy wyliczy¢ zbior Ag. Zachodzi bowiem

Twierdzenie 4.2 Jezeli R C A x A jest relacjg reqularng, to Ay = A.

Dowéd. Zatézmy, ze R jest relacja regularna, ale Ay jest wtasciwym podzbiorem A.
Wtedy A\ Ay # 0. Niech x € A\ Ag bedzie elementem R-minimalnym w tym zbiorze.
Wobec tego, zbior R™!(z) C A jest roztaczny z A\ Ag. Implikuje to, ze R™(z) C A,.
Poniewaz Ag spetnia warunek (1), wiec © € Ag. Przeczy to jednak wyborowi z. O

Jako wniosek stad otrzymujemy

Twierdzenie 4.3 (zasada indukcji dla relacji regularnych) Niech ¢ bedzie wlasno-
sciq, ktora moze przystugiwac elementom zbioru A, a R C A x A — relacjg reqularng.
Przypuéémy, Ze dla kazdego elementu x € A z tego, Ze wszystkie elementy zbioru R~ (z)
majq wiasnosé ¢ wynika, zZe takze element x ma witasnosé ¢. Wtedy wszystkie elementy
zbioru A majg wlasnosé ¢.

Dowdd. Jest to oczywista konsekwencja zasady indukcji 4.1 i twierdzenia 4.2. O

4.3 Drobiazgi

Wré6émy do ogdlnej sytuacji, w ktérej rozwazaliSmy dowolng relacje R C A x A i zajmo-
waliSmy sie zbiorem Ay. Sa przynajmniej dwa interesujace przyktady takiej sytuacji.

Mozemy wziaé jako A zbiér R* niezerowych liczb rzeczywistych i relacje R w tym
zbiorze taka, ze y R x zachodzi wtedy i tylko wtedy, gdy y = x—1. Oczywidcie, R~(1) = ()
oraz R7Y(z) = {x — 1} dla wszystkich z € R* réznych od 1. W tym przypadku, Ay jest
zbiorem dodatnich liczb naturalnych, a twierdzenie 4.1 redukuje sie do zwyktej szkolnej
zasady indukcji.

Jezeli wezmiemy A = N i zwykla relacje mniejszosci < jako R, to wtedy A9 = A= N
i R7'(n) ={m € N :m < n}. W tej sytuacji twierdzenie 4.1 méwi to samo, co szdsta
zasada indukeji matematycznej (twierdzenie 2.7).

Zauwazmy tez, ze zachodzi nastepujace twierdzenie analogiczne do twierdzenia 3.2:

Twierdzenie 4.4 Dla wszystkich v € Ag 2biér R~ (z) jest zawarty w Ay. O
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4.4 Indukcja implikuje regularnosc¢

Najpierw, postugujac sie zasada indukcji z twierdzenia 4.1, pokazemy

Lemat 4.5 Przypusémy, ze Y jest zbiorem, ktory nie ma elementu R-minimalnego. Wte-
dy RN (z) NY =0 dla wszystkich x € Ay.

Aby zrozumieé¢ tres¢ tego lematu, warto sie mu przyjrze¢ w przypadku, gdy A = N
i R jest zwykla relacje mniejszoéci <. Wtedy R7'(n) = {m € N : m < n}, a lemat 4.5
stwierdza, ze

Lemat 4.6 Przypusémy, ze Y C N jest zbiorem, ktory nie ma elementu minimalnego
(<-minimalnego). Wtedy {m € N :m <n}NY =0 dla wszystkichn € N.

Warto sprobowaé to dowiesé przez zwykla indukcje (np. z twierdzenia 2.3).

Dowdd. Lematu 4.5. Przyjmujemy, ze teraz p(z) oznacza whasno$é R~ (z)NY = (). Aby
dowies¢ lemat, wystarczy sprawdzi¢, ze dla wtasnosci ¢ sa spetnione zatozenia zasady
indukcji.

W tym celu bierzemy z € Ay i z zalozenia, ze wszystkie elementy R~'(z) maja
wlasnos$¢ ¢ chcemy wyprowadzié, ze takze x ma wlasnosé .

Zrobimy to metoda nie wprost. Przyjmujemy wiec, ze x nie ma wtasnosci ¢, czyli
pewien element y nalezy do przekroju R~!(z)NY . Poniewaz jest to element zbioru R~1(z),
wigc na mocy zalozenia indukcyjnego mamy, ze R~ (y) NY = (). Wiemy takze, ze y € Y.
Stad y jest elementem R-minimalmym w Y, a to jest sprzeczne z zalozeniem lematu. O

Nieco dziwny lemat 4.5 pozwala dowies¢ nastepujaca, wazng wtasnosé zbioru Ag.
Twierdzenie 4.7 Relacja R ograniczona do zbioru Ao, czyli RN Ag X Ag, jest reqularna.

Dowdéd. Aby dowiesé regularnosé relacji Ry = RN Ag X Ag, bierzemy dowolny niepusty
zbiér Y. Mamy w nim znalezé element Ry-minimalny. Zamiast szuka¢ tego elementu
sprowadzimy do sprzecznosci zatozenie, ze w zbiorze Y nie ma takiego elementu.

W zbiorze Y nie ma elementéw spoza Ay. Gdyby byt taki element, to bytby on elemen-
tem Ro-minimalnym w Y. Stad wynika, ze wszystkie elementy Y nalezg do Ag. Poniewaz
Y jest niepusty, wezmy dowolny element tego zbioru. Przyjmijmy, ze jest x. Tak wiec
reY C A,

Mozemy skorzysta¢ z lematu 4.5. Wynika z niego, ze R™'(x) NY = (. Stad otrzymu-
jemy, ze

Ry'(x)NY =R Y z)NAyNY = 0.

Wobec tego, x jest elementem Ry-minimalnym w zbiorze Y. Przeczy to zatozeniu, ze w
Y nie ma elementéow Ry-minimalnych. O

Tak wiec relacja ,konstruowania” coraz to nowych elementéw zbioréw definiowanych
indukcyjnie jest zawsze regularna. Czasem jest to bardzo wazny rezultat. W szczegdélnodcei,
stosujac twierdzenie 4.7 dla A = N i R bedacego relacja zwyktego porzadku w zbiorze
liczb naturalnych otrzymuje bardzo wazng zasade minimum:

Twierdzenie 4.8 (Zasada minimum) Relacja zwyklego porzadku w zbiorze liczb natu-
ralnych jest reqularna, a wiec w kazdym niepustym zbiorze liczb naturalnych jest element
minimalny (ktéry w tym przypadku jest tez najmniejszy).
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4.5 Zakonczenie

Nie zostaly tu przedstawione wszystkie mozliwe rodzaje zasad indukcji. Brakuje chyba
zasad wykorzystywanych w sytuacjach, w ktorych poszczegoélne elementy sa konstruowane
na wiele sposobéw. Na przyktad zbiér liczb catkowitych moze zostaé zdefiniowany (lub
scharakteryzowany) jako najmniejszy sposrod zbioréw X C R spelniajacych nastepujace
warunki:

1) 1e X,
2) jezelim,ne X, tom—n,m+nec X.

Wtasnosci liczb catkowitych mozna wiec, przynajmniej teoretycznie, dowodzi¢ korzystajac
z zasady indukcji wynikajacej z takiej definicji.



