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Wigkszos¢ funkeji naturalnych, z ktérymi mamy do czynienia (takze w informa-
tyce), to funkcje pierwotnie rekurencyjne. Nawet wielu matematykéw nie potrafi
poda¢ przyktadow funkcji naturalnych, ktére nie sg pierwotnie rekurencyjne, na
og6t nie maja z nimi do czynienia. Teoria takich funkcji bardzo przypomina teorie
funkcji rekurencyjnych, a podstawowe wtasnosci tych dwoch rodzajow funkcji sg
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analogiczne. Z informatycznego punktu widzenia nieco wazniejsze sa funkcje reku-
rencyjne, ale pierwotnie rekurencyjne tez maja wazng interpretacje: sa to funkcje
obliczane za pomocg programéw, w ktorych petle s wykonywane najwyzej z gory
zadana (pierwotnie rekurencyjna) liczbe razy.

1.1 Wstepne pojecia i oznaczenia

Pewne wprowadzane teraz pojecia beda potrzebne dopiero wtedy, gdy bedzie mowa
o funkcjach rekurencyjnych.

Bedziemy rozwazaé funkcje (takze wieloargumentowe), ktére sa okreslone dla
argumentéw bedacych liczbami naturalnymi, niekoniecznie wszystkich, i przyjmu-
jace wartosci naturalne. Jezeli f jest taky funkcjg, to bedziemy pisaé, ze f : N¥ —
N. Ten zapis ma wiec znaczenie inne niz zwykle. Tak rozumiane funkcje nazywa
sie czesciowymi. Funkcja okreslona dla wszystkich uktadéw & € N* nazywa sie cal-
kowita. Najczesciej dopiero z kontekstu bedzie wynika¢, czy méwimy o funkcjach
catkowitych, czy czeSciowych.

Przyjmijmy, ze

Lyk(z1,...,05) = x; oraz S(x)=x+ 1.
Funkcja charakterystycza zbioru R € N* nazywamy catkowita funkcje chp :
N¥ — N zdefiniowana wzorem

0 jezeli ¥ € R,
1 w przeciwnym razie.

chafe) - {

Zamiast roznica postugujemy sie raczej ograniczong roznica zdefiniowana wzo-
rem
r —y=max{0,x —y}

Obie réznice powinny by¢ oznaczane réznymi symbolami, ale nie beda.

1.2 Skladanie i podstawianie

Bedziemy tez rozwazaé kilka sposob6éw definiowania nowych funkcji. Jezeli mamy
funkcje f : N¥ — N i k funkcji ¢; : N® — N, to mozemy zdefiniowaé¢ funkcje h
przyjmujac, ze

My, ..o xn) = flgi(zy, . oo xn), oy ge(@1, .o @)

Ten sposoéb definiowania nazywamy sktadaniem funkcji.

Sktadanie funkcji jest znanym i jasnym pojeciem, zwlaszcza wtedy, gdy doty-
czy funkcji catkowitych. Dla funkcji czesciowych definicja ta powinna zosta¢ nieco
uzupetniona. Zamiast podawac precyzyjna definicje, ztozenie opiszemy intuicyjnie,
jako funkcje, ktéra jest obliczana za pomocag pewnego programu. Wyzej zdefinio-
wane h jest obliczane za pomoca programu

function ztozenie(f, g1, ..., gk, T1, ..., Tyn);
begin

U1 = gl(xlv s 737n)7



ztozenie := f(y1,...,yx)
end;

Wynika stad, ze zlozenie h jest funkcja, ktora jest okreslona doktadnie dla tych
argumentéw, dla ktorych ten program zakonczy prace, a jego wartoscia jest wtedy
wynik obliczen, czyli warto$¢ funkcji ztozenie w sensie informatycznym.

Oprocz sktadania rozwazamy tez podstawianie. Jest to operacja trudna do
precyzyjnego zdefiniowania. Przyktadem funkcji definiowanej przez podstawianie
jest

h(xy, e, 23,y,2) = f(z,9(x2,23), 22, ' (22, 2, 71)).

Funkcje te mozna zdefiniowa¢ za pomoca sktadania w nastepujacy sposob:
h($1a T2, T3,Y, Z) =

= f([5,5($1, T2,3,Y, 2)792(351, T2,3,Y, 2)7 15,2(1‘1,332,353, Y, Z),94(1’1,332, r3, Y, Z))

Jest to ztozenie funkcji f, I55, I52 oraz
92(351,5152,153,%2) = 9([5,2(1'1,91727$3,ya z),I5,3(w1,:c2,a:3,y,z)),

g4($1, X2,X3,Y, Z) = g/<]5,2(x17 T2, T3,Y, Z)? -[5,5(3717 X2,X3,Y, Z)J ]5,1<x17 T2, T3,Y, Z))

Nietrudno zauwazy¢, ze funkcje go i g4, a takze funkcja h sa zdefiniowane jako
zlozenia. Jezeli mozemy postugiwac sie funkcjami I, ;, i potrafimy sktada¢ funkcje,
to mozemy takze definiowa¢ funkcje za pomocg podstawiania.

1.3 Rekursja prosta

Majac dane funkcje f : N¥2 — N i g : N¥ — N, mozemy zdefiniowaé funkcje
h : N¥1 — N przyjmujac, ze spelia ona nastepujace réwnosci:

h(zy, ..., 2, 0) = g(xy,...,Tk)

oraz
h(zy, ...,z y+1) = f(h(z1,. . 25, Y), Y, X1, - -, Tk)-
O tak zdefiniowanej funkcji h méwimy, ze zostata zdefiniowana za pomocg rekursji

prostej. Schemat rekursji prostej stosujemy rowniez dla k = 0. Wtedy przyjmuje
on postac

h(0) = c oraz h(y+1) = f(h(y),y),

gdzie c¢ jest pewna liczba naturalna.
W przypadku funkcji czesciowych, funkcja h definiowana przez rekursje prosta
powinna by¢ obliczana przez nastepujacy algorytm:

function rekursja(f, g, z1 ...,z y);
begin
2= g(xy, ..., xp);

fori:=0toy—1do z:= f(z,4,21,...,2);
rekursja 1= z

end;



1.4 Operacja minimum

W konicu, dla funkcji f : N¥*' — N mozemy zdefiniowaé funkcje

h(xy,...,zr) = py(f(zr, ..., 25,y) =0)

przyjmujaca dla argumentow x1, ..., jako warto$¢ najmniejsza liczbe y taka, ze
f(z1,...,2k,y) = 0. O tej funkcji h méwimy, ze zostala zdefiniowana za pomoca
operacji minimum. Nie musi to by¢ funkcja catkowita, nawet dla catkowitej funkcji
f.

Funkcja h definiowana za pomoca operacji minimum powinna by¢ obliczana
przez nastepujacy algorytm:

function minimum(f, z; ..., xg);
begin
y =0

while f(z1,...,25,y) #0doy :=y+ 1;
minimum :=y
end;

Operacje minimum bedziemy stosowa¢ w kilku szczegélnych przypadkach. I tak
dla relacji R € N**! przyjmujemy

py Rz, e y) = py (che(z, ..o o y) = 0),

py < z R(xy, ..., x6,y) = py (R(xq, ..., x5,y) Vy = 2),
py < z R(xq, .. 2k, y) = py (R(zy, .. x5,y) Vy = 2+ 1),
Operacje minimum w dwdch ostatnich linijkach nazywamy ograniczonymi.
Bedziemy zajmowac sie tez efektywna operacje minimum, a wiec taka, ktéra jest
stosowana pod pewnymi warunkami, tylko do catkowitych funkcji f, ktore dodat-
kowo dla kazdych x1, ...,z przyjmuja dla pewnego y wartosé¢ f(zi,...,zg,y) = 0.

1.5 Funkcje i zbiory pierwotnie rekurencyjne

Pierwsza! praca poéwiccona funkcjom definiowanym przez rekursje ukazala sie
1888 roku. R Dedekind rozwazal w niej funkcje definiowane w sposéb bedacy
uogolnieniem definicji dodawania, mnozenia i potegowania. Okoto 1919 roku Tho-
ralf Skolem rozwazalt arytmetyke z funkcjami pierwotnie rekurencyjnymi. Od 1925
byt znany przyktad Wilhelma Ackermanna funkcji definiowanej przez rekursje, ale
nie dajacej sie zdefiniowaé przez rekursje prosta. Taka jest funkcja Ackermanna?
speliajaca rownania

A(0,n) =n+1, A(m+1,0) = A(m,1) oraz A(m+1,n+1) = A(m, A(m+1,n)).

!Na podstawie ksigzki Romana Murawskiego Funkcje rekurencyjne i elementy metamatema-
tyki.

2Podana funkcja zostala w rzeczywistoéci wprowadzona przez Rézse Péter i Raphaela Ro-
binsona i jest prostsza wersja oryginalnej funkcji Ackermanna. Ta ostatnia jest definiowana (z
dokladnoscia do kolejnosci argumentéw) wzorami

<p(07 n’ x) = n + x’ <p(1707 x) = 0’ (p(27 07 x) = 17 sp(m7 07 x) = ':l: gdy m > 27
em+1,n+1,z)=p(m,p(m+1,n,2),z).

W szczegblnosci mamy ¢(1,n,z) =n -z oraz ¢(2,n,z) = z".



Funkcje definiowane przez rekursje po raz pierwszy w istotny sposoéb wykorzy-
stal Kurt Godel.

Rozwazat on najmniejsza klase funkcji zawierajaca nastepnik S, funkcje state
oraz funkcje I, , i wszystkie inne, ktére mozna zdefiniowa¢ uzywajac wymienionych
za pomocy sktadania i rekursji prostej. Klasa ta nazywa sie klasg funkcji pierwotnie
rekurencyjnych, a jej elementy to funkcje pierwotnie rekurencyjne. W pracy Godla
funkcje te byly nazywane rekurencyjnymi, w tamtym czasie autor nie doceniat i
nie potrzebowal innych funkcji definiowanych przez rekursje.

Zbiér X C N¥ jest pierwotnie rekurencyjny, jezeli jego funkcja charakterystycz-
na chx jest pierwotnie rekurencyjna.

1.6 Przyklady funkcji i zbioréw pierwotnie rekurencyjnych

Bez trudu dowodzimy, ze dodawanie, mnozenie i potegowanie sg funkcjami pier-
wotnie rekurencyjnymi. Schematy rekursji prostej definiujace te funkcje sa po-
wszechnie znane. Wobec tego wszelkie wielomiany o wspétczynnikach naturalnych
sg pierwotnie rekurencyjne. Takze silnia jest funkcja pierwotnie rekurencyjna.

Jezeli A jest funkcja Ackermanna (patrz str. 4), a ¢ jest oryginalna funkcja
rozwazang przez Ackermanna (patrz przypis na str. 4), to funkcje

Apn(n) = A(m,n)

oraz
90m<n7 .I) = 90(m7 n, Z‘)
sa pierwotnie rekurencyjne.
Pierwotnie rekurencyjna sa réwniez funkcje minus(m,n) = m — n (tzw. ogra-
niczone odejmowanie) oraz minus;(m) = m — 1 (ograniczone odejmowanie 1).
Swiadcza o tym nastepujace definicje:

minusy(0) = 0 oraz minus;(m + 1) = Iy 2(minusi(m), m)

minus(m,0) = I;1(m) oraz minus(m,n + 1) = minus,(minus(m,n)).

Najprostszym przyktadem relacji pierwotnie rekurencyjnej jest relacja mniej-
szosci. Mamy bowiem
che(m,n) =1—(n—m).

Takze relacja wigkszosci jest pierwotnie rekurencyjna, gdyz
chs(m,n) = cho(n,m) = che(Iy2(m,n), Iy 1(m,n)).
Kolejnymi przyktadami sg stabe relacje porzadkujace:
ch<(m,n) =1—ch=(m,n) oraz chs(m,n)=1—ch.(m,n).
Teraz mozna wykazac¢ pierwotna rekurencyjnoscé relacji rownosci i roznosci:
ch—(m,n) = chg(m,n)) + ch=(m,n) oraz chx(m,n)=1—ch_(m,n).

Lemat 1.1 (o podstawianiu) Jezeli relacja R C N® i funkcja f : N> — N sq
pierwotnie rekurencyjne, to relacja R taka, Ze

R'(m,n,k,1) < R(f(m,n), m, k)

tez jest pierwotnie rekurencyjna. Liczby m,n, k,l mozna w tym lemacie zastgpic
dowolnej dtugosci uktadamsi liczb.



Dowdd. Funkcja charakterystyczng relacji R’ jest
chr/(m,n, k,1) = chg(f(m,n), m, k)

definiowana za pomocg podstawiania z funkcji chg i f. O

Kilka dalszych wtasnosci relacji pierwotnie rekurencyjnych zostato dowiedzione
w rozdziale 1.8, po pewnym komentarzu metodologicznym.

Lemat 1.2 Definicje warunkowe nie wyprowadzajq poza klase funkcji pierwotnie
rekurencyjnych, a wiec jezeli funkcje g : N¥ — N i h : N¥ — N sq pierwotnie
rekurencyjne, a R C N¥ jest pierwotnie rekurencyjng relacjq, to takie funkcja
g : N¥ — N zdefiniowana wzorem

£ = g(m) jezeli R(m),
| h(m)  w pozostalych przypadkach

jest pierwotnie rekurencyjna. Nietrudno tez zauwazyc, ze analogiczng wlasnosé ma-
ja bardziej skomplikowane definicje warunkowe, z wiekszq liczbg wykluczajgcych sie
wzajemnie warunkow.

Dowdéd. Zauwazmy, ze funkcje f mozna zdefiniowaé réwniez rownoscia
f(m) = g(m) - (1 = chr(m)) + h(m) - chgr(mi). O
Lemat 1.3 Jezeli funkcja f : N¥*1 — N jest pierwotnie rekurencyjna, to funkcje

g(m,n) = Z f(m, i) oraz

<n

h(m,n) =[] f(m,i)

<n

sq pierwotnie rekurencyjne.

Dowdéd. Funkcje g : N¥*! — N definiuje sic przez rekursje prosta nastepujacymi
rownosciami

g(m,0) =0 oraz g(m,n+1) = g(m,n)+ f(m,n).
Funkcje h definiujemy podobnie uzywajac iloczynu. O
Lemat 1.4 Jezeli R C N¥! jest relacjg pierwotnie rekurencyjng, to funkcja
f(m,n) = pxr <n R(M,x),

definiowana za pomocq operacji minimum ograniczonego (patrz str. 4), tez jest
pierwotnie rekurencyina.

Dowé6d. Aby dowiesé ten lemat wystarczy zauwazyé, ze funkcja f spelnia naste-
pujace rownosci

oraz
f(mi,n) jezeli f(m,n) <n,
fM,n+1)=< n jezeli f(m,n)>n i R(m,n),
n+1 w pozostatych przypadkach. O



1.7 Definiowalnos¢

Matematycy efekty swojej pracy formutuja w postaci twierdzen, a nastepnie do-
wodza. Przyktadem moze by¢ nastepujace

Twierdzenie 1.5 Zbior liczb pierwszych jest pierwotnie rekurencyjny.

Czasem efektem pracy matematykéw sg jednak schematy twierdzen. Sa to
stwierdzenia takiej na przyktad postaci: jezeli w dalszym ciagu zamiast ¢ wy-
powiem arytmetyczng formute, tylko z kwantyfikatorami ograniczonymi, to otrzy-
mam

Twierdzenie 1.6 Zbior {n € N : ¢(n)} jest pierwotnie rekurencyjny.

Matematyk wypowiadajacy twierdzenie nikogo nie dziwi. Moze by¢ jednak
dziwne, ze za jednym razem moze wypowiedzie¢ nieskonczenie wiele twierdzen.
Schematy to co$ bardziej skomplikowanego od twierdzen. I raczej nie mozemy sie
bez nich obejé¢. W logice mamy wiele schematow aksjomatow i regut dowodzenia.
W arytmetyce mamy schemat indukcji i uzywajac go dowodzimy na przyktad in-
ne, bardziej wygodne w uzyciu schematy indukcji. Wroctawski profesor Czestaw
Ryll-Nardzewski wykazal, ze arytmetycznego schematu indukcji nie mozna zasta-
pi¢ skonczonym zbiorem aksjomatéw nie ograniczajgc przy tym mocy arytmetyki
Peano.

Sytuacja jest jeszcze bardziej skomplikowana. Postugujemy sie dwoma rodza-
jami formutl. Za formule mozna uznaé stwierdzenie ,13 jest liczba pierwsza”. Ale
formutly to takze pewne obiekty matematyczne, ktére maja rézne, dajace sie do-
wies¢ wlasnosci. Zwykle sg to ciggi specjalnych obiektéw — znakow. Przyjmijmy,
ze s3 to elementy zbioru F. Dla stwierdzenia ¢, takiego jak wyzej, mozna utwo-
rzy¢ obiekt ¢ € F, ktory jest sformalizowang wersjg stwierdzenia ¢. Takie obiekty
bedziemy nazywa¢ standardowymi formutami.

Chcieliby$my uzy¢ formute ¢ w definicji zbioru takiego, jak {n € N : p(n)}. Nie
mozemy tego jednak zrobié¢ bezposrednio piszac {n € N : ¢[n]}. Popeilibyémy
blad taki, jak piszac {n € N : 5}. Zaréwno 5, jak i ¢ to przedmioty, a nie wymagane
tutaj wtasnoéci. Aby poradzi¢ sobie z tym problemem musimy okregli¢ ,znaczenie”
. Robimy to definiujac pojecie spetniania, w szczegélnosci definiujac relacje N =
©lh| spetiania formuly ¢ w strukturze N przy wartosciowaniu h. Majac taka
relacje zbiér {n € N : ¢(n)} mozemy zdefiniowaé® jako {n € N : N |= p[n]}.

Po takim skomplikowaniu jezyka mozemy wykazaé, ze bez wzgledu na to, jaka
mam na mysli arytmetyczna formute ¢, bez kwantyfikatoréw nieograniczonych,
zachodzi

Twierdzenie 1.7 Zbior {n € N : N |= ¢[n|} jest pierwotnie rekurencyjny.

Dwa ostatnie twierdzenia méwiag wtasciwie to samo, a wystepujace w nich zbio-
ry sa identyczne. Wynika to z ogélnego i bardzo waznego schematu, wyjasniajacego
sytuacje, stwierdzajacego, ze dla dowolnej arytmetycznej formuty ¢ zachodzi

Twierdzenie 1.8 Wlasnosc p(n) zachodzi wtedy i tylko wtedy, gdy N |= p[n].

Dowéd. O

Twierdzenie 1.7 ma jeszcze ogdlniejszg postac:

3Piszac ¢(n) mam na mysli wlasno$é o, w ktérej écisle okreslona zmienng (wolna) zastapilem
liczbg n. Z drugiej strony w wyrazeniu N = ¢[n] mam na mysli spetnianie przy wartosciowaniu,
ktore tej okreslonej zmiennej (a wlasciwie jej odpowiednikowi) przyporzadkowuje liczbe n.



Twierdzenie 1.9 Dia kazdej formuty arytmetycznej p € F, bez kwantyfikatorow
nieograniczonych, zbior {n € N : N |= ¢[n]} jest pierwotnie rekurencyjny.

Precyzyjniejsze sformutowanie tego twierdzenia wraz z dowodem jest zamiesz-
czone w nastepnym rozdziale. Teraz zauwazmy, ze jest to twierdzenie, a nie sche-
mat, powinien wynika¢ z niego schemat 1.7, a wobec z twierdzenia 1.8 powinien
tez wynika¢ schemat 1.6.

Co wiecej, twierdzenie 1.9 wydaje sie silniejsze od 1.7. W przeciwienstwie do
tego ostatniego, podaje wtasnosci dowolnych formutl, takze niestandardowych, o
ile takie istnieja. A nie jest jasne, czy mozna wykluczy¢ ich istnienie. Z rozwazan
zwigzanych w twierdzeniem Godla o niezupelnosci wynika, ze czesto w arytmetyce
mamy do czynienia z analogiczng sytuacja, w ktorej dla dowolnej liczby naturalnej
n dowodzi sie wlasnos¢ ¢(n), ale nie mozna dowie$¢ zdania Vr ¢(z). Oznacza
to, ze w pewnym sensie nie da sie wykluczy¢ istnienia niestandardowych liczb
naturalnych.

1.8 Klasy Ay, 21 i1

Symbolem A oznaczamy najmniejsza klase formutl jezyka arytmetyki zawierajaca
formuly atomowe i zamknietg ze wzgledu na tgczenie formut za pomocg spojnikéw,
poprzedzanie negacja i dopisywanie kwantyfikatoréw ograniczonych Vr < ¢ oraz
Jx < t, gdzie t jest termem, w ktérym nie wystepuje zmienna z.

Klasa ¥; jest najmniejsza klasg formut jezyka arytmetyki zawierajaca formu-
ty klasy Ay i zamknieta ze wzgledu na taczenie formul spéjnikami koniunkcji i
alternatywy, a takze dopisywanie kwantyfikatoréw egzystencjalnych 3 oraz ogdl-
nych kwantyfikatoréw ograniczonych Vx < t, gdzie t jest termem, w ktorym nie
wystepuje zmienna .

Klasa []; jest najmniejsza klasg formul jezyka arytmetyki zawierajaca formu-
ty klasy Ay i zamknieta ze wzgledu na taczenie formul spdjnikami koniunkcji i
alternatywy, a takze dopisywanie kwantyfikatoréw ogélnych V oraz egzystencjal-
nych kwantyfikatoréw ograniczonych dx < t, gdzie ¢ jest termem, w ktorym nie
wystepuje zmienna .

Relacja R C N* jest klasy Ay, jezeli jest definiowana formulg klasy A, a wiec
jezeli jest zbiorem postaci* {77 € N*: N |= o[ii]} dla pewnego ¢ € Ay.

Analogicznie definiujemy relacje klasy > i [];. Relacje nazywamy arytmetycz-
na, jezeli jest definiowana (w powyzszym sensie) pewna formuta jezyka arytmetyki.

Twierdzenie 1.10 Relacje klasy Ao sq pierwotnie rekurencyjne.

Dowdéd. Poniewaz w jezyku arytmetyki mamy do dyspozycji tylko symbole ozna-
czajace dodawanie i mnozenie, wiec termy jezyka arytmetyki definiuja wytacznie
wielomiany o wspélezynnikach naturalnych, ktore sa funkcjami pierwotnie reku-
rencyjnymi.

Stad, z pierwotnej rekurencyjnosci relacji < i = oraz z lematu o podstawianiu
otrzymujemy, ze formuty atomowe jezyka arytmetyki definiujg relacje pierwotnie
rekurencyjne.

Jezeli formuta ¢ definiuje pierwotnie rekurencyjna relacje R, to formuta —¢
definiuje relacje S, ktorej funkcja charakterystyczna wyraza sie wzorem

Chs(f) =1- ChR(f),

1Napis N = ¢[fi] oznacza, ze formula ¢ jest spelniona w strukturze N przy wartoéciowaniu,
ktére zmiennym z pewnego, ustalonego ciagu, zawierajacego wszystkie zmienne wolne formuty
p, przyporzadkowuje kolejno wyrazu ciggu 7.



ktora oczywiscie jest pierwotnie rekurencyjna.

Jezeli formuty ¢ i ¢y definiuje pierwotnie rekurencyjne relacje Ry i Rs, to
formuta 1 V @y definiuje relacje S, ktorej funkcja charakterystyczna wyraza sie
wzorem

Chs(f) = ChR1 (f) : ChR2 <f>>

ktora tez jest pierwotnie rekurencyjna.

Jezeli ¢ definiuje pierwotnie rekurencyjna relacje R, to formuta 3z < y ¢ (gdzie
y nie wystepuje w ) definiuje relacje S, ktorej funkcja charakterystyczna wyraza
sie wzorem

chs(Z,y) = [] chr(Z, ).
1<y

Tak zdefiniowana funkcja chg takze jest pierwotnie rekurencyjna.

Korzystajac z przedstawionych wyzej konstrucji funkcji charakterystycznych
mozna wykaza¢ dowodzone twierdzenie w catej ogélnosci. O

1.9 Funkcja § Godla

Twierdzenie 1.11 Istniejg formuta B klasy A ze zmiennymi wolnymi x,y, z oraz
pierwotnie rekurencyjne funkcje 3 : N> — N i f : N> — N takie, Ze

1) B(a,i) = n wtedy i tylko wtedy, gdy N = Bla,i,n],
2) B(a,i) < a—1 dla wszystkich a,i € N,

3) dla kazdego ciggu aq,...,a,—1 istnieje liczba a < f(max{ag,...,an_1},n)
taka, ze rownosci (a,i) = a; sq prawdziwe dla wszystkich i < n.

Dowdd. Zdefiniujmy funkcje (term) op przyjmujac, ze
op(a,b) = (a+b)(a+b)+a+1,
relacje (formute) div taka, ze
div(a,b) & Je<a+1(a=b-¢)

(moéwiaca, ze a jest podzielne przez b) oraz pomocnicza formule 6 = d(x,y, 2)
rowng
Ju < zFv < x(op(u,v) =z Adiv(u, 1 + (op(z,y) + 1) - v)).

Przyjmimy, ze 3 = f(x,y, z) jest formuty
(bNz<zxz—=1)V(z=2-1)) AVt <z [z « t],

gdzie x —1 oznacza ograniczone odejmowanie, a formuty z takimi termami powinny
zostaé zastgpione réwnowaznymi, zapisanymi w jezyku arytmetyki. Oczywiscie,
jest to formuta klasy A,. Najpierw sprawdzimy, ze warunek 1) z tezy lematu
definiuje pewna funkcje.

Latwo przekonac sie, ze formuta 3 definiuje relacje jednoznaczng. Jezeli mamy
N | Bla,i,m] i N & Bla,i,n] dlaliczb n < a—11im < n, to takze N |= d|a, i, m]
(z pierwszego czlonu 3 1 warunku N = fa, i, m]) oraz N |= —d[a, i, m| (z drugiego
cztonu i drugiego warunku). Uzyskana sprzeczno$é dowodzi jednoznacznodci relacji
definiowanej formuta (3, a wiec formuta ta definiuje pewng, niekoniecznie catkowita,
funkcje S.

WezZmy teraz liczby a,i € N. Sa mozliwe dwa przypadki.
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Przypadek 1: N = (Vt < z =0[z « t])[a,i,a — 1]. W tym przypadku tatwo
przekonaé sie, ze N = (a,i,a — 1].

Przypadek 2: N | (3t < z 0[z < t])]a,i,a — 1]. Teraz mozemy wzia¢ najmniej-
sza liczbe n < a — 1 taka, ze N = d[a,i,n]. Poniewaz jest to najmniejsza taka
liczba, wiec N | (Vt < z =0[z « t])[a, i, n]. Latwo sprawdzi¢, ze N = (la, i, n].

7, przeprowadzonego rozumowania wynika, ze dla kazdych liczb a,t istnieje
liczha n < a — 1 taka, ze N = fla,i,n|. Tak wiec, (3 jest funkcja catkowita.
Pozostato dowiesé, ze funkcja  ma wlasnosé 3).

Przypu$émy, ze mamy (niepusty) ciag ao,...,a,—1 i m = max{ag,...,a,_1}.
Bierzemy b = op(m,n). Liczba ta dla wszystkich i < n przekracza warto$¢ op(a;, ).
Tworzymy teraz iloczyn

c= ]+ (op(a;,i) + 1) - bl).

i<n
Zauwazmy, ze liczba ¢ zostala tak zdefiniowana, ze ¢ < ((b+ 1)!)" oraz wlasnos¢
N = dlop(c, b)), i, ai]

zachodzi dla wszystkich ¢ < n.
Aby dowies¢ twierdzenie, nalezy jeszcze pokazaé, ze

N E Blop(e,b), i,

dla wszystkich ¢ < n. Gdyby nie byto to prawdg, to
N dlople,b), i d]

dla pewnego i < n i dla pewnej liczby d < a;. Z réznowarto$ciowosci op otrzyma-
libysmy, ze liczba 1 + (op(d,i) 4+ 1) - b! dzieli liczbe c.

Z drugiej strony, dla j < b liczby postaci 1 + (j + 1) - bl sa parami wzglednie
pierwsze. Liczba op(d, i) jest mniejsza od b, a wiec 1+ (op(d,i)+1)-b! jest wzglednie
pierwsza z liczbami 1+ (op(ag, k) +1) - b! i w konsekwencji jest wzglednie pierwsza
z c. Jedyng liczbg dzielaca ¢ i wzglednie pierwsza z ¢ jest 1. Rownos¢ 1 = 1 +
(op(d,i) + 1) - b! nie jest jednak mozliwa.

Uzyskana sprzeczno$¢ $wiadezy o tym, ze liczba a = op(c, b!) spetnia teze twier-
dzenia. Okreslmy teraz

f(m,n) = op(((op(m,n) + 1))*, op(m,n)!).

ZdefiniowaliSmy w ten sposob pierwotnie rekurencyjng funkcje, ktora dla m =
max{dao, . .., a, 1} spelia nieréwnosé

a = opleb!) < op(((b+ V)", bY) = op(((op(m, n) + D))", op(m, n)!) = f(m.n).

Pozwala to zakonczy¢ dowodzenie twierdzenia. O
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1.10 Definiowalnos$¢ funkcji pierwotnie rekurencyjnych

Wykresem funkcji f : N¥ — N nazywamy relacje
Wy = {(Z,y) € N*: (@) = y}.

W powyzszym wzorze warunek f(#) = y oznacza, ze f jest okreslona dla argu-
mentu 7 i dla tego argumentu przyjmuje wartosé¢ y.
Funkcja jest definiowalna wtedy i tylko wtedy, gdy jej wykres jest definiowalny.
7, twierdzenia 1.11 wynika, ze funkcja (i jej wykres sa definiowalne formuta
klasy Ag. W dalszym ciggu te formute bedziemy nazywaé 3, jak w sformutowaniu
twierdzenia.

Twierdzenie 1.12 Wykresy funkcji pierwotnie rekurencyjnych sq klasy 3.

Dowéd. Wykresy funkcji I, i, + 1 - sa definiowane odpowiednio formutami xj = v,
T+ Ty =Yy oOraz xry-Tro = Yy.

Definiowalnos¢ wykresow bardziej skomplikowanych funkcji pierwotnie reku-
rencyjnych uzasadnimy jedynie w prostych przypadkach.

Przypusémy, ze f(x) = g(h(x)) jest ztozeniem funkcji g i h definiowanych
odpowiednio formutami ¢ = ¥(z,y) i ¢ = ¢(z,y). Wtedy f jest definiowana
formuta

Jz ply « 2] Az 2].

Jest to oczywiscie formuta klasy >, jezeli formuty ¢ i ¢ sa tej klasy.
Zatozmy, ze funkcja f definiowana réwnos$ciami

f(0,y) = g(y) oraz f(x+1,y)=h(f(z,y),2,y)

zostata okreslona za pomoca funkeji g i h definiowanych formutami ¢ = ¢(y, 2) i
W =1)(t, z,y, z) odpowiednio. Wtedy funkcja f jest definiowana formuta (zapisana
dla poprawienia czytelnosci bez operacji podstawiania)
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da [ B(a, z,2) AJv < a (B(a,0,v) Ap(y,v)) A
AVi<zIu<adv<a(B(a,i,u)ApBla,i+ 1,v) AN(u,i,y,v)) ].

Formuta ta méwi, ze a zawiera informacje o ciagu f(0,y), f(1,y),..., f(z,y) i 2z
jest ostatnim wyrazem tego ciagu, albo moéwi, ze ciag ((a,0), 5(a,1),...,5(a,z)
spelnia rownosci wymagane w rekurencyjnej definicji funkcji f od ciagu

f(()?y)?f(]‘?y)?' * "f(x7y>' D
Whiosek 1.13 Relacje pierwotnie rekurencyjne sq klasy 1 ¢ sq klasy I1;.

Dowdd. Niech R bedzie relacja pierwotnie rekurencyjna, a ¢ — formutg klasy ¥,
definiujacg wykres funkcji charakterystycznej relacji R. Tak wiec

chp(Z) =y & N = [T, y].

Wtedy
R(Z) & N Eply — 0][7] & N | ~¢ly — 1][7]. O

1.11 Twierdzenie o postaci normalnej
Innym przyktadem zastosowania funkcji 3 jest

Twierdzenie 1.14 (o postaci normalnej) Kazda formula klasy ¥ jest réwno-
wazna w modelu standardowym N formule z jednym nieograniczonym kwantyfika-
torem egzystencjalnym postaci ry dla pewnej formuly ¢ klasy Ay.

Dowé6d. Dowodzimy ten fakt przez indukcje ze wzgledu na budowe formuty klasy
Y1, patrz str. 8. W kilku przypadkach wynika on z praw rachunku kwantyfikato-
row pozwalajacych dopisaé¢ niepotrzebny kwantyfikator, przestawi¢ kwantyfikator
egzystencjalny z alternatywa badz innym kwantyfikatorem tego samego rodzaju.
Do rozwazenia pozostaja trzy przypadki.

Przypusémy, ze rozwazamy koniunkcje dwoch formut klasy ¥y, ktérym na mocy
zatozenia indukcyjnego mozna nada¢ podang postaé¢. Taka koniunkcje mozna tez
wyrazi¢ w nastepujacy sposob:

(Fz ) A (Fx ) & 3z Fu,v < z (B(2,0,u) A B(z,1,0) A plz — u] Aplx — v]).

Analogicznie postepujemy, gdy rozwazamy formute otrzymang z formuty klasy
3, przez dopisanie nieograniczonego kwantyfikatora egzystencjalnego. Wtedy

Jy dx ¢ & 2z Fu,v < 2 (B(2,0,u) A B(z,1,0) A plr — ully « v]).

Bardziej skomplikowana sytuacje mamy, gdy do formuty klasy ¥, dopisujemy
ograniczony kwantyfikator ogélny. Wtedy

Vy<tdr e IzVy <tde<z(B(zy,2)Nyp). O

1.12 Relacje rekurencyjnie przeliczalne

Zbiory (relacje) rekurencyjnie przeliczalne zwykle definiujemy inaczej. Réwnowaz-
nie mozemy przyjaé, ze relacja S C N* jest rekurencyjnie przeliczalna, jezeli

S(%) & Jy R(Z,y)

dla pewnej pierwotnie rekurencyjnej relacji R C N**!. Korzystajac z twierdze-
nia o postaci normalnej rekurencyjng przeliczalnos¢ mozna wyrazi¢ w terminach
definiowalnogci:
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Whniosek 1.15 Relacja S € N¥ jest rekurencyjnie przeliczalna wtedy i tylko wte-
dy, gdy jest definiowana formutq klasy 3.

Dowdéd. Z wniosku 1.13 wynika, ze relacja R w powyzszej definicji S jest defi-
niowana formutla klasy ;. Definicja S powstaje przez dopisanie do definicji R
kwantyfikatora egzystencjalnego, a wiec pozostaje w klasie ;.

Z drugiej strony, jezeli S ma definicje klasy >, to na podstawie twierdzenia o
postaci normalnej ma tez definicje, w ktorej kwantyfikator egzystencjalny zostaje
dopisany do pewnej formuty klasy Ay. Formula ta definiuje relacje pierwotnie
rekurencyjna (patrz twierdzenie 1.10). Relacje S mozna wiec zdefiniowaé w sposdb,
ktory swiadczy o tym, ze jest rekurencyjnie przeliczalna. O

Jest to pierwszy i nieco niejasny wynik $wiadczacy o tym, ze pojecia informa-
tyczne mozna definiowaé za pomoca definiowalnosci.

7 twierdzenia o postaci lub z jego dowodu mozna wyprowadzi¢ nastepujace
wtasnodci relacji rekurencyjnie przeliczalnych:

Lemat 1.16 Relacje pierwotnie rekurencyjne sq rekurencyjnie przeliczalne. Klasa
relacyi rekurencyjnie przeliczalnych jest zamknieta ze wzgledu na koniunkcje © al-
ternatywe, operacje rzutowania (definiowanie przez dopisywanie kwantyfikatora eg-
zystencjalnego) oraz na definiowanie za pomocq kwantyfikatoréw ograniczonych.0

1.13 Kodowanie ciggow

Majac funkcje # Godla mozemy ciagi liczb naturalnych kodowaé¢ za pomoca liczb
naturalnych.

Przyjmujemy, ze kazda liczba koduje pewien ciag, ze dtugos¢ ciggu kodowanego
przez a znajdujemy obliczajac lh(a) = ((a,0), a i-ty wyraz ciagu kodowanego przez
a jest réwny (a); = f(a,i + 1). Tak wiec liczba a koduje ciag (a)o, - - ., (@)in(a)-1-

7 wtasnosci funkcji § wynika, ze kazdy ciag skonczony jest kodowany przez
przez pewng liczbe naturalng. Nietrudno zauwazy¢, ze kazdy cigg jest kodowany
przez nieskonczonie wiele liczb.

Kodem ciggu nazywamy najmniejsza liczbe kodujaca ten ciag.

Dla ustalonego n symbolem (-, ..., -) bedziemy oznacza¢ funkcje przyporzad-
kowujaca n-ce liczb kod ciggu ztozonego z tych liczb. Tak wiec

(ag, ... an—1) = pz (Ih(z) =n A N\ (2); = a).

<n

Lemat 1.17 Funkcje (przyporzqdkowujgce wartosci) lh(a), (a); oraz {ag, ..., an_1)
sq pierwotnie rekurencyjne.

Dowdd. Nie budzi to watpliwosci w przypadku dwbch pierwszych funkcji. Trzecia
z funkcji jest pierwotnie rekurencyjna na mocy lematu 1.4, mozna ja tez zdefiniowac
wzorem

(ag, ... ,an-1) = px < f(max{ao,...,an-1},n) (lh(z) =nA N (2); = ),
i<n
gdzie f jest funkcja z twierdzenia 1.11 o funkcji £. O

Mozna zdefiniowaé tez bardziej skomplikowane funkcje operujace na kodach
ciagdéw, na przyktad funkcje conc, ktora dwom liczbom przyporzadkowuje kod
konkatenacji ciagow kodowanych przez te liczby
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conc(a,b) = px (Ih(x) = lh(a) + lh(b) A
AVYi < lh(a) (x); = (a); AVi < Ih(D) (2)in(a)+i = (b):)

oraz funkcje ¢, ktérej wartoscia jest kod ciggu otrzymanego z ciggu kodowanego
przez pierwszy argument przez dopisanie na koncu drugiego argumentu

c(a,b) = px (Ih(x) =lh(a) + 1 A
A (2)ina) = b AV < Ih(a) (x); = (a);) = conc(a, (b)).

Lemat 1.18 Funkcje conc i ¢ sq pierwotnie rekurencyjne.

Dowdéd. Lemat ten dowodzimy tak, jak poprzedni. W szczegdlnosci,
conc(a,b) = pxr < f(max{m(a),m(b)},h(a) + (b)) (Ih(z) = lh(a) + Lh(b) A

AVi < lh(a) (x); = (a); A Vi < Ih(D) (2)in@)+i = (b):),

gdzie
m(a) = pr < a (Vi < lh(a) (a); < z). O

1.14 Funkcje pierwotnie rekurencyjne dwéch zmiennych

Ten rozdzial ma charakter techniczny, bedziemy potrzebowaé¢ rekurencyjna cha-
rakteryzacje klasy ztozonej z funkcji pierwotnie rekurencyjnych dwéch zmiennych.

Symbolem P, bedziemy oznaczaé¢ najmniejsza klase, do ktérej naleza funkcje
151, I, funkcje state dwéch zmiennych, (-)., Sy zdefiniowana wzorem Sy(z,y) =
x + 1 oraz zdefiniowana w poprzednim rozdziale funkcja ¢, i ktora jest zamknieta
ze wzgledu na ztozenie oraz nastepujacy schemat rekursji prostej:

f(z,0) = g(z,0) oraz f(z,n+ 1) = h({z,n), f(z,n)).

Do klasy P,, oprécz wymienionych w definicji, nalezy tez funkcja (x,y) =
c(c(0,x),y). Aby sprawdzi¢ podana réwnos¢ wystarczy zauwazyé, ze 0 jest kodem
ciagu pustego. Dla wszystkich n € N klasa P, jest tez zamknieta ze wzgledu
na definiowanie wzorem k,(x,y) = (hi(z,y),...,h,(x,y)) Dowodzimy to przez
indukcje. Oczywiscie, ki(z,y) = (hi(z,y)) = ¢(0,hi(x,y)) nalezy do Ps, o ile
hy € P. Jezeli do P, naleza funkcje k, i h,,1, to nalezy tam takze funkcja k.1,
gdyZ knJrl(x?y) = C(kn(ili, y)7 hn+1<$,y)).

Mamy oczywisty fakt

Lemat 1.19 Funkcje z klasy P, majg po dwie zmienne @ s¢ pierwotnie rekuren-
cyjne. O

Niech f oznacza funkcje n zmiennych. Majac taka funkcje mozemy zdefiniowaé
funkcje f*: N? — N zadajac, aby

(@) = f(@)o s (@)na)

(f* tak naprawde nie zalezy od y).

Lemat 1.20 Jezeli f jest funkcjq pierwotnie rekurencyjng, to f* € P.
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Dowdéd. Dowodzimy to przez indukcje wynikajaca z definicji klasy funkcji pier-
wotnie rekurencyjnych.
Funkcja

S*(x,y) = S((2)o) = S2((2)o, y) = S2((L21(2,9))o(@), L22(2,))

nalezy do P, gdyz jest ztozeniem kilku funkcji z P (0(z,y) to warto$¢ funkcji
dwdbch zmiennych stale réwnej 0, korzystajac dalej z wartosci funkeji stalych sto-
sujemy analogicznag notacje). Dla funkcji stalych dopisanie * daje te sama funkcje
stala, ktora nalezy do P,. Mamy tez

I e(@y) = Lp((T)o, - -+, (2)n-1) = (@)1 = (I2,1(T, ¥)) (k-1)(2.0)

a wiec réwniez [}, € P.

Jezeli na przyklad f(Z) = g(h1(Z), ho(Z), h3(Z)), to
[ (@y) = g(hi(z,y), hy(x,y), ha(z,y)) = g"((hi (2, y), ha(z,y), hy(x, ), y).-
Przypusémy, ze m > 01i f: N1 — N spelnia réwnosci
f(#,0) = g(&) oraz f(Z,n+1)=h(Zn,f(Zn)).
Aby pokazaé, ze f* € Py, zdefiniujmy pomocnicza funkcje dwoch zmiennych F'
F(z,0) = ¢*(2,0) oraz F(z,n+1)=h"(c({(x)o,...,(®)m-1,n), F(x,n)),0).

Jezeli poprawimy definicje F' tak, aby zamiast x i n byly odpowiednie wyrazenia
zalezne od (x,n) (ich znalezienie nie jest to trudne), to okaze sie, ze funkcja F' jest
zdefiniowana zgodnie ze schematem rekursji z klasy P. Jezeli dodatkowo bedziemy
wiedzie¢, ze funkcje ¢g* i h* nalezg do P, to funkcja F' tez bedzie z klasy P». O
funkcji F' mozna dowies¢, ze

F(z,y) = f((£)o; -5 (#)m-1,9)-

Wiedzac, ze F' € P, pokazujemy, ze f* € P, korzystajac z zaleznosci

F (@ y) = F(, (2)m) = F(l1(2,9), (l21(2,9))me.y)-

Pely dowod lematu wymaga tylko uzupekienia wyzej przedstawionych rozu-
mowan i jest pozostawiony Czytelnikowi. O

7 udowodnionych lematéw wynika nastepujace

Twierdzenie 1.21 Klasa P, sklada sie dokladnie z pierwotnie rekurencyjnych
funkcyi dwoch zmiennych.

Dowdd. Dla pierwotnie rekurencyjnej funkcji f : N? — N mamy f(z,y) =
f*({x,y)). Wobec tego, jezeli f* € P,, to takze f € P,. O

1.15 Funkcja uniwersalna dla klasy P,

Majac rekurencyjng definicje klasy P, mozemy zdefiniowawaé bardzo prosty je-
zyk pozwalajacy programowac obliczenia funkcji pierwotnie rekurencyjnych dwéch
zmiennych.

Jezyk ten bedzie mial niespotykana ceche. Programami w tym jezyku beda
liczby naturalne (to jeszcze nic dziwnego) i to wszystkie.
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Aby okredlié¢ semantyke tego jezyka zdefiniujemy funkcje [| - |] : N — P» przy-
porzadkowujaca liczbie naturalnej n, czyli pewnemu programowi, funkcje [|n|] ob-
liczang przez ten program. Przyjmujemy, ze

I, jezeli (n)o =0,
I, jezeli (n)o =1,
funkcja stale rowna (n); jezeli (n)p = 2,
(n] = (). jezeli (n)y = 3,
Sy jezeli (n)y = 4,
c jezeli (n)y =5,
ztozenie [|(n):]] z [[(n)2]] 1 [|(72)s]] jezeli (n)o = 6,
funkcja definiowana rekurencyjnie z[|(n)1]] 1 [|(n)a|] jezeli (n)y > 6.

Oczywiscie, powyzsze ustalenia wymagaja doprecyzowania. Jezeli [|n|] jest zto-
zeniem, to definiujac je bierzemy [|(n)|] jako funkcje zewnetrzna oraz [|(n)s|] i
[|(n)s]] jako funkcje wewnetrzne. Jezeli funkcje [|n|] definiujemy przez rekursje, to
okreslajac jej warto$¢ dla 0 bierzemy funkcje [|(n)1]] , a w drugiej czesci definicji
postugujemy sie funkcja [|(n)o]].

Lemat 1.22 Zbiorem wartosci funkcji semantycznej [| - |] jest klasa Py. O

Przyjmijmy teraz, ze

x jezeli (n)p =0,

Yy jezeli (n)g =1,

(n) jezeli (n)y = 2,

(x)y jezeli (n)g = 3,
Un,z,y) =3 x+1 jezeli (n)g = 4,

c(x,y) jezeli (n)p =5,

U((n)1, U((n)2, 2,y),U((n)s, z,y)) jezeli (n)o = 6,

U((n)y,x,0) jezeli (n)g > 6 Ay =0,

U((n)g, (x,y —1),U(n,xz,y — 1))  jezeli (n)og >6 Ay > 0.

Podane wzory sg poprawng definicja pewnej funkcji U : N3 — N. Wynika to
z odpoowiedniego twierdzenia o definiowaniu przez indukcje. Funkcja U wydaje
si¢ réwniez obliczalna w sensie intuicyjnym. Mechaniczne urzadzenie obliczajace
te funkcje mozna uznaé¢ za interpreter rozwazanego jezyka programowania. Po
otrzymaniu programu n definiujacego pewng funkcje i dwdch jej argumentow x i y
urzadzenie to oblicza U(n,z,y) 1 tym samym znajduje wartos¢ [|n|](z,y). Mozna
bowiem dowies¢ (zostawiamy to zainteresowanemu Czytelnikowi), ze

Lemat 1.23 Dia wszystkich n,x,y € N zachodzi wzér U(n,z,y) = [|n|](x,y).

Dowéd. Korzystamy z indukcji ze wzgledu na n. O

Tak wiec, funkcja U po ustalenie pierwszego argumentu staje sie funkcja dwoch
zmiennych i nalezy do klasy P,. Ponadto kazdg funkcje z klasy P, mozna otrzymac
odpowiednio ustalajac pierwszy argument funkcji U. Funkcje U o takich wtasno-
Sciach nazywamy uniwesalna dla klasy P, (cho¢ zwykle chcemy jeszcze, aby byla
ona w jakims sensie tatwo obliczalna). Tym razem mamy jednak nastepujace

Twierdzenie 1.24 Funkcja U nie jest pierwotnie rekurencyjna.
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Dowéd. Zatézmy, ze U jest pierwotnie rekurencyjna. Wtedy pierwotnie rekuren-
cyjna jest rowniez funkcja

flz,y) =U(z,z,z)+ 1.

Poniewaz jest to funkcja dwoch zmiennych, wiec nalezy do klasy P, i dla odpo-
wiedniego n mamy

flz,y) =U(n, z,y)
dla wszystkich mozliwych z i y. Biorac x = y = n otrzymujemy jednak réwnosé

U(n,n,n) = f(n,n) =U(n,n,n) +1
ktora nie jest prawdziwa. Otrzymana sprzecznos¢ dowodzi tezy. O

Przedstawiona technika jest czesto wykorzystywana. Tym razem daje niewiele.
Po pierwsze, ze klasa funkcji pierwotnie rekurencyjnych nie jest dobra formalizacja
pojecia obliczalnosci: jest funkcja, ktora wydaje sie obliczalna, ktora nie jest pier-
wotnie rekurencyjna. Po drugie, znalezliSmy schemat rekursji, ktorego nie da si¢
sprowadzi¢ do rekursji prostej. W konicu wydaje sie uzasadniona hipoteza, ze jezeli
definicje klasy funkcji pierwotnie rekurencyjnych wzbogacimy o bardziej skompli-
kowane schematy rekursji, na przyktad taki, jak uzyty w definicji funkcji U, to
analogiczne rozumowanie pozwoli podaé¢ przyktady jeszcze bardziej skomplikowa-
nego schematu rekursji i funkcji obliczalnej, ktérej definicja wymaga uzycia tego
bardzo skomplikowanego schematu.

1.16 Rozszerzanie teorii o definicje nowych funkcji

Rozwazamy teorie z rownoscia, jej aksjomatami sg wigc migdzy innymi aksjomaty
rOWNOSCi.

Réwnosé bedziemy nazywaé prosta, jezeli jest albo postaci f(xy,...,z,) =y
dla pewnego n-arnego symbolu funkcyjnego f i pewnych zmiennych z,...,z,
oraz zmiennej y réznej od xq,...,x,, albo postaci x = y dla réznych zmiennych,
albo tez postaci ¢ = y dla statej ¢ i zmiennej y. Formula atomowa jest prosta,
jezeli jest prosta réwnoscia lub formuta atomowa postaci r(x1, . . ., z,) dla pewnych
zmiennych zq, ..., x,.

Lemat 1.25 Dla kazdej formuly t = u ze zmiennymi u oraz vy, ..., v, réoZnymi od
u 1stnieje koniunkcja prostych réownosci @, w ktorej oprocz wymienionych wystepujg
rowniez zmienne T = X1, ..., Ty, taka Ze w rachunku kwantyfikatorow z réwnoscig
daje sie dowie$¢ rownowazinosc
t=wu << 37 .

Dowdd. Lemat dowodzimy przez indukcje ze wzgledu na budowe termu ¢. Jezeli
t jest zmienng lub stala, to za ¢ bierzemy formute ¢ = u.

Przypusémy, ze t = f(t1, ). Z zalozenia indukcyjnego mamy koniunkcje pro-
stych réwnosci ¢ 1 g takie, ze

ty=u<< 37 p; oraz ty =u << IATs po.
Wtedy (jezeli odpowiednio dobierzemy zmienne ' i Zs)
flt,to) =ue Iy, (= Ata =10 A f(y, 1) =u) &
< Jyr, Y2 (371 pifu — yi]) A (3T2 olu — w)) A fly1,42) =u =

& Jy1, y2 371 3T (p1fu — ni] A palu — wo] A fyr, 42) = u).
Nietrudno zauwazy¢, ze ostatnia formuta ma zadang postaé. O
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Lemat 1.26 Dia kazdej formuly R(ty, ..., tx) (atomowej lub negacji atomowej, a

wiasciwie dowolnej) ze zmiennymi vy, . .., v, istniejg rézne od nich zmienne U =
Uy, ..., U, takie Ze nastepujgce formuly sq wzajemnie réownowazne w rachunku
kwantyfikatorow z réwnoscig

1) R(t,...,t),

i=1,...k

Dowdéd. Jest to oczywista konsekwencja aksjomatow rownosci. O

Whniosek 1.27 Dla kazdej formuly R(t, ..., t;) (atomowej lub negacji atomowej,
a wlasciwie dowolnej) ze zmiennymi vy, . .., v, istniejqg rézne od nich zmienne 4 =
Uty ..., Up OTAZ T = X1,...,Tm, a takie koniunkcja prostych rownoSci ¢, takie
ze nastepujgce formutly sq wzajemnie rownowazne w rachunku kwantyfikatorow z
rownosciq

1) R(ty,...,t),
2) 3 37 (p A R(uq, ..., ug)),
3) YuNZ (¢ = R(uy,...,ug)).
Dowdd. Jest to oczywista konsekwencja dwoch ostatnich lematow. O

Whniosek 1.28 W rachunku kwantyfikatorow z rownoscig kazda formuta jest row-
nowazna formule, w ktorej wystepujq tylko proste formuty atomowe. O

Przypusémy, ze w teorii T' z réwnoscia daje sie dowies¢ formute Vi Iyt (7, ),
gdzie 3 oznacza kwantyfikator istnieje doktadnie jeden” (istnieje y o wlasnosci ¢ i
kazde dwa takie y-ki sa réwne). Taka formute mozna wykorzystaé¢ do wprowadzenia
nowego symbolu funkcyjnego f. W tym celu roszerzamy teori¢ 7' o nowy aksjomat
lub definicje

VT (7, f(7)),

albo o rownowazne w teorii 1’ stwierdzenie

VI Vy (p(Z,y) & f(T) = y).

W otrzymanej w ten sposob teorii Ty dowolng formule 1) mozna przeksztatci¢
w 1)/ w nastepujacy sposob: sprawdzamy, czy w ¢ wystepuje symbol f; jezeli
nie wystepuje, to ¢’ = 1, w przeciwnym razie najpierw znajdujemy rownowazna
postac formuty 1 zbudowang wytacznie z prostych formut atomowych, a nastepnie
konstruujemy ' zastepujac w tej postaci formuty f(Z) = y formutami (&, y).
Teoria T i to przeksztalcenie majg nastepujace wlasnosci:

Twierdzenie 1.29 Przypusémy, ze T = VT Iy' o(Z,y), a Ty jest zdefiniowana
jak wyzej. Wtedy dla kazdej formuty 1 zapisanej w jezyku teorii T' rozszerzonym
o symbol f w teorii Ty daje sie dowies¢ jej réwnowazinosé z formutq ¢'. Ponadto,
jezeli formuta 1 bez symbolu f daje si¢ dowies¢ w teorii Ty, to daje si¢ tez dowiesc
w teorit T i to bez uzywania symbolu f. O
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Przytoczone twierdzenie méwi, ze wprowadzajac poprzez definicje nowe sym-
bole funkcyjne nie zwiekszamy mocy teorii, a jedynie zmieniamy sposoéb wyrazania
interesujacych nas wtasnosci. Mozemy na przyktad rozszerzy¢ arytmetyke o pote-
gowanie. Jezeli robimy co$ takiego, to najczedciej podajemy definicje rekurencyjna

2 =1 oraz 2" =2" .
Nie jest to jednak definicja w rozwazanym teraz sensie. W arytmetyce mozemy
definiowa¢ liczby naturalne, zwiazki miedzy liczbami, nawet zwiazki wyrazane za
pomoca funkcji, ale nie mozemy definiowa¢ funkcji. Wobec twierdzenia o defi-
niowaniu przez indukcje, przytoczona definicja jest poprawng, teoriomnogos$ciows
definicja pewnego obiektu (zbioru), ktory jest funkcja. Mozemy sie nia postugiwad,
mozemy nawet dodac¢ ja do arytmetyki. Dodajac mozemy jednak zwiekszy¢ moc
arytmetyki i na razie nie potrafimy tego zwiekszenia wykluczy¢.
Potegowanie mozna zdefiniowaé¢ w inny sposéb, przyjmujac, ze

" =y & o(r,n,y),
dla formuty ¢(x,n,y) postaci
Jda (6(a,0,1) AVi <nVz <a(B(a,i,z)= Pla,i+1,z-2)) A Bla,n,y)

(B(a,n,y) to formuta definiujaca funkcje 8 Godla, formuta ¢ stwierdza istnienie
liczby a kodujacej ciag °, 2!, ..., 2™ i uznaje y za ostatni wyraz tego ciagu). Aby do
podanej definicji dato sie zastosowaé twierdzenie 1.29, trzeba jeszcze w arytmetyce
dowiesc¢, ze
Vo Vn 3'y oz, n,y).

Jest to mozliwe dopiero w dostatecznie silnej arytmetyce, na przyktad w arytmety-
ce Peano. Tak wiec arytmetyke Peano mozna bez zwiekszania jej mocy rozszerzy¢
o potegowanie. W podobny sposdb mozna rozszerzy¢ arytmetyke Peano o wiele
innych funkcji rekurencyjnych (choé nie o wszyskie).

Zauwazmy jeszcze, ze mnozenia nie mozna zdefiniowaé za pomoca dodawania.
Doktadniej, gdyby w arytmetyce Presburgera dato sie zdefiniowa¢ mnozenie, to na
mocy twierdzenia 1.29 kazde zdanie arytmetyczne miatoby sw6j odpowiednik w
arytmetyce Presburgera i teoria () bylaby cze$cig arytmetyki Presburgera, ktéra
jest zupetna. Przeczy to jednak twierdzeniu Godla o niezupelnosci arytmetyki,
ktore zostanie dowiedzione w nastepnym rozdziale.

2 Funkcje rekurencyjne

2.1 Troche historii

Twierdzenie Godla zostato ogloszone w 7 wrzesnia 1930 roku podczas konferencji
w Kroélewcu. Jest opublikowane w pracy ze stycznia 1931 roku.

Takze w 1931 roku Herbrand pisze list do Godla, w ktérym zwraca uwage na
bardziej ogblne funkcje rekurencyjne. Herbrand ginie w Alpach w lipcu 1931.

W latach 1932 — 1935 Alonzo Church i jego uczen Stephen Kleene rozwija-
li A-rachunek i zdefiniowali pojecie funkcji A-definiowalnych. Wiele spostrzezen i
uzyskiwanych wynikéw podpowiadato, ze udato sie im sformalizowaé¢ pojecie ob-
liczalnosci. Przez pewien czas argumentem przeciw byly ktopoty z wykazaniem
A-definiowalnosci funkeji f(n) = n — 1. Udalo sie ten fakt dowiesé¢ Kleene’emu w
1932 roku.
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Godel chyba zostatl zaproszony do wspotpracy nad obliczalnoscia, ale odnosit
sie sceptycznie do tego projektu. Jednak podczas wyktadu w Princeton wiosng
1934 roku zaproponowal zgodnie z sugestiami Herbranda pewne uogolnienie po-
jecia funkcji pierwotnie rekurencyjnych, patrz str. 23. W ten sposob pojawita sie
definicja tzw. funkcji ogdélnie rekurencyjnych, nazywanych dzisiaj rekurencyjnymi
wedtug Herbranda i Godla. Sam Godel nie byt chyba przekonany, ze da sie dowiesé
oczekiwane wtasnosci tak definiowanych funkcji.

W 1936 ukazaly sie prace Churcha i Kleene’ego, w ktorych zostato dowie-
dzione, ze klasy funkcji A-definiowalnych i ogélnie rekurencyjnych sa réwne. Przy
okazji Church opublikowal teze méwiaca, ze naturalne funkcje obliczalne (w sen-
sie potocznym lub intuicyjnym) sa A-definiowalne i — réwnowaznie — ogélnie re-
kurencyjne. W tych pracach zostata tez wykazana ich zamknietosé ze wzgledu
na operacje¢ minimum. Dato to mozliwos$¢ zdefiniowania p-rekurencyjnosci, dzisiaj
najczesciej wykorzystywanej definicji rekurencyjnosci. Jednak przez pewien czas
pojecie rekurencyjnosci rozumiano jako ogélng rekurencyjnosé. W Introduction
to Metamathematics Klenne’ego z 1952 roku klasa funkcji p-rekurencyjnych jest
wyraznie zdefiniowania i zostalo dowiedzione, ze jest réwna klasie funkcji ogdlnie
rekurencyjnych.

W 1936 roku, w momencie ukazania sie pracy Churcha, Alan Turing mial juz
przygotowa swoja prace o maszynach Turinga. Praca byta bogata w rézne tresci,
pokazywata moznosé¢ przeprowadzenia na maszynach Turinga rozmaitych obliczen
matematycznych, zawierata konstrukcje uniwersalnej maszyny Turinga, a takze
dowdd nierozstrzygalnosci pewnej teorii. Po krétkim zamieszaniu dotyczacym ory-
ginalnosci pracy, zostata ona opublikowana pod koniec roku. W 1937 roku ukazata
sie praca Turinga z dowodem rownowaznos$ci A-definiowalnosci i obliczalnosci na
maszynach Turinga oraz z teza analogiczng do tezy Churcha.

Takze w 1936 roku ukazata sie praca Emila Posta zawierajaca definicje urza-
dzenia podobnego do maszyny Turinga i przeswiadczenie autora, ze jego pomyst
okaze si¢ rownowazny rekurencyjnosci.

Pionierem badan nad obliczalnoscia jest prawdopodobnie Emil Post. Jednak
swoje wyniki z lat 1920-22 opublikowat dopiero w 1943 roku. Proponowal pojecie
obliczenia wzorowane na obliczeniach algebraicznych, patrz str. 26.

2.2 Definicje

Klasa funkcji rekurencyjnych jest najmniejsza klasg czesciowych funkeji natural-
nych zawierajaca wszystkie funkcje I, , i zamknieta ze wzgledu na zlozenie, rekur-
sje prosta i operacje minimum. Funkcje nazywamy rekurencyjna, jezeli nalezy do
klasy funkcji rekurencyjnych.

Zbior (relacja) X C N* jest rekurencyjny, jezeli jego funkcja charakterystyczna
chx jest rekurencyjna.

Lemat 2.1 Funkcje pierwotnie rekurencyjne sq rekurencyjne.

Dowdéd. Majac funkcje I, , tatwo przez rekursje wydefiniowac funkcje state, ogra-
niczone odejmowanie 1 i ograniczone odejmowanie. Wiemy, ze ch(m,n) = 1—(n—
m). Teraz mozemy zdefiniowa¢ nastepnik przyjmujac S(m) = pn (ch<(m,n) = 0).
Nastepnik pozwala wydefiniowa¢ wszystkie pozostate funkcje pierwotnie rekuren-
cyjne. O

Przyktadem czeSciowej funkeji rekurencyjnej moze by¢

flm) =pn (nxn=m).
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Przytoczona definicja funkcji rekurencyjnych jest najogoélniejsza. Odpowiada
pojeciu obliczalno$ci. Przez dtuzszy czas pojecie rekurencyjnosci byto ograniczane
do funkcji catkowitych. My tez mozemy si¢ juz ograniczy¢ do funkcji catkowitych.

Najprosciej klasa catkowitych funkcji rekurencyjnych mozna zdefiniowaé jako
zbidr tych funkeji rekurencyjnych (np. w podanym sensie), ktére sa catkowite.

Inna definicja moéwi, ze klasa (catkowitych) funkcji rekurencyjnych jest naj-
mniejsza klasa funkeji naturalnych zawierajacag wszystkie funkcje I, 5, i zamknigta
ze wzgledu na ztozenie, rekursje prosta i efektywna operacje minimum.

Najczesciej przyjmuje sie, ze klasa (catkowitych) funkeji rekurencyjnych jest
najmniejsza klasa funkcji naturalnych zawierajaca wszystkie funkcje I, 5, funkcje
stale, dodawanie i mnozenie, a takze funkcje charakterystyczng nieréwnosci ch. i
zamknieta ze wzgledu na ztozenie i efektywna operacje minimum.

Funkcje rekurencyjne zgodnie z ostatnia definicja okresla sie czasem jako u-
rekurencyjne. Dowodzi sie, ze trzy ostatnie definicje sa réwnowazne.

2.3 Najwazniejsze wlasnosci funkcji rekurencyjnych

W rozdziale 1.6 jest podane wiele przyktadéw funkcji pierwotnie rekurencyjnych,
ktore w zwiazku z tym sa rekurencyjne. Takze rezultaty tego rozdziatu pozostaja
prawdziwe, gdy zamiast pierwotnej rekurencyjnosci bedzie w nich mowa o reku-
rencyjnosci. Jednak w lemacie o podstawianiu teraz istotne jest niejawne zatozenie
o catkowitosci podstawianej funkcji.

Nawet jezeli nie mamy wiedzy o zamknietosci klasy funkcji rekurencyjnych
na rekursje prosta (patrz ostatnia definicja klasy funkcji rekurencyjnych) mozemy
postgiwacé sie funkcjg f Godla. Co prawda, w dowodzie lematu o (§ korzystaliSmy
z silni, ale nie korzystaliémy z rekurencyjnosci tej funkcji.

Lemat 2.2 Klasa funkcji rekurencyjnych jest zamknieta ze wzgledu na rekursje
prostq.

Dowdd. Przypusémy, ze funkcja f jest definiowana przez rekursje prosta wzorami
f(@,0) =g(Z) oraz f(Z,n+1)=h(Zn, (T n))

dla pewnych rekurencyjnych (i catkowitych) funkcji g i h. Zauwazmy, ze réwnosé
f(#,n) =y zachodzi wtedy i tylko wtedy, gdy

Jda (6(a,0) = g(Z) AVi < n (B(a,i+ 1) = h(Z,i,0(a,i))) A Bla,n) =y).
Z lematu o podstawianiu otrzymujemy, ze
f(@n) =y < Ja R(Z,n,y,a)
dla pewnej rekurencyjnej relacji R. Funkcja f jest rekurencyjna, poniewaz
f(@,n) = (pz R(Z,n, (2)o, (2)1))o. B
Podobnie dowodzimy

Lemat 2.3 Funkcja Ackermanna jest rekurencyjna.
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Dowdéd. Dowdd jest podobny do poprzedniego. Polega na zdefiniowaniu relacji
moéwigeej, ze a koduje dostatecznie duzo informacji o funkcji Ackermanna, aby
mozna byto ustali¢, ze A(m,n) = k. Uméwmy sie, ze a koduje informacje o funkcji
Ackermanna w taki sposob, ze dla niezbednych ¢ oraz 7 mamy

((a)i); = A(, 7).
Przypomnijmy, ze funkcja Ackermanna spelnia rownosci
A(0,n) =n+1, A(m+1,0) = A(m,1) oraz A(m+1,n+1) = A(m, A(m+1,n)).

Przyjmijmy, ze napis R(m,n, k,a) oznacza, ze

((@)m)n =k A lh(a) >m A Ih((a)n) >n A

AVj < Ih((a)o) (((a)o); =j +1) A
AV <m (Ih((a)i) > 1 A ((@)it1)o = ((a)i)1) A
)

AV < m ¥ < Ih((@)isr) (h((@)) > (@in)s A (@it = (@)@,
Mozna dowies¢, ze R oznacza relacje rekurencyjng taka, ze
A(m,n) =k < Ja R(m,n,k,a).
Jezeli tak, to funkcje Ackermanna mozna tez zdefiniowa¢ wzorem
A(m,n) = (px R(m,n, (x)o, (x)1))o-

Jest to wiec funkcja rekurencyjna O

2.4 Definiowalnosé¢

Funkcje i relacje rekurencyjne sg definiowane za pomoca formut o analogicznych
wtasnosciach do formutl definiujacych funkcje i relacje pierwotnie rekurencyjne.
Tym razem jednak na og6ét mozna dowie$¢ réwnowaznosé, a rekurencyjnos¢ mozna
charakteryzowaé za pomoca definiowalnosci.

Twierdzenie 2.4 Funkcja jest rekurencyina wtedy i tylko wtedy, gdy jest definio-
walna formutq klasy ;.

Dowéd. Istotny fragment dowodu to zamknietos¢ klasy funkcji definiowalnych
formutami klasy ¥ ze wzgledu na operacje minimum. Przypu$émy wiec, ze funkcja
f: N¥1 — N jest definiowana formuta ¢ € ¥, formuta 3 € A definiuje funkcje
Godla (i
hE) = py (f(@,y) =0).
Funkcja h jest definiowana formutlg

WY(Z,2) = (&, 2,0) ATt Vi < z Fu <t (B(t,i,u) ANu>0A (X, 1,u)).

Jezeli natomiast funkcja f : N¥ — N jest definiowana formula klasy 1, to dla
pewnej relacji pierwotnie rekurencyjnej R € N**2 mamy

f(@) =y < 3z R(Z,y, 2).

Zauwazmy, ze wtedy

J(@) = (ut (R(Z, ()o, (t)1)))o- O
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Lemat 2.5 Zbior jest rekurencyjny wtedy i tylko wtedy, gdy jest definiowany za-
rowno formutq klasy ¥, jak i [T,

Dowadd.

Whniosek 2.6 Zbior X jest rekurencyjnie przeliczalny wtedy 1 tylko wtedy, gdy jest
definiowalny formutq klasy ;.

3 Inne formalizacje obliczalnosci

3.1 Funkcje ogdlnie rekurencyjne

W tym rozdziale bedziemy rozwazac¢ prymitywny jezyk bez spojnikow logicznych i
kwantyfikatorow, z jednym symbolem relacyjnym =, stata 0, zmiennymi i wieloma
symbolami funkcyjnymi, wsrod ktorych jest potencjalnie nieskonczenie wiele sym-
boli kazdej arnosci. Termy w tym jezyku definiujemy w zwykty sposéb. Jednoar-
gumentowy symbol funkcyjny S bedzie mial szczegdlne znaczenie, w szczegdlnosci
jest wykorzystywany do reprezentowania liczb naturalnych. Przyjmujemy, ze

0=0 oraz n+ 1= 5(n).

Term n bedziemy uwazaé za reprezentacje liczby naturalnej n.

W razie potrzeby i zaleznie od kontekstu symbole funkcyjne bedziemy dzieli¢
na stale, o ustalonym znaczeniu i zmienne, bez okreslonego znaczenia. Symbol S
zawsze bedzie mial okreslone znaczenie. Intuicyjnie oznacza on operacje nastepnika
i zawsze bedzie wystepowat w tej roli.

Réwnoscig badz réownaniem nazywamy napis postaci

f(tl,...,tn) - t,

gdzie f jest n-arnym symbolem funkcyjnym bez okre$lonego znaczenia (a wiec roz-
nym od S), a ty,...,t,,t sa dowolnymi termami rozwazanego jezyka. Zauwazmy,
ze tak rozumiana réwnos$¢ nie ma wtasnosci symetrii. Jej intuicyjna interpreta-
cja jest nastepujaca: obliczenie wartosci funkcji f dla argumentéw tq,...,t, jest
rownowazne obliczeniu wartosci t.

Ukladem réwnosei (lub réwnan) nazywamy dowolny ciag réwnosci. Symbolem
gtéwnym uktadu nazywamy pierwszy zapisany w nim symbol funkcyjny.

Przyktadami (piecioma) uktadéw réownan sa

flzr, o xn) =glhi(xy, .o z0), o (2, 2))

ztozony z jednej réwnosci, zwykle przyjmyjemy, ze symbole g, h; ..., hy majg okre-
slone znaczenie,

f(x,0) = g(x) oraz f(x,5(y)) = h(z,y, f(z,y)),
(dla g i h o okreslonym znaczeniu),
f(0) = 5(0) oraz f(S(x)) = S(5(0)),

f(0) = S(0) oraz f(z) = S(5(0)),
f(S(x)) = 5(5(0)).
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Pierwszy uktad zlozony z jednego réwnania jest uzywany zwykle do okreslenia
ztozenia i bedzie rzeczywiscie definiowaé ztozenie. Drugi — jest standardowa defi-
nicja przez prosta rekursje. Trzeci jest przyktadem definicji warunkowej, powinien
definiowa¢ funkcje przyjmujaca wartos¢ 1 dla 0 i 2 dla pozostatych argumentéw.
Kolejny — jest przyktadem definicji, ktora bedzie uwazana za niepoprawna. Ostatni
definiuje funkcje czesciowa okreslona dla liczb réznych od 0.

Z tego typu definicje najczesciej jakos i to dobrze rozumiemy. Dowodzenie ich
wlasnodci wymaga jednak sprecyzowania ich znaczenia. 7Z uktadéw réwnan be-
dziemy wyprowadza¢ réwnosci — wnioski. W tym celu przyjmiemy trzy reguty
wnioskowania:

r r[lw_f(mu""@)]?f(MV"’@):
fna, ... sm) =m’ rlz < n]’ [z« m]

=

Y

przy czym pierwsza z tych regul stosujemy tylko wtedy, gdy symbol f oznacza
pewng funkcje, ktora argumentom nq, ..., n, przypisuje warto$¢ m. Druga reguta
stwierdza, ze z rownania mozna wywnioskowa¢ réwnanie powstajace przez zasta-
pienie zmiennej x dowolnym termem reprezentujacym liczbe naturalng. Ostatnia
reguta mowi, ze dowolne wystapienie termu f(nq,...,ng) mozna zastapi¢ przez
jego warto$¢ m pod warunkiem, ze réwnos$¢ f(ny,...,ng) = m tez daje si¢ wypro-
wadzi¢ z rozwazanego uktadu.

Przyjmijmy, ze U jest uktadem réwnan. Symbolem U* bedziemy oznaczac¢ naj-
mniejszy zbiér rownan zawierajacy U i zamkniety ze wzgledu na podane reguty
wnioskowania. Symbol U F r oznacza, ze rownanie r daje sie wyprowadzi¢ z uktadu
U, a wiec, ze r € U*. Kazdy uktad rownan wyznacza pewng relacje

Wy ={{n1,...,ne,m) € NV U b gy(ng, ... ng) = m},
gdzie gy jest gléwnym symbolem uktadu U.

Lemat 3.1 Dla kazdego uktadu réwnan U relacja Wy jest przeliczalnie rekuren-
cyjna. Wobec tego, jezeli relacja Wy jest jednoznacza, to jest wykresem pewnej
funkcyi rekurencyinej. O

Zdarza sie, ze relacja Wy € N**1 nie jest jednoznaczna. Takie uktady nie sa
interesujace i nie bedziemy ich rozwazac¢. Jezeli jednak Wy jest jednoznaczna, to
jest wykresem pewnej funkcji Fyy : N¥ — N zdefiniowanej wzorem

Fy(ny,...,ng) =m < (ng,...,ng,m) € Wy.

Teraz znowu sa mozliwe dwie sytuacje: albo w uktadzie wystepuja, oprocz S, inne
symbole funkcyjne o ustalonym znaczeniu, albo nie. W pierwszym przypadku o
funkcji Fy méwimy, ze jest definiowana uktadem U z funkcjami (ktére w konkret-
nych sytuacjach nalezatoby wymieni¢ i poda¢ odpowiednio$¢ miedzy wymienio-
nymi funkcjami i uzytymi symbolami). W drugim, o funkcji Fy méwimy, ze jest
definiowana uktadem U (bez funkcji pomocniczych).

Funkcje definiowane uktadami réwnan (bez funkeji pomocniczych) nazywamy
ogdlnie rekurencyjnymi lub rekurencyjnymi wedtug Herbranda-Godla, a wszyst-
kie takie funkcje tworza klase funkcji ogdlnie rekurencyjnych lub rekurencyjnych
wedtug Herbranda-Gadla.

Zachodzi dos¢ oczywisty

Lemat 3.2 Klasa funkcyi ogolnie rekurencyjnych jest zamknieta ze wzgledu na de-
fintowanie uktadami z funkcjami. W szczegolnosci, klasa ta jest zamknieta ze wzgle-
du na ztozenie 1 rekursje prostqg. O
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Analogicznie, analizujgc zwykty uktad rownosci definiujgcy funkcje Ackerman-
na pokazuje sie

Whiosek 3.3 Funkcja Ackermanna jest ogolnie rekurencyjna. O

Wiemy juz, ze funkcje ogdlnie rekurencyjne sa (u)-rekurencyjne. Zachodzi tez
twierdzenie odwrotne:

Twierdzenie 3.4 Funkcje p-rekurencyjne sq ogolnie rekurencyjne. W szczegolno-
sci, funkcje definiowane za pomocq operacji minimum sq¢ defintowane uktadami
rownosci z funkcjami.
Dowé6d. Aby dowie$é cate twierdzenie wystarczy dowies¢ jego druga czesc.

Przyjmijmy, ze

F(x) = py G(z,y) =0

zaktadajac dla uproszczenia notacji, ze funkcja F' jest jednoargumentowa. Zdefiniu-
jemy teraz dwa uktady definiujgce funkcje F', z symbolem gtéwnym f i symbolem
g odpowiadajacym funkcji G.

Pierwszy z tych uktadéw ma nastepujaca postac:

f(x) =t(i(z,y), 9(x,y),y), t(S(x),0,y) =y, i(z,0)=5(0),
i(z, S(y)) = m(i(z,y), 9(z,y)),

a wystepujacy w nim symbol m odpowiada zwyktemu mnozeniu. Symbole ¢ oraz ¢
oznaczaja funkcje pomocnicze w dostatecznym stopniu definiowane przez podany
uktad.

Drugi uktad, tez ciekawy, z pomocniczym symbolem h sktada si¢ z réwnan

f(x) = hz,0,9(z,0)), h(r,y,0) =y, h(z,y,5(z)) = h(z,S(y), g9(x,S(y))).

Uzupeknienie szczegdétéw w dowodzie pozostawiam jako ¢wiczenie. O

3.1.1 Kilka koncowych uwag

Uktady réwnoscei, ktore pojawity sie w dowodzie poprzedniego twierdzenia, mato
przypominaja schematy rekurencyjne. Na przyktad, za ogdlnie rekurencyjng mu-
simy takze uznac¢ funkcje zdefiniowang rownoscia

t(5(x),0,y) =y

lub uktadem
h(y,0) =y, hly,5(z)) = h(S(y),9(5))).

Do wyktadu Godla w Pricenton w 1934 roku chyba nie pojawiaja si¢ zadne
dziwnie funkcje definiowane rekurencyjnie. Znane byto kilka przyktadéw funkcji
z definicjami przypominajgcymi definicje funkcji Ackermanna. Podczas wyktadu
sam Godel podal taki oto przykitad malo typowej definicji funkcji rekurencyjne;j

f(2,0) =aq1(z), f(O,y+1)=gay), f(Ly+1)=g3v)

flx+2,y+1)=h(f(z,y+2), f(z, f(z,y+2))),

ktory w najlepszym razie moze stuzy¢ za wzér definicji rekursji ,,drugiego stopnia”
i nie pokazuje nieznanych mozliwosci tworzenia nawet zwyktych schematéow rekur-
sji. Godel zdawal sobie sprawe z trudnosci zwiazanych z podaniem bardzo ogdlnego
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schematu rekurencyjnego (lub ogélnych schematow). Zdecydowal sie na zapropo-
nowanie niestychanie ogélnej definicji schematu rekursji, zgodnej z wczedniejsza,
bardzo dojrzata propozycja Herbranda, po jej po doprecyzowaniu. Herbrand za$
okazal si¢ niestychanie przenikliwym matematykiem o doskonalej intuicji. Nie jest
jasne, jaka role Herbrand przypisywat swojej definicji, i czy przewidywal jej zasto-
sowanie do formalizacji obliczalnosci. Zdaniem Godla raczej nie myslat o obliczal-
nosci w dzisiejszym rozumieniu, w tym o obliczalno$ci okreslanej jako mechaniczna.

Definicja rekurencyjnosci wedtug Herbranda-Godla moze byé rozpatrywana ja-
ko koncepcja Prologu funkcyjnego (w przeciwienstwie do Prologu rzeczywistego,
ktory jest predykatywny). W kazdym razie, zamiast o funkcji f mozemy moéwié
o jej wykresie Wy i dzigki temu réwnosci mozemy przeksztalcic w klauzule. Na
przyktad rownosé

flg(x), S(y)) = h(f(z,5()), fy,x))

mozna zamieni¢ na klauzule
Wie(a,byw) : — Wy(z,a), Ws(y,b), Wi(c,d,w), Wi(z,b,¢c), Wiy, z,d).

Jezeli w ten sposob przeksztalcimy uktad réwnosci definiujacy (dwuagumentowa)
funkcje f, to przynamniej teoretycznie powinnismy otrzymacé program Prologowy,
ktory pozwala testowaé hipotezy, czy f(x,y) = z. Spostrzezenie to mozna wyko-
rzysta¢ w dowodzie, ze w teoretycznym Prologu daje si¢ przeprowadzi¢ wszelkie
mozliwe obliczenia.

3.2 Systemy Posta

Emil Post jest prawdopodobnie pionierem badan nad obliczalnoscia. Urodzit sie w
Biatymstoku i w pierwszych latach XX wieku wyemigrowal z rodzicami do Stanéw
Zjednoczonych. Na poczatku lat dwudziestych zajmowat sie logika matematyczna.
Jest jednym z logikéw, ktorzy dowiedli twierdzenie o pelnosci dla rachunku zdan.
Chcial stworzy¢ system, ktory pozwalatby na sformalizowane generowanie praw
rachunku logicznego (np. rachunku zdan). Efektem tych prac jest pojecie systemu
Posta. Mimo ze prace nad swoimi systemami Post prowadzit w latach dwudzie-
stych, podstawowe wyniki zostaty opublikowane dopiero w 1943 roku. Systemy
Posta moga by¢ uwazane za formalizacje obliczalnosci.

Intuicje Post czerpal z rachunkow algebraicznych. Jezeli przeksztatcamy du-
ze wyrazenie algebraiczne, to skupiamy sie na pewnym fragmencie wyrazenia i
przeksztatcamy ten fragment. Na przyktad wyrazenie moze mieé¢ postac

Si(z +y)(x — y)Sa,

gdzie S 1.9, to fragmenty tego wyrazenia, poczatkowy i koncowy, ktére w tym mo-
mencie nie majg istotnego znaczenia. Przeksztalcajac, wyrazenie to zastepujemy
innym, np. postaci

Sy (2% — y*)Ss.

System Posta sktada sie z alfabetu X, skonczenie wielu aksjomatow i skonczenie
wielu regut przeksztatcania. Operuje na stowach nad swoim alfabetem. Aksjomaty
systemu sa wybranymi stowami nad jego alfabetem. Reguly sa to napisy postaci

u05’1u1 ce Smum — U}()Silwl . Sinwn,

gdzie ug, ..., Uy, Wo, ..., w, € X* sg stowami nad alfabetem 3, Sy,...,S5,, sa
réznymi zmiennymi (specjalnymi symbolami bez okreslonego znaczenia), a liczby
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i1,...,1, sg dowolnymi indeksami z przedziatu od 1 do m. Taka reguta wyznacza
relacje R C (3*)? taka, ze

(x,y) € R< Js1,... 8 € X" (T = upS1Uy - . . Sy A Y = WoSi, W1 - .. S;, Wy,)-

Intuicyjnie, relacja R sktada si¢ z par stéw x i y takich, ze stowo x mozna prze-
ksztalci¢ w stowo y zgodnie z reguty wyznaczajaca R.

Przypusémy, ze rozwazamy regute a.51bS; — bSyaSs. Wtedy do relacji R odpo-
wiadajacej tej regule naleza pary (abba,baaa) oraz (abba,bbaaba). Pary te przed-
stawiaja wszystkie mozliwe sposoby przeksztatcania stowa abba. Stowo to moze
zostaé przedstawione w postaci aS1bS; na dwa sposoby, tak aby: S1 =b1i1 5 = a
oraz tak, aby S; = ¢ 1 95 = ba.

Kazdy system Posta wyznacza pewien zbior stow X nad swoim alfabetem, a
mianowicie najmniejszy zbiér X, do ktérego nalezg wszystkie aksjomaty systemu,
i do ktorego wraz ze stowem = € X naleza wszystkie stowa y takie, ze (x,y) € R;
dla pewnego 7, a R; oznacza relacje wyznaczong przez i-ta regule systemu. Zbior
X bedziemy nazywaé generowanym przez system.

Na przyktad, system Posta nad alfabetem ¥ = {a,b} z aksjomatami ¢, a i b
oraz z regutami S — aSa oraz S — bSb generuje zbidr wszystkich palindroméw
nad alfabetem 3.

Aby wyjasni¢ zwigzek systemoéw Posta z gramatykami rozwazmy gramatyke
G generujaca réwniez zbiér palindroméw. Ta gramatyka korzysta ze zbioru X =
{a,b} symboli terminalnych, postuguje sie symbolami ze zbioru ¥ = ¥p U {E},
gdzie E jest jedynym, wykorzystywanym w tej gramatyce symbolem nieterminal-
nym, takze symbolem startowym. Aby generowaé zbiér palindroméw potrzebne
jest pie¢ produkcji: K — ¢, F — a, E — b, E — aFa oraz E — bEb. Te¢ grama-
tyke mozna przeksztatci¢ w system Posta nad alfabetem . Jedynym aksjomatem
tego systemu jest stowo E. System korzysta z pieciu regul przeksztatcania:

SlESQ — 8152, SlESQ — SlaSQ, SlESQ — SleQ,

SlESQ — SlaEaSQ, SlESQ — SlebSQ

Nietrudno zauwazy¢, ze zbiér X generowany przez ten system Posta sktada si¢ z
wszystkich stow, ktore daja sie¢ wyprowadzié¢ z symbolu startowego, zawierajacych
takze symbole nieterminalne, czyli wszystkich palindroméw nad 32, w ktorych litera
E wystepuje najwyzej jeden raz. Jezyk L(G) generowany przez gramatyke G jest
wiec rowny X N X%

Przedstawiony sposob zamiany gramatyki na system Posta jest bardzo ogolny
i pozwala dowies¢

Lemat 3.5 Dla dowolnej gramatyki G z alfabetem terminalnym Yr jest taki sys-
tem Posta, generujgcy zbior X, Ze jezyk

L(G)=XN%;. O



