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1 Funkcje pierwotnie rekurencyjne

Większość funkcji naturalnych, z którymi mamy do czynienia (także w informa-
tyce), to funkcje pierwotnie rekurencyjne. Nawet wielu matematyków nie potrafi
podać przykładów funkcji naturalnych, które nie są pierwotnie rekurencyjne, na
ogół nie mają z nimi do czynienia. Teoria takich funkcji bardzo przypomina teorię
funkcji rekurencyjnych, a podstawowe własności tych dwóch rodzajów funkcji są
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analogiczne. Z informatycznego punktu widzenia nieco ważniejsze są funkcje reku-
rencyjne, ale pierwotnie rekurencyjne też mają ważną interpretację: są to funkcje
obliczane za pomocą programów, w których pętle są wykonywane najwyżej z góry
zadaną (pierwotnie rekurencyjną) liczbę razy.

1.1 Wstępne pojęcia i oznaczenia

Pewne wprowadzane teraz pojęcia będą potrzebne dopiero wtedy, gdy będzie mowa
o funkcjach rekurencyjnych.

Będziemy rozważać funkcje (także wieloargumentowe), które są określone dla
argumentów będących liczbami naturalnymi, niekoniecznie wszystkich, i przyjmu-
jące wartości naturalne. Jeżeli f jest taką funkcją, to będziemy pisać, że f : Nk →
N . Ten zapis ma więc znaczenie inne niż zwykle. Tak rozumiane funkcje nazywa
się częściowymi. Funkcja określona dla wszystkich układów ~x ∈ Nk nazywa się cał-
kowitą. Najczęściej dopiero z kontekstu będzie wynikać, czy mówimy o funkcjach
całkowitych, czy częściowych.

Przyjmijmy, że

In,k(x1, . . . , xk) = xi oraz S(x) = x+ 1.

Funkcją charakterystyczą zbioru R ⊆ Nk nazywamy całkowitą funkcję chR :
Nk → N zdefiniowaną wzorem

chR(~x) =
{

0 jeżeli ~x ∈ R,
1 w przeciwnym razie.

Zamiast różnicą posługujemy sie raczej ograniczoną różnicą zdefiniowaną wzo-
rem

x− y = max{0, x− y}

Obie różnice powinny być oznaczane różnymi symbolami, ale nie będą.

1.2 Składanie i podstawianie

Będziemy też rozważać kilka sposobów definiowania nowych funkcji. Jeżeli mamy
funkcję f : Nk → N i k funkcji gi : Nn → N , to możemy zdefiniować funkcję h
przyjmując, że

h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

Ten sposób definiowania nazywamy składaniem funkcji.
Składanie funkcji jest znanym i jasnym pojęciem, zwłaszcza wtedy, gdy doty-

czy funkcji całkowitych. Dla funkcji częściowych definicja ta powinna zostać nieco
uzupełniona. Zamiast podawać precyzyjną definicję, złożenie opiszemy intuicyjnie,
jako funkcję, która jest obliczana za pomocą pewnego programu. Wyżej zdefinio-
wane h jest obliczane za pomocą programu

function złożenie(f, g1, . . . , gk, x1, . . . , xn);

begin

y1 := g1(x1, . . . , xn);

. . .
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yk := gk(x1, . . . , xn);

złożenie := f(y1, . . . , yk)

end;

Wynika stąd, że złożenie h jest funkcją, która jest określona dokładnie dla tych
argumentów, dla których ten program zakończy pracę, a jego wartością jest wtedy
wynik obliczeń, czyli wartość funkcji złożenie w sensie informatycznym.

Oprócz składania rozważamy też podstawianie. Jest to operacja trudna do
precyzyjnego zdefiniowania. Przykładem funkcji definiowanej przez podstawianie
jest

h(x1, x2, x3, y, z) = f(z, g(x2, x3), x2, g′(x2, z, x1)).

Funkcję tę można zdefiniować za pomocą składania w następujący sposób:

h(x1, x2, x3, y, z) =

= f(I5,5(x1, x2, x3, y, z), g2(x1, x2, x3, y, z), I5,2(x1, x2, x3, y, z), g4(x1, x2, x3, y, z)).

Jest to złożenie funkcji f , I5,5, I5,2 oraz

g2(x1, x2, x3, y, z) = g(I5,2(x1, x2, x3, y, z), I5,3(x1, x2, x3, y, z)),

g4(x1, x2, x3, y, z) = g′(I5,2(x1, x2, x3, y, z), I5,5(x1, x2, x3, y, z), I5,1(x1, x2, x3, y, z)).

Nietrudno zauważyć, że funkcje g2 i g4, a także funkcja h są zdefiniowane jako
złożenia. Jeżeli możemy posługiwać się funkcjami In,k i potrafimy składać funkcje,
to możemy także definiować funkcje za pomocą podstawiania.

1.3 Rekursja prosta

Mając dane funkcje f : Nk+2 → N i g : Nk → N , możemy zdefiniować funkcję
h : Nk+1 → N przyjmując, że spełnia ona następujące równości:

h(x1, . . . , xk, 0) = g(x1, . . . , xk)

oraz
h(x1, . . . , xk, y + 1) = f(h(x1, . . . , xk, y), y, x1, . . . , xk).

O tak zdefiniowanej funkcji h mówimy, że została zdefiniowana za pomocą rekursji
prostej. Schemat rekursji prostej stosujemy również dla k = 0. Wtedy przyjmuje
on postać

h(0) = c oraz h(y + 1) = f(h(y), y),

gdzie c jest pewną liczbą naturalną.
W przypadku funkcji częściowych, funkcja h definiowana przez rekursję prostą

powinna być obliczana przez następujący algorytm:

function rekursja(f, g, x1 . . . , xk, y);

begin

z := g(x1, . . . , xk);

for i := 0 to y − 1 do z := f(z, i, x1, . . . , xk);

rekursja := z

end;
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1.4 Operacja minimum

W końcu, dla funkcji f : Nk+1 → N możemy zdefiniować funkcję

h(x1, . . . , xk) = µ y(f(x1, . . . , xk, y) = 0)

przyjmującą dla argumentów x1, . . . , xk jako wartość najmniejszą liczbę y taką, że
f(x1, . . . , xk, y) = 0. O tej funkcji h mówimy, że została zdefiniowana za pomocą
operacji minimum. Nie musi to być funkcja całkowita, nawet dla całkowitej funkcji
f .

Funkcja h definiowana za pomocą operacji minimum powinna być obliczana
przez następujący algorytm:

function minimum(f, x1 . . . , xk);

begin

y := 0;

while f(x1, . . . , xk, y) 6= 0 do y := y + 1;

minimum := y

end;

Operację minimum będziemy stosować w kilku szczególnych przypadkach. I tak
dla relacji R ⊆ Nk+1 przyjmujemy

µy R(x1, . . . , xk, y) = µy (chR(x1, . . . , xk, y) = 0),

µy < z R(x1, . . . , xk, y) = µy (R(x1, . . . , xk, y) ∨ y = z),

µy ¬ z R(x1, . . . , xk, y) = µy (R(x1, . . . , xk, y) ∨ y = z + 1).

Operacje minimum w dwóch ostatnich linijkach nazywamy ograniczonymi.
Będziemy zajmować się też efektywną operację minimum, a więc taką, która jest

stosowana pod pewnymi warunkami, tylko do całkowitych funkcji f , które dodat-
kowo dla każdych x1, . . . , xk przyjmują dla pewnego y wartość f(x1, . . . , xk, y) = 0.

1.5 Funkcje i zbiory pierwotnie rekurencyjne

Pierwsza1 praca poświęcona funkcjom definiowanym przez rekursję ukazała się
1888 roku. R Dedekind rozważał w niej funkcje definiowane w sposób będący
uogólnieniem definicji dodawania, mnożenia i potęgowania. Około 1919 roku Tho-
ralf Skolem rozważał arytmetykę z funkcjami pierwotnie rekurencyjnymi. Od 1925
był znany przykład Wilhelma Ackermanna funkcji definiowanej przez rekursję, ale
nie dającej się zdefiniować przez rekursję prostą. Taką jest funkcja Ackermanna2

spełniająca równania

A(0, n) = n+1, A(m+1, 0) = A(m, 1) oraz A(m+1, n+1) = A(m,A(m+1, n)).
1Na podstawie książki Romana Murawskiego Funkcje rekurencyjne i elementy metamatema-

tyki.
2Podana funkcja została w rzeczywistości wprowadzona przez Rózsę Péter i Raphaela Ro-

binsona i jest prostszą wersją oryginalnej funkcji Ackermanna. Ta ostatnia jest definiowana (z
dokładnością do kolejności argumentów) wzorami

ϕ(0, n, x) = n+ x, ϕ(1, 0, x) = 0, ϕ(2, 0, x) = 1, ϕ(m, 0, x) = x gdy m > 2,

ϕ(m+ 1, n+ 1, x) = ϕ(m,ϕ(m+ 1, n, x), x).

W szczególności mamy ϕ(1, n, x) = n · x oraz ϕ(2, n, x) = xn.
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Funkcje definiowane przez rekursję po raz pierwszy w istotny sposób wykorzy-
stał Kurt Gödel.

Rozważał on najmniejszą klasę funkcji zawierającą następnik S, funkcje stałe
oraz funkcje In,k i wszystkie inne, które można zdefiniować używając wymienionych
za pomocą składania i rekursji prostej. Klasa ta nazywa się klasą funkcji pierwotnie
rekurencyjnych, a jej elementy to funkcje pierwotnie rekurencyjne. W pracy Gödla
funkcje te były nazywane rekurencyjnymi, w tamtym czasie autor nie doceniał i
nie potrzebował innych funkcji definiowanych przez rekursję.

Zbiór X ⊆ Nk jest pierwotnie rekurencyjny, jeżeli jego funkcja charakterystycz-
na chX jest pierwotnie rekurencyjna.

1.6 Przykłady funkcji i zbiorów pierwotnie rekurencyjnych

Bez trudu dowodzimy, że dodawanie, mnożenie i potęgowanie są funkcjami pier-
wotnie rekurencyjnymi. Schematy rekursji prostej definiujące te funkcje są po-
wszechnie znane. Wobec tego wszelkie wielomiany o współczynnikach naturalnych
są pierwotnie rekurencyjne. Także silnia jest funkcją pierwotnie rekurencyjną.

Jeżeli A jest funkcją Ackermanna (patrz str. 4), a ϕ jest oryginalną funkcją
rozważaną przez Ackermanna (patrz przypis na str. 4), to funkcje

Am(n) = A(m,n)

oraz
ϕm(n, x) = ϕ(m,n, x)

są pierwotnie rekurencyjne.
Pierwotnie rekurencyjna są również funkcje minus(m,n) = m− n (tzw. ogra-

niczone odejmowanie) oraz minus1(m) = m − 1 (ograniczone odejmowanie 1).
Świadczą o tym następujące definicje:

minus1(0) = 0 oraz minus1(m+ 1) = I2,2(minus1(m),m)

minus(m, 0) = I1,1(m) oraz minus(m,n+ 1) = minus1(minus(m,n)).

Najprostszym przykładem relacji pierwotnie rekurencyjnej jest relacja mniej-
szości. Mamy bowiem

ch<(m,n) = 1− (n−m).

Także relacja większości jest pierwotnie rekurencyjna, gdyż

ch>(m,n) = ch<(n,m) = ch<(I2,2(m,n), I2,1(m,n)).

Kolejnymi przykładami są słabe relacje porządkujące:

ch¬(m,n) = 1− ch>(m,n) oraz ch­(m,n) = 1− ch<(m,n).

Teraz można wykazać pierwotną rekurencyjność relacji równości i różności:

ch=(m,n) = ch¬(m,n)) + ch­(m,n) oraz ch6=(m,n) = 1− ch=(m,n).

Lemat 1.1 (o podstawianiu) Jeżeli relacja R ⊆ N3 i funkcja f : N2 → N są
pierwotnie rekurencyjne, to relacja R′ taka, że

R′(m,n, k, l)⇔ R(f(m,n),m, k)

też jest pierwotnie rekurencyjna. Liczby m,n, k, l można w tym lemacie zastąpić
dowolnej długości układami liczb.
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Dowód. Funkcją charakterystyczną relacji R′ jest

chR′(m,n, k, l) = chR(f(m,n),m, k)

definiowana za pomocą podstawiania z funkcji chR i f . 2

Kilka dalszych własności relacji pierwotnie rekurencyjnych zostało dowiedzione
w rozdziale 1.8, po pewnym komentarzu metodologicznym.

Lemat 1.2 Definicje warunkowe nie wyprowadzają poza klasę funkcji pierwotnie
rekurencyjnych, a więc jeżeli funkcje g : Nk → N i h : Nk → N są pierwotnie
rekurencyjne, a R ⊆ Nk jest pierwotnie rekurencyjną relacją, to także funkcja
g : Nk → N zdefiniowana wzorem

f(~m) =
{
g(~m) jeżeli R(~m),
h(~m) w pozostałych przypadkach

jest pierwotnie rekurencyjna. Nietrudno też zauważyć, że analogiczną własność ma-
ją bardziej skomplikowane definicje warunkowe, z większą liczbą wykluczających się
wzajemnie warunków.

Dowód. Zauważmy, że funkcję f można zdefiniować również równością

f(~m) = g(~m) · (1− chR(~m)) + h(~m) · chR(~m). 2

Lemat 1.3 Jeżeli funkcja f : Nk+1 → N jest pierwotnie rekurencyjna, to funkcje

g(~m, n) =
∑
i<n

f(~m, i) oraz

h(~m, n) =
∏
i<n

f(~m, i)

są pierwotnie rekurencyjne.

Dowód. Funkcję g : Nk+1 → N definiuje się przez rekursję prostą następującymi
równościami

g(~m, 0) = 0 oraz g(~m, n+ 1) = g(~m, n) + f(~m, n).

Funkcję h definiujemy podobnie używając iloczynu. 2

Lemat 1.4 Jeżeli R ⊆ Nk+1 jest relacją pierwotnie rekurencyjną, to funkcja

f(~m, n) = µx < n R(~m, x),

definiowana za pomocą operacji minimum ograniczonego (patrz str. 4), też jest
pierwotnie rekurencyjna.

Dowód. Aby dowieść ten lemat wystarczy zauważyć, że funkcja f spełnia nastę-
pujące równości

f(~m, 0) = 0

oraz

f(~m, n+ 1) =


f(~m, n) jeżeli f(~m, n) < n,
n jeżeli f(~m, n) ­ n i R(~m, n),
n+ 1 w pozostałych przypadkach. 2
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1.7 Definiowalność

Matematycy efekty swojej pracy formułują w postaci twierdzeń, a następnie do-
wodzą. Przykładem może być następujące

Twierdzenie 1.5 Zbiór liczb pierwszych jest pierwotnie rekurencyjny.

Czasem efektem pracy matematyków są jednak schematy twierdzeń. Są to
stwierdzenia takiej na przykład postaci: jeżeli w dalszym ciągu zamiast ϕ wy-
powiem arytmetyczną formułę, tylko z kwantyfikatorami ograniczonymi, to otrzy-
mam

Twierdzenie 1.6 Zbiór {n ∈ N : ϕ(n)} jest pierwotnie rekurencyjny.

Matematyk wypowiadający twierdzenie nikogo nie dziwi. Może być jednak
dziwne, że za jednym razem może wypowiedzieć nieskończenie wiele twierdzeń.
Schematy to coś bardziej skomplikowanego od twierdzeń. I raczej nie możemy się
bez nich obejść. W logice mamy wiele schematów aksjomatów i reguł dowodzenia.
W arytmetyce mamy schemat indukcji i używając go dowodzimy na przykład in-
ne, bardziej wygodne w użyciu schematy indukcji. Wrocławski profesor Czesław
Ryll-Nardzewski wykazał, że arytmetycznego schematu indukcji nie można zastą-
pić skończonym zbiorem aksjomatów nie ograniczając przy tym mocy arytmetyki
Peano.

Sytuacja jest jeszcze bardziej skomplikowana. Posługujemy się dwoma rodza-
jami formuł. Za formułę można uznać stwierdzenie „13 jest liczbą pierwszą”. Ale
formuły to także pewne obiekty matematyczne, które mają różne, dające się do-
wieść własności. Zwykle są to ciągi specjalnych obiektów – znaków. Przyjmijmy,
że są to elementy zbioru F . Dla stwierdzenia ϕ, takiego jak wyżej, można utwo-
rzyć obiekt ϕ ∈ F , który jest sformalizowaną wersją stwierdzenia ϕ. Takie obiekty
będziemy nazywać standardowymi formułami.

Chcielibyśmy użyć formułę ϕ w definicji zbioru takiego, jak {n ∈ N : ϕ(n)}. Nie
możemy tego jednak zrobić bezpośrednio pisząc {n ∈ N : ϕ[n]}. Popełnilibyśmy
błąd taki, jak pisząc {n ∈ N : 5}. Zarówno 5, jak i ϕ to przedmioty, a nie wymagane
tutaj własności. Aby poradzić sobie z tym problemem musimy określić „znaczenie”
ϕ. Robimy to definiując pojęcie spełniania, w szczególności definiując relację N |=
ϕ[h] spełniania formuły ϕ w strukturze N przy wartościowaniu h. Mając taką
relację zbiór {n ∈ N : ϕ(n)} możemy zdefiniować3 jako {n ∈ N : N |= ϕ[n]}.

Po takim skomplikowaniu języka możemy wykazać, że bez względu na to, jaką
mam na myśli arytmetyczną formułę ϕ, bez kwantyfikatorów nieograniczonych,
zachodzi

Twierdzenie 1.7 Zbiór {n ∈ N : N |= ϕ[n]} jest pierwotnie rekurencyjny.

Dwa ostatnie twierdzenia mówią właściwie to samo, a występujące w nich zbio-
ry są identyczne. Wynika to z ogólnego i bardzo ważnego schematu, wyjaśniającego
sytuację, stwierdzającego, że dla dowolnej arytmetycznej formuły ϕ zachodzi

Twierdzenie 1.8 Własność ϕ(n) zachodzi wtedy i tylko wtedy, gdy N |= ϕ[n].

Dowód. 2

Twierdzenie 1.7 ma jeszcze ogólniejszą postać:
3Pisząc ϕ(n) mam na myśli własność ϕ, w której ściśle określoną zmienną (wolną) zastąpiłem

liczbą n. Z drugiej strony w wyrażeniu N |= ϕ[n] mam na myśli spełnianie przy wartościowaniu,
które tej określonej zmiennej (a właściwie jej odpowiednikowi) przyporządkowuje liczbę n.
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Twierdzenie 1.9 Dla każdej formuły arytmetycznej ϕ ∈ F , bez kwantyfikatorów
nieograniczonych, zbiór {n ∈ N : N |= ϕ[n]} jest pierwotnie rekurencyjny.

Precyzyjniejsze sformułowanie tego twierdzenia wraz z dowodem jest zamiesz-
czone w następnym rozdziale. Teraz zauważmy, że jest to twierdzenie, a nie sche-
mat, powinien wynikać z niego schemat 1.7, a wobec z twierdzenia 1.8 powinien
też wynikać schemat 1.6.

Co więcej, twierdzenie 1.9 wydaje się silniejsze od 1.7. W przeciwieństwie do
tego ostatniego, podaje własności dowolnych formuł, także niestandardowych, o
ile takie istnieją. A nie jest jasne, czy można wykluczyć ich istnienie. Z rozważań
związanych w twierdzeniem Gödla o niezupełności wynika, że często w arytmetyce
mamy do czynienia z analogiczną sytuacją, w której dla dowolnej liczby naturalnej
n dowodzi się własność ϕ(n), ale nie można dowieść zdania ∀x ϕ(x). Oznacza
to, że w pewnym sensie nie da się wykluczyć istnienia niestandardowych liczb
naturalnych.

1.8 Klasy ∆0, Σ1 i ∏1

Symbolem ∆0 oznaczamy najmniejszą klasę formuł języka arytmetyki zawierającą
formuły atomowe i zamkniętą ze względu na łączenie formuł za pomocą spójników,
poprzedzanie negacją i dopisywanie kwantyfikatorów ograniczonych ∀x < t oraz
∃x < t, gdzie t jest termem, w którym nie występuje zmienna x.

Klasa Σ1 jest najmniejszą klasą formuł języka arytmetyki zawierającą formu-
ły klasy ∆0 i zamkniętą ze względu na łączenie formuł spójnikami koniunkcji i
alternatywy, a także dopisywanie kwantyfikatorów egzystencjalnych ∃ oraz ogól-
nych kwantyfikatorów ograniczonych ∀x < t, gdzie t jest termem, w którym nie
występuje zmienna x.

Klasa
∏
1 jest najmniejszą klasą formuł języka arytmetyki zawierającą formu-

ły klasy ∆0 i zamkniętą ze względu na łączenie formuł spójnikami koniunkcji i
alternatywy, a także dopisywanie kwantyfikatorów ogólnych ∀ oraz egzystencjal-
nych kwantyfikatorów ograniczonych ∃x < t, gdzie t jest termem, w którym nie
występuje zmienna x.

Relacja R ⊆ Nk jest klasy ∆0, jeżeli jest definiowana formułą klasy ∆0, a więc
jeżeli jest zbiorem postaci4 {~n ∈ Nk : N |= ϕ[~n]} dla pewnego ϕ ∈ ∆0.

Analogicznie definiujemy relacje klasy Σ1 i
∏
1. Relację nazywamy arytmetycz-

ną, jeżeli jest definiowana (w powyższym sensie) pewną formułą języka arytmetyki.

Twierdzenie 1.10 Relacje klasy ∆0 są pierwotnie rekurencyjne.

Dowód. Ponieważ w języku arytmetyki mamy do dyspozycji tylko symbole ozna-
czające dodawanie i mnożenie, więc termy języka arytmetyki definiują wyłącznie
wielomiany o współczynnikach naturalnych, które są funkcjami pierwotnie reku-
rencyjnymi.

Stąd, z pierwotnej rekurencyjności relacji < i = oraz z lematu o podstawianiu
otrzymujemy, że formuły atomowe języka arytmetyki definiują relacje pierwotnie
rekurencyjne.

Jeżeli formuła ϕ definiuje pierwotnie rekurencyjną relację R, to formuła ¬ϕ
definiuje relację S, której funkcja charakterystyczna wyraża się wzorem

chS(~x) = 1− chR(~x),
4Napis N |= ϕ[~n] oznacza, że formuła ϕ jest spełniona w strukturze N przy wartościowaniu,

które zmiennym z pewnego, ustalonego ciągu, zawierającego wszystkie zmienne wolne formuły
ϕ, przyporządkowuje kolejno wyrazu ciągu ~n.
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która oczywiście jest pierwotnie rekurencyjna.
Jeżeli formuły ϕ1 i ϕ2 definiuje pierwotnie rekurencyjne relacje R1 i R2, to

formuła ϕ1 ∨ ϕ2 definiuje relację S, której funkcja charakterystyczna wyraża się
wzorem

chS(~x) = chR1(~x) · chR2(~x),

która też jest pierwotnie rekurencyjna.
Jeżeli ϕ definiuje pierwotnie rekurencyjną relację R, to formuła ∃x < y ϕ (gdzie

y nie występuje w ϕ) definiuje relację S, której funkcja charakterystyczna wyraża
się wzorem

chS(~x, y) =
∏
i<y

chR(~x, i).

Tak zdefiniowana funkcja chS także jest pierwotnie rekurencyjna.
Korzystając z przedstawionych wyżej konstrucji funkcji charakterystycznych

można wykazać dowodzone twierdzenie w całej ogólności. 2

1.9 Funkcja β Gödla

Twierdzenie 1.11 Istnieją formuła β klasy ∆0 ze zmiennymi wolnymi x, y, z oraz
pierwotnie rekurencyjne funkcje β : N2 → N i f : N2 → N takie, że

1) β(a, i) = n wtedy i tylko wtedy, gdy N |= β[a, i, n],

2) β(a, i) ¬ a− 1 dla wszystkich a, i ∈ N ,

3) dla każdego ciągu a0, . . . , an−1 istnieje liczba a < f(max{a0, . . . , an−1}, n)
taka, że równości β(a, i) = ai są prawdziwe dla wszystkich i < n.

Dowód. Zdefiniujmy funkcję (term) op przyjmując, że

op(a, b) = (a+ b)(a+ b) + a+ 1,

relację (formułę) div taką, że

div(a, b)⇔ ∃c < a+ 1 (a = b · c)

(mówiącą, że a jest podzielne przez b) oraz pomocniczą formułę δ = δ(x, y, z)
równą

∃u < x∃v < x(op(u, v) = x ∧ div(u, 1 + (op(z, y) + 1) · v)).

Przyjmimy, że β = β(x, y, z) jest formułą

((δ ∧ z < x− 1) ∨ (z = x− 1)) ∧ ∀t < z ¬δ[z ← t],

gdzie x−1 oznacza ograniczone odejmowanie, a formuły z takimi termami powinny
zostać zastąpione równoważnymi, zapisanymi w języku arytmetyki. Oczywiście,
jest to formuła klasy ∆0. Najpierw sprawdzimy, że warunek 1) z tezy lematu
definiuje pewną funkcję.

Łatwo przekonać się, że formuła β definiuje relację jednoznaczną. Jeżeli mamy
N |= β[a, i,m] i N |= β[a, i, n] dla liczb n ¬ a− 1 i m < n, to także N |= δ[a, i,m]
(z pierwszego członu β i warunku N |= β[a, i,m]) oraz N |= ¬δ[a, i,m] (z drugiego
członu i drugiego warunku). Uzyskana sprzeczność dowodzi jednoznaczności relacji
definiowanej formułą β, a więc formuła ta definiuje pewną, niekoniecznie całkowitą,
funkcję β.

Weźmy teraz liczby a, i ∈ N . Są możliwe dwa przypadki.
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Przypadek 1: N |= (∀t < z ¬δ[z ← t])[a, i, a − 1]. W tym przypadku łatwo
przekonać się, że N |= β[a, i, a− 1].

Przypadek 2: N |= (∃t < z δ[z ← t])[a, i, a− 1]. Teraz możemy wziąć najmniej-
szą liczbę n < a − 1 taką, że N |= δ[a, i, n]. Ponieważ jest to najmniejsza taka
liczba, więc N |= (∀t < z ¬δ[z ← t])[a, i, n]. Łatwo sprawdzić, że N |= β[a, i, n].

Z przeprowadzonego rozumowania wynika, że dla każdych liczb a, i istnieje
liczba n ¬ a − 1 taka, że N |= β[a, i, n]. Tak więc, β jest funkcją całkowitą.
Pozostało dowieść, że funkcja β ma własność 3).

Przypuśćmy, że mamy (niepusty) ciąg a0, . . . , an−1 i m = max{a0, . . . , an−1}.
Bierzemy b = op(m,n). Liczba ta dla wszystkich i < n przekracza wartość op(ai, i).
Tworzymy teraz iloczyn

c =
∏
i<n

(1 + (op(ai, i) + 1) · b!).

Zauważmy, że liczba c została tak zdefiniowana, że c < ((b+ 1)!)n oraz własność

N |= δ[op(c, b!), i, ai]

zachodzi dla wszystkich i < n.
Aby dowieść twierdzenie, należy jeszcze pokazać, że

N |= β[op(c, b!), i, ai]

dla wszystkich i < n. Gdyby nie było to prawdą, to

N |= δ[op(c, b!), i, d]

dla pewnego i < n i dla pewnej liczby d < ai. Z różnowartościowości op otrzyma-
libyśmy, że liczba 1 + (op(d, i) + 1) · b! dzieli liczbę c.

Z drugiej strony, dla j < b liczby postaci 1 + (j + 1) · b! są parami względnie
pierwsze. Liczba op(d, i) jest mniejsza od b, a więc 1+(op(d, i)+1)·b! jest względnie
pierwsza z liczbami 1 + (op(ak, k) + 1) · b! i w konsekwencji jest względnie pierwsza
z c. Jedyną liczbą dzielącą c i względnie pierwszą z c jest 1. Równość 1 = 1 +
(op(d, i) + 1) · b! nie jest jednak możliwa.

Uzyskana sprzeczność świadczy o tym, że liczba a = op(c, b!) spełnia tezę twier-
dzenia. Określmy teraz

f(m,n) = op(((op(m,n) + 1)!)n, op(m,n)!).

Zdefiniowaliśmy w ten sposób pierwotnie rekurencyjną funkcję, która dla m =
max{a0, . . . , an−1} spełnia nierówność

a = op(c, b!) < op(((b+ 1)!)n, b!) = op(((op(m,n) + 1)!)n, op(m,n)!) = f(m,n).

Pozwala to zakończyć dowodzenie twierdzenia. 2
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1.10 Definiowalność funkcji pierwotnie rekurencyjnych

Wykresem funkcji f : Nk → N nazywamy relację

Wf = {〈~x, y〉 ∈ Nk+1 : f(~x) = y}.

W powyższym wzorze warunek f(~x) = y oznacza, że f jest określona dla argu-
mentu ~x i dla tego argumentu przyjmuje wartość y.

Funkcja jest definiowalna wtedy i tylko wtedy, gdy jej wykres jest definiowalny.
Z twierdzenia 1.11 wynika, że funkcja β i jej wykres są definiowalne formułą

klasy ∆0. W dalszym ciągu tę formułę będziemy nazywać β, jak w sformułowaniu
twierdzenia.

Twierdzenie 1.12 Wykresy funkcji pierwotnie rekurencyjnych są klasy Σ1.

Dowód. Wykresy funkcji In,k, + i · są definiowane odpowiednio formułami xk = y,
x1 + x2 = y oraz x1 · x2 = y.

Definiowalność wykresów bardziej skomplikowanych funkcji pierwotnie reku-
rencyjnych uzasadnimy jedynie w prostych przypadkach.

Przypuśćmy, że f(x) = g(h(x)) jest złożeniem funkcji g i h definiowanych
odpowiednio formułami ψ = ψ(x, y) i ϕ = ϕ(x, y). Wtedy f jest definiowana
formułą

∃z ϕ[y ← z] ∧ ψ[x← z].

Jest to oczywiście formuła klasy Σ1, jeżeli formuły ψ i ϕ są tej klasy.
Załóżmy, że funkcja f definiowana równościami

f(0, y) = g(y) oraz f(x+ 1, y) = h(f(x, y), x, y)

została określona za pomocą funkcji g i h definiowanych formułami ϕ = ϕ(y, z) i
ψ = ψ(t, x, y, z) odpowiednio. Wtedy funkcja f jest definiowana formułą (zapisaną
dla poprawienia czytelności bez operacji podstawiania)
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∃a [ β(a, x, z) ∧ ∃v < a (β(a, 0, v) ∧ ϕ(y, v)) ∧
∧ ∀i < x ∃u < a ∃v < a (β(a, i, u) ∧ β(a, i+ 1, v) ∧ ψ(u, i, y, v)) ] .

Formuła ta mówi, że a zawiera informacje o ciągu f(0, y), f(1, y), . . . , f(x, y) i z
jest ostatnim wyrazem tego ciągu, albo mówi, że ciąg β(a, 0), β(a, 1), . . . , β(a, x)
spełnia równości wymagane w rekurencyjnej definicji funkcji f od ciągu
f(0, y), f(1, y), . . . , f(x, y). 2

Wniosek 1.13 Relacje pierwotnie rekurencyjne są klasy Σ1 i są klasy
∏
1.

Dowód. Niech R będzie relacją pierwotnie rekurencyjną, a ϕ – formułą klasy Σ1
definiującą wykres funkcji charakterystycznej relacji R. Tak więc

chR(~x) = y ⇔ N |= ϕ[~x, y].

Wtedy
R(~x)⇔ N |= ϕ[y ← 0][~x]⇔ N |= ¬ϕ[y ← 1][~x]. 2

1.11 Twierdzenie o postaci normalnej

Innym przykładem zastosowania funkcji β jest

Twierdzenie 1.14 (o postaci normalnej) Każda formuła klasy Σ1 jest równo-
ważna w modelu standardowym N formule z jednym nieograniczonym kwantyfika-
torem egzystencjalnym postaci ∃xϕ dla pewnej formuły ϕ klasy ∆0.

Dowód. Dowodzimy ten fakt przez indukcję ze względu na budowę formuły klasy
Σ1, patrz str. 8. W kilku przypadkach wynika on z praw rachunku kwantyfikato-
rów pozwalających dopisać niepotrzebny kwantyfikator, przestawić kwantyfikator
egzystencjalny z alternatywą bądź innym kwantyfikatorem tego samego rodzaju.
Do rozważenia pozostają trzy przypadki.

Przypuśćmy, że rozważamy koniunkcję dwóch formuł klasy Σ1, którym na mocy
założenia indukcyjnego można nadać podaną postać. Taką koniunkcję można też
wyrazić w następujący sposób:

(∃x ϕ) ∧ (∃x ψ)⇔ ∃z ∃u, v < z (β(z, 0, u) ∧ β(z, 1, v) ∧ ϕ[x← u] ∧ ψ[x← v]).

Analogicznie postępujemy, gdy rozważamy formułę otrzymaną z formuły klasy
Σ1 przez dopisanie nieograniczonego kwantyfikatora egzystencjalnego. Wtedy

∃y ∃x ϕ⇔ ∃z ∃u, v < z (β(z, 0, u) ∧ β(z, 1, v) ∧ ϕ[x← u][y ← v]).

Bardziej skomplikowaną sytuację mamy, gdy do formuły klasy Σ1 dopisujemy
ograniczony kwantyfikator ogólny. Wtedy

∀y < t ∃x ϕ⇔ ∃z ∀y < t ∃x < z (β(z, y, x) ∧ ϕ). 2

1.12 Relacje rekurencyjnie przeliczalne

Zbiory (relacje) rekurencyjnie przeliczalne zwykle definiujemy inaczej. Równoważ-
nie możemy przyjąć, że relacja S ⊆ Nk jest rekurencyjnie przeliczalna, jeżeli

S(~x)⇔ ∃y R(~x, y)

dla pewnej pierwotnie rekurencyjnej relacji R ⊆ Nk+1. Korzystając z twierdze-
nia o postaci normalnej rekurencyjną przeliczalność można wyrazić w terminach
definiowalności:
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Wniosek 1.15 Relacja S ⊆ Nk jest rekurencyjnie przeliczalna wtedy i tylko wte-
dy, gdy jest definiowana formułą klasy Σ1.

Dowód. Z wniosku 1.13 wynika, że relacja R w powyższej definicji S jest defi-
niowana formułą klasy Σ1. Definicja S powstaje przez dopisanie do definicji R
kwantyfikatora egzystencjalnego, a więc pozostaje w klasie Σ1.

Z drugiej strony, jeżeli S ma definicję klasy Σ1, to na podstawie twierdzenia o
postaci normalnej ma też definicję, w której kwantyfikator egzystencjalny zostaje
dopisany do pewnej formuły klasy ∆0. Formuła ta definiuje relację pierwotnie
rekurencyjną (patrz twierdzenie 1.10). Relację S można więc zdefiniować w sposób,
który świadczy o tym, że jest rekurencyjnie przeliczalna. 2

Jest to pierwszy i nieco niejasny wynik świadczący o tym, że pojęcia informa-
tyczne można definiować za pomocą definiowalności.

Z twierdzenia o postaci lub z jego dowodu można wyprowadzić następujące
własności relacji rekurencyjnie przeliczalnych:

Lemat 1.16 Relacje pierwotnie rekurencyjne są rekurencyjnie przeliczalne. Klasa
relacji rekurencyjnie przeliczalnych jest zamknięta ze względu na koniunkcję i al-
ternatywę, operację rzutowania (definiowanie przez dopisywanie kwantyfikatora eg-
zystencjalnego) oraz na definiowanie za pomocą kwantyfikatorów ograniczonych.2

1.13 Kodowanie ciągów

Mając funkcję β Gödla możemy ciągi liczb naturalnych kodować za pomocą liczb
naturalnych.

Przyjmujemy, że każda liczba koduje pewien ciąg, że długość ciągu kodowanego
przez a znajdujemy obliczając lh(a) = β(a, 0), a i-ty wyraz ciągu kodowanego przez
a jest równy (a)i = β(a, i+ 1). Tak więc liczba a koduje ciąg (a)0, . . . , (a)lh(a)−1.

Z własności funkcji β wynika, że każdy ciąg skończony jest kodowany przez
przez pewną liczbę naturalną. Nietrudno zauważyć, że każdy ciąg jest kodowany
przez nieskończonie wiele liczb.

Kodem ciągu nazywamy najmniejszą liczbę kodującą ten ciąg.
Dla ustalonego n symbolem 〈·, . . . , ·〉 będziemy oznaczać funkcję przyporząd-

kowującą n-ce liczb kod ciągu złożonego z tych liczb. Tak więc

〈a0, . . . , an−1〉 = µx (lh(x) = n ∧
∧
i<n

(x)i = ai).

Lemat 1.17 Funkcje (przyporządkowujące wartości) lh(a), (a)i oraz 〈a0, . . . , an−1〉
są pierwotnie rekurencyjne.

Dowód. Nie budzi to wątpliwości w przypadku dwóch pierwszych funkcji. Trzecia
z funkcji jest pierwotnie rekurencyjna na mocy lematu 1.4, można ją też zdefiniować
wzorem

〈a0, . . . , an−1〉 = µx < f(max{a0, . . . , an−1}, n) (lh(x) = n ∧
∧
i<n

(x)i = ai),

gdzie f jest funkcją z twierdzenia 1.11 o funkcji β. 2

Można zdefiniować też bardziej skomplikowane funkcje operujące na kodach
ciągów, na przykład funkcję conc, która dwom liczbom przyporządkowuje kod
konkatenacji ciągów kodowanych przez te liczby
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conc(a, b) = µx (lh(x) = lh(a) + lh(b) ∧

∧ ∀i < lh(a) (x)i = (a)i ∧ ∀i < lh(b) (x)lh(a)+i = (b)i)

oraz funkcję c, której wartością jest kod ciągu otrzymanego z ciągu kodowanego
przez pierwszy argument przez dopisanie na końcu drugiego argumentu

c(a, b) = µx (lh(x) = lh(a) + 1 ∧

∧ (x)lh(a) = b ∧ ∀i < lh(a) (x)i = (a)i) = conc(a, 〈b〉).

Lemat 1.18 Funkcje conc i c są pierwotnie rekurencyjne.

Dowód. Lemat ten dowodzimy tak, jak poprzedni. W szczególności,

conc(a, b) = µx < f(max{m(a),m(b)}, lh(a) + lh(b)) (lh(x) = lh(a) + lh(b) ∧

∧ ∀i < lh(a) (x)i = (a)i ∧ ∀i < lh(b) (x)lh(a)+i = (b)i),

gdzie
m(a) = µx < a (∀i < lh(a) (a)i ¬ x). 2

1.14 Funkcje pierwotnie rekurencyjne dwóch zmiennych

Ten rozdział ma charakter techniczny, będziemy potrzebować rekurencyjną cha-
rakteryzację klasy złożonej z funkcji pierwotnie rekurencyjnych dwóch zmiennych.

Symbolem P2 będziemy oznaczać najmniejszą klasę, do której należą funkcje
I2,1, I2,2, funkcje stałe dwóch zmiennych, (·)·, S2 zdefiniowana wzorem S2(x, y) =
x+ 1 oraz zdefiniowana w poprzednim rozdziale funkcja c, i która jest zamknięta
ze względu na złożenie oraz następujący schemat rekursji prostej:

f(x, 0) = g(x, 0) oraz f(x, n+ 1) = h(〈x, n〉, f(x, n)).

Do klasy P2, oprócz wymienionych w definicji, należy też funkcja 〈x, y〉 =
c(c(0, x), y). Aby sprawdzić podaną równość wystarczy zauważyć, że 0 jest kodem
ciągu pustego. Dla wszystkich n ∈ N klasa P2 jest też zamknięta ze względu
na definiowanie wzorem kn(x, y) = 〈h1(x, y), . . . , hn(x, y)〉 Dowodzimy to przez
indukcję. Oczywiście, k1(x, y) = 〈h1(x, y)〉 = c(0, h1(x, y)) należy do P2, o ile
h1 ∈ P2. Jeżeli do P2 należą funkcje kn i hn+1, to należy tam także funkcja kn+1,
gdyż kn+1(x, y) = c(kn(x, y), hn+1(x, y)).

Mamy oczywisty fakt

Lemat 1.19 Funkcje z klasy P2 mają po dwie zmienne i są pierwotnie rekuren-
cyjne. 2

Niech f oznacza funkcję n zmiennych. Mając taką funkcję możemy zdefiniować
funkcję f ∗ : N2 → N żądając, aby

f ∗(x, y) = f((x)0, . . . , (x)n−1)

(f ∗ tak naprawdę nie zależy od y).

Lemat 1.20 Jeżeli f jest funkcją pierwotnie rekurencyjną, to f ∗ ∈ P2.
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Dowód. Dowodzimy to przez indukcję wynikającą z definicji klasy funkcji pier-
wotnie rekurencyjnych.

Funkcja

S∗(x, y) = S((x)0) = S2((x)0, y) = S2((I2,1(x, y))0(x,y), I2,2(x, y))

należy do P2, gdyż jest złożeniem kilku funkcji z P2 (0(x, y) to wartość funkcji
dwóch zmiennych stale równej 0, korzystając dalej z wartości funkcji stałych sto-
sujemy analogiczną notację). Dla funkcji stałych dopisanie ∗ daję tę samą funkcję
stałą, która należy do P2. Mamy też

I∗n,k(x, y) = In,k((x)0, . . . , (x)n−1) = (x)k−1 = (I2,1(x, y))(k−1)(x,y),

a więc również I∗n,k ∈ P2.
Jeżeli na przykład f(~x) = g(h1(~x), h2(~x), h3(~x)), to

f ∗(x, y) = g(h∗1(x, y), h∗2(x, y), h∗3(x, y)) = g∗(〈h∗1(x, y), h∗2(x, y), h∗3(x, y)〉, y).

Przypuśćmy, że m > 0 i f : Nm+1 → N spełnia równości

f(~x, 0) = g(~x) oraz f(~x, n+ 1) = h(~x, n, f(~x, n)).

Aby pokazać, że f ∗ ∈ P2, zdefiniujmy pomocniczą funkcję dwóch zmiennych F :

F (x, 0) = g∗(x, 0) oraz F (x, n+ 1) = h∗(c(〈(x)0, . . . , (x)m−1, n〉, F (x, n)), 0).

Jeżeli poprawimy definicję F tak, aby zamiast x i n były odpowiednie wyrażenia
zależne od 〈x, n〉 (ich znalezienie nie jest to trudne), to okaże się, że funkcja F jest
zdefiniowana zgodnie ze schematem rekursji z klasy P2. Jeżeli dodatkowo będziemy
wiedzieć, że funkcje g∗ i h∗ należą do P2, to funkcja F też będzie z klasy P2. O
funkcji F można dowieść, że

F (x, y) = f((x)0, . . . , (x)m−1, y).

Wiedząc, że F ∈ P2 pokazujemy, że f ∗ ∈ P2 korzystając z zależności

f ∗(x, y) = F (x, (x)m) = F (I2,1(x, y), (I2,1(x, y))m(x,y)).

Pełny dowód lematu wymaga tylko uzupełnienia wyżej przedstawionych rozu-
mowań i jest pozostawiony Czytelnikowi. 2

Z udowodnionych lematów wynika następujące

Twierdzenie 1.21 Klasa P2 składa się dokładnie z pierwotnie rekurencyjnych
funkcji dwóch zmiennych.

Dowód. Dla pierwotnie rekurencyjnej funkcji f : N2 → N mamy f(x, y) =
f ∗(〈x, y〉). Wobec tego, jeżeli f ∗ ∈ P2, to także f ∈ P2. 2

1.15 Funkcja uniwersalna dla klasy P2

Mając rekurencyjną definicję klasy P2 możemy zdefiniowawać bardzo prosty ję-
zyk pozwalający programować obliczenia funkcji pierwotnie rekurencyjnych dwóch
zmiennych.

Język ten będzie miał niespotykaną cechę. Programami w tym języku będą
liczby naturalne (to jeszcze nic dziwnego) i to wszystkie.
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Aby określić semantykę tego języka zdefiniujemy funkcję [| · |] : N → P2 przy-
porządkowującą liczbie naturalnej n, czyli pewnemu programowi, funkcję [|n|] ob-
liczaną przez ten program. Przyjmujemy, że

[|n|] =



I2,1 jeżeli (n)0 = 0,
I2,2 jeżeli (n)0 = 1,
funkcja stale równa (n)1 jeżeli (n)0 = 2,
(·)· jeżeli (n)0 = 3,
S2 jeżeli (n)0 = 4,
c jeżeli (n)0 = 5,
złożenie [|(n)1|] z [|(n)2|] i [|(n)3|] jeżeli (n)0 = 6,
funkcja definiowana rekurencyjnie z[|(n)1|] i [|(n)2|] jeżeli (n)0 > 6.

Oczywiście, powyższe ustalenia wymagają doprecyzowania. Jeżeli [|n|] jest zło-
żeniem, to definiując je bierzemy [|(n)1|] jako funkcję zewnętrzną oraz [|(n)2|] i
[|(n)3|] jako funkcje wewnętrzne. Jeżeli funkcję [|n|] definiujemy przez rekursję, to
określając jej wartość dla 0 bierzemy funkcję [|(n)1|] , a w drugiej części definicji
posługujemy się funkcją [|(n)2|].

Lemat 1.22 Zbiorem wartości funkcji semantycznej [| · |] jest klasa P2. 2

Przyjmijmy teraz, że

U(n, x, y) =



x jeżeli (n)0 = 0,
y jeżeli (n)0 = 1,
(n)1 jeżeli (n)0 = 2,
(x)y jeżeli (n)0 = 3,
x+ 1 jeżeli (n)0 = 4,
c(x, y) jeżeli (n)0 = 5,
U((n)1, U((n)2, x, y), U((n)3, x, y)) jeżeli (n)0 = 6,
U((n)1, x, 0) jeżeli (n)0 > 6 ∧ y = 0,
U((n)2, 〈x, y − 1〉, U(n, x, y − 1)) jeżeli (n)0 > 6 ∧ y > 0.

Podane wzory są poprawną definicją pewnej funkcji U : N3 → N . Wynika to
z odpoowiedniego twierdzenia o definiowaniu przez indukcję. Funkcja U wydaje
się również obliczalna w sensie intuicyjnym. Mechaniczne urządzenie obliczające
tę funkcję można uznać za interpreter rozważanego języka programowania. Po
otrzymaniu programu n definiującego pewną funkcję i dwóch jej argumentów x i y
urządzenie to oblicza U(n, x, y) i tym samym znajduje wartość [|n|](x, y). Można
bowiem dowieść (zostawiamy to zainteresowanemu Czytelnikowi), że

Lemat 1.23 Dla wszystkich n, x, y ∈ N zachodzi wzór U(n, x, y) = [|n|](x, y).

Dowód. Korzystamy z indukcji ze względu na n. 2

Tak więc, funkcja U po ustalenie pierwszego argumentu staje się funkcją dwóch
zmiennych i należy do klasy P2. Ponadto każdą funkcję z klasy P2 można otrzymać
odpowiednio ustalając pierwszy argument funkcji U . Funkcję U o takich własno-
ściach nazywamy uniwesalną dla klasy P2 (choć zwykle chcemy jeszcze, aby była
ona w jakimś sensie łatwo obliczalna). Tym razem mamy jednak następujące

Twierdzenie 1.24 Funkcja U nie jest pierwotnie rekurencyjna.
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Dowód. Załóżmy, że U jest pierwotnie rekurencyjna. Wtedy pierwotnie rekuren-
cyjną jest również funkcja

f(x, y) = U(x, x, x) + 1.

Ponieważ jest to funkcja dwóch zmiennych, więc należy do klasy P2 i dla odpo-
wiedniego n mamy

f(x, y) = U(n, x, y)

dla wszystkich możliwych x i y. Biorąc x = y = n otrzymujemy jednak równość

U(n, n, n) = f(n, n) = U(n, n, n) + 1

która nie jest prawdziwa. Otrzymana sprzeczność dowodzi tezy. 2

Przedstawiona technika jest często wykorzystywana. Tym razem daje niewiele.
Po pierwsze, że klasa funkcji pierwotnie rekurencyjnych nie jest dobrą formalizacją
pojęcia obliczalności: jest funkcja, która wydaje się obliczalna, która nie jest pier-
wotnie rekurencyjna. Po drugie, znaleźliśmy schemat rekursji, którego nie da się
sprowadzić do rekursji prostej. W końcu wydaje się uzasadniona hipoteza, że jeżeli
definicję klasy funkcji pierwotnie rekurencyjnych wzbogacimy o bardziej skompli-
kowane schematy rekursji, na przykład taki, jak użyty w definicji funkcji U , to
analogiczne rozumowanie pozwoli podać przykłady jeszcze bardziej skomplikowa-
nego schematu rekursji i funkcji obliczalnej, której definicja wymaga użycia tego
bardzo skomplikowanego schematu.

1.16 Rozszerzanie teorii o definicje nowych funkcji

Rozważamy teorię z równością, jej aksjomatami są więc między innymi aksjomaty
równości.

Równość będziemy nazywać prostą, jeżeli jest albo postaci f(x1, . . . , xn) = y
dla pewnego n-arnego symbolu funkcyjnego f i pewnych zmiennych x1, . . . , xn
oraz zmiennej y różnej od x1, . . . , xn, albo postaci x = y dla różnych zmiennych,
albo też postaci c = y dla stałej c i zmiennej y. Formuła atomowa jest prosta,
jeżeli jest prostą równością lub formułą atomową postaci r(x1, . . . , xn) dla pewnych
zmiennych x1, . . . , xn.

Lemat 1.25 Dla każdej formuły t = u ze zmiennymi u oraz v1, . . . , vn różnymi od
u istnieje koniunkcja prostych równości ϕ, w której oprócz wymienionych występują
również zmienne ~x = x1, . . . , xm, taka że w rachunku kwantyfikatorów z równością
daje się dowieść równoważność

t = u⇔ ∃~x ϕ.

Dowód. Lemat dowodzimy przez indukcję ze względu na budowę termu t. Jeżeli
t jest zmienną lub stałą, to za ϕ bierzemy formułę t = u.

Przypuśćmy, że t = f(t1, t2). Z założenia indukcyjnego mamy koniunkcje pro-
stych równości ϕ1 i ϕ2 takie, że

t1 = u⇔ ∃~x1 ϕ1 oraz t2 = u⇔ ∃~x2 ϕ2.

Wtedy (jeżeli odpowiednio dobierzemy zmienne ~x1 i ~x2)

f(t1, t2) = u⇔ ∃y1, y2 (t1 = y1 ∧ t2 = y2 ∧ f(y1, y2) = u)⇔
⇔ ∃y1, y2 (∃~x1 ϕ1[u← y1]) ∧ (∃~x2 ϕ2[u← y2]) ∧ f(y1, y2) = u⇔
⇔ ∃y1, y2 ∃~x1 ∃~x2 (ϕ1[u← y1] ∧ ϕ2[u← y2] ∧ f(y1, y2) = u).

Nietrudno zauważyć, że ostatnia formuła ma żądaną postać. 2
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Lemat 1.26 Dla każdej formuły R(t1, . . . , tk) (atomowej lub negacji atomowej, a
właściwie dowolnej) ze zmiennymi v1, . . . , vn istnieją różne od nich zmienne ~u =
u1, . . . , uk, takie że następujące formuły są wzajemnie równoważne w rachunku
kwantyfikatorów z równością

1) R(t1, . . . , tl),

2) ∃~u

 ∧
i=1,...,k

ti = ui ∧R(u1, . . . , uk)

,

3) ∀~u

 ∧
i=1,...,k

ti = ui ⇒ R(u1, . . . , uk)

.

Dowód. Jest to oczywista konsekwencja aksjomatów równości. 2

Wniosek 1.27 Dla każdej formuły R(t1, . . . , tk) (atomowej lub negacji atomowej,
a właściwie dowolnej) ze zmiennymi v1, . . . , vn istnieją różne od nich zmienne ~u =
u1, . . . , uk oraz ~x = x1, . . . , xm, a także koniunkcja prostych równości ϕ, takie
że następujące formuły są wzajemnie równoważne w rachunku kwantyfikatorów z
równością

1) R(t1, . . . , tl),

2) ∃~u ∃~x (ϕ ∧R(u1, . . . , uk)),

3) ∀~u ∀~x (ϕ⇒ R(u1, . . . , uk)).

Dowód. Jest to oczywista konsekwencja dwóch ostatnich lematów. 2

Wniosek 1.28 W rachunku kwantyfikatorów z równością każda formuła jest rów-
noważna formule, w której występują tylko proste formuły atomowe. 2

Przypuśćmy, że w teorii T z równością daje się dowieść formułę ∀~x ∃y1 ϕ(~x, y),
gdzie ∃1 oznacza kwantyfikator „istnieje dokładnie jeden” (istnieje y o własności ϕ i
każde dwa takie y-ki są równe). Taką formułę można wykorzystać do wprowadzenia
nowego symbolu funkcyjnego f . W tym celu roszerzamy teorię T o nowy aksjomat
lub definicję

∀~x ϕ(~x, f(~x)),

albo o równoważne w teorii T stwierdzenie

∀~x ∀y (ϕ(~x, y)⇔ f(~x) = y).

W otrzymanej w ten sposób teorii Tf dowolną formułę ψ można przekształcić
w ψ′ w następujący sposób: sprawdzamy, czy w ψ występuje symbol f ; jeżeli
nie występuje, to ψ′ = ψ, w przeciwnym razie najpierw znajdujemy równoważną
postać formuły ψ zbudowaną wyłącznie z prostych formuł atomowych, a następnie
konstruujemy ψ′ zastępując w tej postaci formuły f(~x) = y formułami ϕ(~x, y).
Teoria Tf i to przekształcenie mają następujące własności:

Twierdzenie 1.29 Przypuśćmy, że T ` ∀~x ∃y1 ϕ(~x, y), a Tf jest zdefiniowana
jak wyżej. Wtedy dla każdej formuły ψ zapisanej w języku teorii T rozszerzonym
o symbol f w teorii Tf daje się dowieść jej równoważność z formułą ψ′. Ponadto,
jeżeli formuła ψ bez symbolu f daje się dowieść w teorii Tf , to daje się też dowieść
w teorii T i to bez używania symbolu f . 2
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Przytoczone twierdzenie mówi, że wprowadzając poprzez definicje nowe sym-
bole funkcyjne nie zwiększamy mocy teorii, a jedynie zmieniamy sposób wyrażania
interesujących nas własności. Możemy na przykład rozszerzyć arytmetykę o potę-
gowanie. Jeżeli robimy coś takiego, to najczęściej podajemy definicję rekurencyjną

x0 = 1 oraz xn+1 = xn · x.

Nie jest to jednak definicja w rozważanym teraz sensie. W arytmetyce możemy
definiować liczby naturalne, związki między liczbami, nawet związki wyrażane za
pomocą funkcji, ale nie możemy definiować funkcji. Wobec twierdzenia o defi-
niowaniu przez indukcję, przytoczona definicja jest poprawną, teoriomnogościową
definicją pewnego obiektu (zbioru), który jest funkcją. Możemy się nią posługiwać,
możemy nawet dodać ją do arytmetyki. Dodając możemy jednak zwiększyć moc
arytmetyki i na razie nie potrafimy tego zwiększenia wykluczyć.

Potęgowanie można zdefiniować w inny sposób, przyjmując, że

xn = y ⇔ ϕ(x, n, y),

dla formuły ϕ(x, n, y) postaci

∃a (β(a, 0, 1) ∧ ∀i < n ∀z < a (β(a, i, z)⇒ β(a, i+ 1, z · x)) ∧ β(a, n, y)

(β(a, n, y) to formuła definiująca funkcję β Gödla, formuła ϕ stwierdza istnienie
liczby a kodującej ciąg x0, x1, . . . , xn i uznaje y za ostatni wyraz tego ciągu). Aby do
podanej definicji dało się zastosować twierdzenie 1.29, trzeba jeszcze w arytmetyce
dowieść, że

∀x ∀n ∃1y ϕ(x, n, y).

Jest to możliwe dopiero w dostatecznie silnej arytmetyce, na przykład w arytmety-
ce Peano. Tak więc arytmetykę Peano można bez zwiększania jej mocy rozszerzyć
o potęgowanie. W podobny sposób można rozszerzyć arytmetykę Peano o wiele
innych funkcji rekurencyjnych (choć nie o wszyskie).

Zauważmy jeszcze, że mnożenia nie można zdefiniować za pomocą dodawania.
Dokładniej, gdyby w arytmetyce Presburgera dało się zdefiniować mnożenie, to na
mocy twierdzenia 1.29 każde zdanie arytmetyczne miałoby swój odpowiednik w
arytmetyce Presburgera i teoria Q byłaby częścią arytmetyki Presburgera, która
jest zupełna. Przeczy to jednak twierdzeniu Gödla o niezupełności arytmetyki,
które zostanie dowiedzione w następnym rozdziale.

2 Funkcje rekurencyjne

2.1 Trochę historii

Twierdzenie Gödla zostało ogłoszone w 7 września 1930 roku podczas konferencji
w Królewcu. Jest opublikowane w pracy ze stycznia 1931 roku.

Także w 1931 roku Herbrand pisze list do Gödla, w którym zwraca uwagę na
bardziej ogólne funkcje rekurencyjne. Herbrand ginie w Alpach w lipcu 1931.

W latach 1932 – 1935 Alonzo Church i jego uczeń Stephen Kleene rozwija-
li λ-rachunek i zdefiniowali pojęcie funkcji λ-definiowalnych. Wiele spostrzeżeń i
uzyskiwanych wyników podpowiadało, że udało się im sformalizować pojęcie ob-
liczalności. Przez pewien czas argumentem przeciw były kłopoty z wykazaniem
λ-definiowalności funkcji f(n) = n − 1. Udało się ten fakt dowieść Kleene’emu w
1932 roku.
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Gödel chyba został zaproszony do współpracy nad obliczalnością, ale odnosił
się sceptycznie do tego projektu. Jednak podczas wykładu w Princeton wiosną
1934 roku zaproponował zgodnie z sugestiami Herbranda pewne uogólnienie po-
jęcia funkcji pierwotnie rekurencyjnych, patrz str. 23. W ten sposób pojawiła się
definicja tzw. funkcji ogólnie rekurencyjnych, nazywanych dzisiaj rekurencyjnymi
według Herbranda i Gödla. Sam Gödel nie był chyba przekonany, że da się dowieść
oczekiwane własności tak definiowanych funkcji.

W 1936 ukazały się prace Churcha i Kleene’ego, w których zostało dowie-
dzione, że klasy funkcji λ-definiowalnych i ogólnie rekurencyjnych są równe. Przy
okazji Church opublikował tezę mówiącą, że naturalne funkcje obliczalne (w sen-
sie potocznym lub intuicyjnym) są λ-definiowalne i – równoważnie – ogólnie re-
kurencyjne. W tych pracach została też wykazana ich zamkniętość ze względu
na operację minimum. Dało to możliwość zdefiniowania µ-rekurencyjności, dzisiaj
najczęściej wykorzystywanej definicji rekurencyjności. Jednak przez pewien czas
pojęcie rekurencyjności rozumiano jako ogólną rekurencyjność. W Introduction
to Metamathematics Klenne’ego z 1952 roku klasa funkcji µ-rekurencyjnych jest
wyraźnie zdefiniowania i zostało dowiedzione, że jest równa klasie funkcji ogólnie
rekurencyjnych.

W 1936 roku, w momencie ukazania się pracy Churcha, Alan Turing miał już
przygotową swoją pracę o maszynach Turinga. Praca była bogata w różne treści,
pokazywała możność przeprowadzenia na maszynach Turinga rozmaitych obliczeń
matematycznych, zawierała konstrukcję uniwersalnej maszyny Turinga, a także
dowód nierozstrzygalności pewnej teorii. Po krótkim zamieszaniu dotyczącym ory-
ginalności pracy, została ona opublikowana pod koniec roku. W 1937 roku ukazała
się praca Turinga z dowodem równoważności λ-definiowalności i obliczalności na
maszynach Turinga oraz z tezą analogiczną do tezy Churcha.

Także w 1936 roku ukazała się praca Emila Posta zawierająca definicję urzą-
dzenia podobnego do maszyny Turinga i przeświadczenie autora, że jego pomysł
okaże się równoważny rekurencyjności.

Pionierem badań nad obliczalnością jest prawdopodobnie Emil Post. Jednak
swoje wyniki z lat 1920-22 opublikował dopiero w 1943 roku. Proponował pojęcie
obliczenia wzorowane na obliczeniach algebraicznych, patrz str. 26.

2.2 Definicje

Klasa funkcji rekurencyjnych jest najmniejszą klasą częściowych funkcji natural-
nych zawierającą wszystkie funkcje In,k i zamkniętą ze względu na złożenie, rekur-
sję prostą i operację minimum. Funkcję nazywamy rekurencyjną, jeżeli należy do
klasy funkcji rekurencyjnych.

Zbiór (relacja) X ⊆ Nk jest rekurencyjny, jeżeli jego funkcja charakterystyczna
chX jest rekurencyjna.

Lemat 2.1 Funkcje pierwotnie rekurencyjne są rekurencyjne.

Dowód. Mając funkcje In,k łatwo przez rekursję wydefiniować funkcje stałe, ogra-
niczone odejmowanie 1 i ograniczone odejmowanie. Wiemy, że ch<(m,n) = 1−(n−
m). Teraz możemy zdefiniować następnik przyjmując S(m) = µn (ch<(m,n) = 0).
Następnik pozwala wydefiniować wszystkie pozostałe funkcje pierwotnie rekuren-
cyjne. 2

Przykładem częściowej funkcji rekurencyjnej może być

f(m) = µn (n ∗ n = m).
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Przytoczona definicja funkcji rekurencyjnych jest najogólniejsza. Odpowiada
pojęciu obliczalności. Przez dłuższy czas pojęcie rekurencyjności było ograniczane
do funkcji całkowitych. My też możemy się już ograniczyć do funkcji całkowitych.

Najprościej klasą całkowitych funkcji rekurencyjnych można zdefiniować jako
zbiór tych funkcji rekurencyjnych (np. w podanym sensie), które są całkowite.

Inna definicja mówi, że klasa (całkowitych) funkcji rekurencyjnych jest naj-
mniejszą klasą funkcji naturalnych zawierającą wszystkie funkcje In,k i zamkniętą
ze względu na złożenie, rekursję prostą i efektywną operację minimum.

Najczęściej przyjmuje się, że klasa (całkowitych) funkcji rekurencyjnych jest
najmniejszą klasą funkcji naturalnych zawierającą wszystkie funkcje In,k, funkcje
stałe, dodawanie i mnożenie, a także funkcję charakterystyczną nierówności ch< i
zamkniętą ze względu na złożenie i efektywną operację minimum.

Funkcje rekurencyjne zgodnie z ostatnią definicją określa się czasem jako µ-
rekurencyjne. Dowodzi się, że trzy ostatnie definicje są równoważne.

2.3 Najważniejsze własności funkcji rekurencyjnych

W rozdziale 1.6 jest podane wiele przykładów funkcji pierwotnie rekurencyjnych,
które w związku z tym są rekurencyjne. Także rezultaty tego rozdziału pozostają
prawdziwe, gdy zamiast pierwotnej rekurencyjności będzie w nich mowa o reku-
rencyjności. Jednak w lemacie o podstawianiu teraz istotne jest niejawne założenie
o całkowitości podstawianej funkcji.

Nawet jeżeli nie mamy wiedzy o zamkniętości klasy funkcji rekurencyjnych
na rekursję prostą (patrz ostatnia definicja klasy funkcji rekurencyjnych) możemy
posłgiwać się funkcją β Gödla. Co prawda, w dowodzie lematu o β korzystaliśmy
z silni, ale nie korzystaliśmy z rekurencyjności tej funkcji.

Lemat 2.2 Klasa funkcji rekurencyjnych jest zamknięta ze względu na rekursję
prostą.

Dowód. Przypuśćmy, że funkcja f jest definiowana przez rekursję prostą wzorami

f(~x, 0) = g(~x) oraz f(~x, n+ 1) = h(~x, n, f(~x, n))

dla pewnych rekurencyjnych (i całkowitych) funkcji g i h. Zauważmy, że równość
f(~x, n) = y zachodzi wtedy i tylko wtedy, gdy

∃a (β(a, 0) = g(~x) ∧ ∀i < n (β(a, i+ 1) = h(~x, i, β(a, i))) ∧ β(a, n) = y).

Z lematu o podstawianiu otrzymujemy, że

f(~x, n) = y ⇔ ∃a R(~x, n, y, a)

dla pewnej rekurencyjnej relacji R. Funkcja f jest rekurencyjna, ponieważ

f(~x, n) = (µz R(~x, n, (z)0, (z)1))0. 2

Podobnie dowodzimy

Lemat 2.3 Funkcja Ackermanna jest rekurencyjna.
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Dowód. Dowód jest podobny do poprzedniego. Polega na zdefiniowaniu relacji
mówiącej, że a koduje dostatecznie dużo informacji o funkcji Ackermanna, aby
można było ustalić, że A(m,n) = k. Umówmy się, że a koduje informacje o funkcji
Ackermanna w taki sposób, że dla niezbędnych i oraz j mamy

((a)i)j = A(i, j).

Przypomnijmy, że funkcja Ackermanna spełnia równości

A(0, n) = n+1, A(m+1, 0) = A(m, 1) oraz A(m+1, n+1) = A(m,A(m+1, n)).

Przyjmijmy, że napis R(m,n, k, a) oznacza, że

((a)m)n = k ∧ lh(a) > m ∧ lh((a)m) > n ∧
∧ ∀j < lh((a)0) (((a)0)j = j + 1) ∧
∧ ∀i < m (lh((a)i) > 1 ∧ ((a)i+1)0 = ((a)i)1) ∧
∧ ∀i < m ∀j < lh((a)i+1) (lh((a)i) > ((a)i+1)j ∧ ((a)i+1)j+1 = ((a)i)((a)i+1)j .

Można dowieść, że R oznacza relację rekurencyjną taką, że

A(m,n) = k ⇔ ∃a R(m,n, k, a).

Jeżeli tak, to funkcję Ackermanna można też zdefiniować wzorem

A(m,n) = (µx R(m,n, (x)0, (x)1))0.

Jest to więc funkcja rekurencyjna 2

2.4 Definiowalność

Funkcje i relacje rekurencyjne są definiowane za pomocą formuł o analogicznych
własnościach do formuł definiujących funkcje i relacje pierwotnie rekurencyjne.
Tym razem jednak na ogół można dowieść równoważność, a rekurencyjność można
charakteryzować za pomocą definiowalności.

Twierdzenie 2.4 Funkcja jest rekurencyjna wtedy i tylko wtedy, gdy jest definio-
walna formułą klasy Σ1.

Dowód. Istotny fragment dowodu to zamkniętość klasy funkcji definiowalnych
formułami klasy Σ1 ze względu na operację minimum. Przypuśćmy więc, że funkcja
f : Nk+1 → N jest definiowana formułą ϕ ∈ Σ1, formuła β ∈ ∆0 definiuje funkcję
Gödla β i

h(~x) = µy (f(~x, y) = 0).

Funkcja h jest definiowana formułą

ψ(~x, z) = ϕ(~x, z, 0) ∧ ∃t ∀i < z ∃u < t (β(t, i, u) ∧ u > 0 ∧ ϕ(~x, i, u)).

Jeżeli natomiast funkcja f : Nk → N jest definiowana formułą klasy Σ1, to dla
pewnej relacji pierwotnie rekurencyjnej R ⊆ Nk+2 mamy

f(~x) = y ⇔ ∃z R(~x, y, z).

Zauważmy, że wtedy

f(~x) = (µt (R(~x, (t)0, (t)1)))0. 2
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Lemat 2.5 Zbiór jest rekurencyjny wtedy i tylko wtedy, gdy jest definiowany za-
równo formułą klasy Σ1, jak i

∏
1

Dowód.

Wniosek 2.6 Zbiór X jest rekurencyjnie przeliczalny wtedy i tylko wtedy, gdy jest
definiowalny formułą klasy Σ1.

3 Inne formalizacje obliczalności

3.1 Funkcje ogólnie rekurencyjne

W tym rozdziale będziemy rozważać prymitywny język bez spójników logicznych i
kwantyfikatorów, z jednym symbolem relacyjnym =, stałą 0, zmiennymi i wieloma
symbolami funkcyjnymi, wśród których jest potencjalnie nieskończenie wiele sym-
boli każdej arności. Termy w tym języku definiujemy w zwykły sposób. Jednoar-
gumentowy symbol funkcyjny S będzie miał szczególne znaczenie, w szczególności
jest wykorzystywany do reprezentowania liczb naturalnych. Przyjmujemy, że

0 = 0 oraz n+ 1 = S(n).

Term n będziemy uważać za reprezentację liczby naturalnej n.
W razie potrzeby i zależnie od kontekstu symbole funkcyjne będziemy dzielić

na stałe, o ustalonym znaczeniu i zmienne, bez określonego znaczenia. Symbol S
zawsze będzie miał określone znaczenie. Intuicyjnie oznacza on operację następnika
i zawsze będzie występował w tej roli.

Równością bądź równaniem nazywamy napis postaci

f(t1, . . . , tn) = t,

gdzie f jest n-arnym symbolem funkcyjnym bez określonego znaczenia (a więc róż-
nym od S), a t1, . . . , tn, t są dowolnymi termami rozważanego języka. Zauważmy,
że tak rozumiana równość nie ma własności symetrii. Jej intuicyjna interpreta-
cja jest następująca: obliczenie wartości funkcji f dla argumentów t1, . . . , tn jest
równoważne obliczeniu wartości t.

Układem równości (lub równań) nazywamy dowolny ciąg równości. Symbolem
głównym układu nazywamy pierwszy zapisany w nim symbol funkcyjny.

Przykładami (pięcioma) układów równań są

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hk(x1, . . . , xn))

złożony z jednej równości, zwykle przyjmyjemy, że symbole g, h1 . . . , hk mają okre-
ślone znaczenie,

f(x, 0) = g(x) oraz f(x, S(y)) = h(x, y, f(x, y)),

(dla g i h o określonym znaczeniu),

f(0) = S(0) oraz f(S(x)) = S(S(0)),

f(0) = S(0) oraz f(x) = S(S(0)),

f(S(x)) = S(S(0)).
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Pierwszy układ złożony z jednego równania jest używany zwykle do określenia
złożenia i będzie rzeczywiście definiować złożenie. Drugi – jest standardową defi-
nicją przez prostą rekursję. Trzeci jest przykładem definicji warunkowej, powinien
definiować funkcję przyjmującą wartość 1 dla 0 i 2 dla pozostałych argumentów.
Kolejny – jest przykładem definicji, która będzie uważana za niepoprawną. Ostatni
definiuje funkcję częściową określoną dla liczb różnych od 0.

Z tego typu definicje najczęściej jakoś i to dobrze rozumiemy. Dowodzenie ich
własności wymaga jednak sprecyzowania ich znaczenia. Z układów równań bę-
dziemy wyprowadzać równości – wnioski. W tym celu przyjmiemy trzy reguły
wnioskowania:

f(n1, . . . , nk) = m
,

r

r[x← n]
,

r[x← f(n1, . . . , nk)], f(n1, . . . , nk) = m

r[x← m]
,

przy czym pierwszą z tych reguł stosujemy tylko wtedy, gdy symbol f oznacza
pewną funkcję, która argumentom n1, . . . , nk przypisuje wartość m. Druga reguła
stwierdzą, że z równania można wywnioskować równanie powstające przez zastą-
pienie zmiennej x dowolnym termem reprezentującym liczbę naturalną. Ostatnia
reguła mówi, że dowolne wystąpienie termu f(n1, . . . , nk) można zastąpić przez
jego wartość m pod warunkiem, że równość f(n1, . . . , nk) = m też daje się wypro-
wadzić z rozważanego układu.

Przyjmijmy, że U jest układem równań. Symbolem U∗ bedziemy oznaczać naj-
mniejszy zbiór równań zawierający U i zamknięty ze względu na podane reguły
wnioskowania. Symbol U ` r oznacza, że równanie r daje się wyprowadzić z układu
U , a więc, że r ∈ U∗. Każdy układ równań wyznacza pewną relację

WU = {〈n1, . . . , nk,m〉 ∈ Nk+1 : U ` gU(n1, . . . , nk) = m},

gdzie gU jest głównym symbolem układu U .

Lemat 3.1 Dla każdego układu równań U relacja WU jest przeliczalnie rekuren-
cyjna. Wobec tego, jeżeli relacja WU jest jednoznacza, to jest wykresem pewnej
funkcji rekurencyjnej. 2

Zdarza się, że relacja WU ⊆ Nk+1 nie jest jednoznaczna. Takie układy nie są
interesujące i nie będziemy ich rozważać. Jeżeli jednak WU jest jednoznaczna, to
jest wykresem pewnej funkcji FU : Nk → N zdefiniowanej wzorem

FU(n1, . . . , nk) = m⇔ 〈n1, . . . , nk,m〉 ∈ WU .

Teraz znowu są możliwe dwie sytuacje: albo w układzie występują, oprócz S, inne
symbole funkcyjne o ustalonym znaczeniu, albo nie. W pierwszym przypadku o
funkcji FU mówimy, że jest definiowana układem U z funkcjami (które w konkret-
nych sytuacjach należałoby wymienić i podać odpowiedniość między wymienio-
nymi funkcjami i użytymi symbolami). W drugim, o funkcji FU mówimy, że jest
definiowana układem U (bez funkcji pomocniczych).

Funkcje definiowane układami równań (bez funkcji pomocniczych) nazywamy
ogólnie rekurencyjnymi lub rekurencyjnymi według Herbranda-Gödla, a wszyst-
kie takie funkcje tworzą klasę funkcji ogólnie rekurencyjnych lub rekurencyjnych
według Herbranda-Gödla.

Zachodzi dość oczywisty

Lemat 3.2 Klasa funkcji ogólnie rekurencyjnych jest zamknięta ze względu na de-
finiowanie układami z funkcjami. W szczególności, klasa ta jest zamknięta ze wzglę-
du na złożenie i rekursję prostą. 2
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Analogicznie, analizując zwykły układ równości definiujący funkcję Ackerman-
na pokazuje się

Wniosek 3.3 Funkcja Ackermanna jest ogólnie rekurencyjna. 2

Wiemy już, że funkcje ogólnie rekurencyjne są (µ)-rekurencyjne. Zachodzi też
twierdzenie odwrotne:

Twierdzenie 3.4 Funkcje µ-rekurencyjne są ogólnie rekurencyjne. W szczególno-
ści, funkcje definiowane za pomocą operacji minimum są definiowane układami
równości z funkcjami.

Dowód. Aby dowieść całe twierdzenie wystarczy dowieść jego drugą część.
Przyjmijmy, że

F (x) = µy G(x, y) = 0

zakładając dla uproszczenia notacji, że funkcja F jest jednoargumentowa. Zdefiniu-
jemy teraz dwa układy definiujące funkcję F , z symbolem głównym f i symbolem
g odpowiadającym funkcji G.

Pierwszy z tych układów ma następującą postać:

f(x) = t(i(x, y), g(x, y), y), t(S(x), 0, y) = y, i(x, 0) = S(0),

i(x, S(y)) = m(i(x, y), g(x, y)),

a występujący w nim symbol m odpowiada zwykłemu mnożeniu. Symbole t oraz i
oznaczają funkcje pomocnicze w dostatecznym stopniu definiowane przez podany
układ.

Drugi układ, też ciekawy, z pomocniczym symbolem h składa się z równań

f(x) = h(x, 0, g(x, 0)), h(x, y, 0) = y, h(x, y, S(z)) = h(x, S(y), g(x, S(y))).

Uzupełnienie szczegółów w dowodzie pozostawiam jako ćwiczenie. 2

3.1.1 Kilka końcowych uwag

Układy równości, które pojawiły się w dowodzie poprzedniego twierdzenia, mało
przypominają schematy rekurencyjne. Na przykład, za ogólnie rekurencyjną mu-
simy także uznać funkcję zdefiniowaną równością

t(S(x), 0, y) = y

lub układem
h(y, 0) = y, h(y, S(z)) = h(S(y), g(S(y))).

Do wykładu Gödla w Pricenton w 1934 roku chyba nie pojawiają się żadne
dziwnie funkcje definiowane rekurencyjnie. Znane było kilka przykładów funkcji
z definicjami przypominającymi definicję funkcji Ackermanna. Podczas wykładu
sam Gödel podał taki oto przykład mało typowej definicji funkcji rekurencyjnej

f(x, 0) = g1(x), f(0, y + 1) = g2(y), f(1, y + 1) = g3(y)

f(x+ 2, y + 1) = h(f(x, y + 2), f(x, f(x, y + 2))),

który w najlepszym razie może służyć za wzór definicji rekursji „drugiego stopnia”
i nie pokazuje nieznanych możliwości tworzenia nawet zwykłych schematów rekur-
sji. Gödel zdawał sobie sprawę z trudności związanych z podaniem bardzo ogólnego
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schematu rekurencyjnego (lub ogólnych schematów). Zdecydował się na zapropo-
nowanie niesłychanie ogólnej definicji schematu rekursji, zgodnej z wcześniejszą,
bardzo dojrzałą propozycją Herbranda, po jej po doprecyzowaniu. Herbrand zaś
okazał się niesłychanie przenikliwym matematykiem o doskonałej intuicji. Nie jest
jasne, jaką rolę Herbrand przypisywał swojej definicji, i czy przewidywał jej zasto-
sowanie do formalizacji obliczalności. Zdaniem Gödla raczej nie myślał o obliczal-
ności w dzisiejszym rozumieniu, w tym o obliczalności określanej jako mechaniczna.

Definicja rekurencyjności według Herbranda-Gödla może być rozpatrywana ja-
ko koncepcja Prologu funkcyjnego (w przeciwieństwie do Prologu rzeczywistego,
który jest predykatywny). W każdym razie, zamiast o funkcji f możemy mówić
o jej wykresie Wf i dzięki temu równości możemy przekształcić w klauzule. Na
przykład równość

f(g(x), S(y)) = h(f(x, S(y)), f(y, x))

można zamienić na klauzulę

Wf (a, b, w) : − Wg(x, a), WS(y, b), Wh(c, d, w), Wf (x, b, c), Wf (y, x, d).

Jeżeli w ten sposób przekształcimy układ równości definiujący (dwuagumentową)
funkcję f , to przynamniej teoretycznie powinniśmy otrzymać program Prologowy,
który pozwala testować hipotezy, czy f(x, y) = z. Spostrzeżenie to można wyko-
rzystać w dowodzie, że w teoretycznym Prologu daje się przeprowadzić wszelkie
możliwe obliczenia.

3.2 Systemy Posta

Emil Post jest prawdopodobnie pionierem badań nad obliczalnością. Urodził się w
Białymstoku i w pierwszych latach XX wieku wyemigrował z rodzicami do Stanów
Zjednoczonych. Na początku lat dwudziestych zajmował się logiką matematyczną.
Jest jednym z logików, którzy dowiedli twierdzenie o pełności dla rachunku zdań.
Chciał stworzyć system, który pozwalałby na sformalizowane generowanie praw
rachunku logicznego (np. rachunku zdań). Efektem tych prac jest pojęcie systemu
Posta. Mimo że prace nad swoimi systemami Post prowadził w latach dwudzie-
stych, podstawowe wyniki zostały opublikowane dopiero w 1943 roku. Systemy
Posta mogą być uważane za formalizację obliczalności.

Intuicje Post czerpał z rachunków algebraicznych. Jeżeli przekształcamy du-
że wyrażenie algebraiczne, to skupiamy się na pewnym fragmencie wyrażenia i
przekształcamy ten fragment. Na przykład wyrażenie może mieć postać

S1(x+ y)(x− y)S2,

gdzie S1 i S2 to fragmenty tego wyrażenia, początkowy i końcowy, które w tym mo-
mencie nie mają istotnego znaczenia. Przekształcając, wyrażenie to zastępujemy
innym, np. postaci

S1(x2 − y2)S2.
System Posta składa się z alfabetu Σ, skończenie wielu aksjomatów i skończenie

wielu reguł przekształcania. Operuje na słowach nad swoim alfabetem. Aksjomaty
systemu są wybranymi słowami nad jego alfabetem. Reguły są to napisy postaci

u0S1u1 . . . Smum → w0Si1w1 . . . Sinwn,

gdzie u0, . . . , um, w0, . . . , wn ∈ Σ∗ są słowami nad alfabetem Σ, S1, . . . , Sm są
różnymi zmiennymi (specjalnymi symbolami bez określonego znaczenia), a liczby
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i1, . . . , in są dowolnymi indeksami z przedziału od 1 do m. Taka reguła wyznacza
relację R ⊆ (Σ∗)2 taką, że

〈x, y〉 ∈ R⇔ ∃s1, . . . sm ∈ Σ∗ (x = u0s1u1 . . . smum ∧ y = w0si1w1 . . . sinwn).

Intuicyjnie, relacja R składa się z par słów x i y takich, że słowo x można prze-
kształcić w słowo y zgodnie z regułą wyznaczającą R.

Przypuśćmy, że rozważamy regułę aS1bS2 → bS2aS2. Wtedy do relacji R odpo-
wiadającej tej regule należą pary 〈abba, baaa〉 oraz 〈abba, bbaaba〉. Pary te przed-
stawiają wszystkie możliwe sposoby przekształcania słowa abba. Słowo to może
zostać przedstawione w postaci aS1bS2 na dwa sposoby, tak aby: S1 = b i S2 = a
oraz tak, aby S1 = ε i S2 = ba.

Każdy system Posta wyznacza pewien zbiór słów X nad swoim alfabetem, a
mianowicie najmniejszy zbiór X, do którego należą wszystkie aksjomaty systemu,
i do którego wraz ze słowem x ∈ X należą wszystkie słowa y takie, że 〈x, y〉 ∈ Ri
dla pewnego i, a Ri oznacza relację wyznaczoną przez i-tą regulę systemu. Zbiór
X będziemy nazywać generowanym przez system.

Na przykład, system Posta nad alfabetem Σ = {a, b} z aksjomatami ε, a i b
oraz z regułami S → aSa oraz S → bSb generuje zbiór wszystkich palindromów
nad alfabetem Σ.

Aby wyjaśnić związek systemów Posta z gramatykami rozważmy gramatykę
G generującą również zbiór palindromów. Ta gramatyka korzysta ze zbioru ΣT =
{a, b} symboli terminalnych, posługuje się symbolami ze zbioru Σ = ΣT ∪ {E},
gdzie E jest jedynym, wykorzystywanym w tej gramatyce symbolem nieterminal-
nym, także symbolem startowym. Aby generować zbiór palindromów potrzebne
jest pięć produkcji: E → ε, E → a, E → b, E → aEa oraz E → bEb. Tę grama-
tykę można przekształcić w system Posta nad alfabetem Σ. Jedynym aksjomatem
tego systemu jest słowo E. System korzysta z pięciu reguł przekształcania:

S1ES2 → S1S2, S1ES2 → S1aS2, S1ES2 → S1bS2,

S1ES2 → S1aEaS2, S1ES2 → S1bEbS2.

Nietrudno zauważyć, że zbiór X generowany przez ten system Posta składa się z
wszystkich słów, które dają się wyprowadzić z symbolu startowego, zawierających
także symbole nieterminalne, czyli wszystkich palindromów nad Σ, w których litera
E występuje najwyżej jeden raz. Język L(G) generowany przez gramatykę G jest
więc równy X ∩ Σ∗T .

Przedstawiony sposób zamiany gramatyki na system Posta jest bardzo ogólny
i pozwala dowieść

Lemat 3.5 Dla dowolnej gramatyki G z alfabetem terminalnym ΣT jest taki sys-
tem Posta, generujący zbiór X, że język

L(G) = X ∩ Σ∗T . 2


