till 12/05/2024

Scala in Practice
lab 07

Acceptance criteria:

Create DSL in Scala for non-programmers - financiers & accountants.
Your language-extensions should model cash operations between currencies:
dollar (USD, $), euro (EUR, €) & ztoty (PLN, zl):
+ Addition between different currencies:
val suml: Money = 100.01(USD) + 200(EUR) //result in dollars
(most left type)

val sum2: Money = 100.01(zl) + 200($) //result in ztoty (most
left type)

val sum3: Money = 5(zl) + 3(PLN) + 20.5(USD) //result in ztoty
(most left type)

» Subtraction between different currencies
val sub: Money = 300.01(USD) - 200(EUR) //result in dollars
(most left type)

e Multiplication
val multl: Money
val mult2: Money

30(zl) * 20 //result in ztoty
20($) * 11 //result in dollars

+ Conversion
val convl: Money
val conv2: Money

150.01(USD) as PLN // converts to ztoty
120.01(USD) as € // converts to euro

» Comparison between currencies
val comparel: Bool = 300.30(USD) > 200(€)
val compare2: Bool 300.30($) < 200(EUR)

* Create package money with above logic:
trait Currency = 777

val conversion: Map[(Currency, Currency), BigDecimal] = ??? //map
with constants (EUR => PLN, PLN => USD, USD => EUR) representing
conversion rates between currencies. Put any values or use real
ones from the past'.

1 https://www.xe.com/currencyconverter/convert/? Amount=1&From=EUR&To=USD

https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=USD

till 12/05/2024

Scala in Practice
lab 07

case class CurrencyConverter(
conversion: Map[(Currency, Currency), BigDecimall]) {
def convert(from: Currency, to: Currency): BigDecimal = ?77?

}

case class Money(amount: BigDecimal, currency: Currency) (implicit
currencyConverter: CurrencyConverter)

* Create application entry-point object with some example tests for the above
implementation

Note: Dont use any nulls & vars

Michat Kowalczykiewicz

