
ProtoCF: Prototypical Collaborative Filtering

for Few-shot Recommendation

Adrian Urbański

1

ProtoCF

Source: ProtoCF

2

https://aravindsankar28.github.io/files/ProtoCF-RecSys2021.pdf

Motivation

Strong bias of NCF methods towards popular items

3

Motivation

Lack of resolution power to accurately rank long-tail items

4

Problems with Long-Tail Items

• sparsity and heterogeneity - tail items have few interactions,

but belong to diverse item categories

• distribution mismatch - overall interaction distribution is

biased towards head items

5

Proposed solution

• Few-shot learning to eliminate distribution mismatch

• Composition of discriminative prototypes for tail items

• Architecture-agnostic knowledge transfer from neural base

recommender to enhance item prototypes

6

Neural Base Recommender

A neural base recommender RB is trained

to learn high-quality user representations and

infer item-item relationships.

• hu = FU(u,X |ϕ) - user preference vector

• hi = FI (i ,X |ϕ) - item preference vector

• ŷb(u, i) = FINT (hu, hi) - user-item relevance score

• LB = l(ŷb(u, i), yui) - training objective obtained from a

pointwise or pairwise loss function

FINT is usually modelled using inner product, however for the

purposes of few-shot training cosine similarity is used.

7

• X - interactions

• ϕ - model

parameters

Neural Base Recommender

A neural base recommender RB is trained

to learn high-quality user representations and

infer item-item relationships.

• hu = FU(u,X |ϕ) - user preference vector

• hi = FI (i ,X |ϕ) - item preference vector

• ŷb(u, i) = FINT (hu, hi) - user-item relevance score

• LB = l(ŷb(u, i), yui) - training objective obtained from a

pointwise or pairwise loss function

FINT is usually modelled using inner product, however for the

purposes of few-shot training cosine similarity is used.

7

• X - interactions

• ϕ - model

parameters

Neural Base Recommender

The authors considered three neural CF methods as base

recommenders RB :

• Matrix Factorization (BPR)

• Variational AutoEncoder (VAE-CF)

• Denoising AutoEncoders (CDAE)

8

https://arxiv.org/pdf/1205.2618.pdf
https://github.com/dawenl/vae_cf
http://alicezheng.org/papers/wsdm16-cdae.pdf

Few-Shot Learning

An example of an N-way, K-shot classification problem

Source: Borealis.ai

9

https://www.borealisai.com/en/blog/tutorial-2-few-shot-learning-and-meta-learning-i/

Learn-to-Recommend

Collection of meta-training tasks {T1, T2, . . . }.

A K-shot, N-item training task T = {IT ,N ,S,Q} consists of:

• IT ,N ⊂ I - a subset of items chosen for T
• S = {Si : i ∈ IT ,N} - a set of support user sets

• Q = {Qi : i ∈ IT ,N} - a set of query user sets

• Si = {ui ,1, . . . , ui ,K} - K users who interacted with item i

• Qi = {u′i ,1, . . . , u′i ,K ′} - K ′ users who interacted with item i

Typically K ≈ 5 to 20

10

Learn-to-Recommend

11

Learn-to-recommend

12

• T = {IT ,N ,S,Q} - few-shot task

• IT ,N ⊂ I - items in T
• S - set of support users in T
• Q - set of query users in T

The few-shot recommender RF takes as input the support users

S to learn-to-compose representations for items i ∈ IT ,N

RF is trained by matching the item recommendations it

generates for query users Q with their corresponding

ground-truth interactions over IT ,N

Initial Item Prototype

We want RF to learn a shared

metric space of users and items

• FU(· |ϕ) - pre-trained user encoder of base recommender RB ,

parametrized with ϕ

• GU(· | θ) - few-shot user encoder, with parameters initialized

from FU(· |ϕ), but parametrized with learnable parameters θ

• pi =
1
Si

∑
ui,k∈Si

GU(ui ,k ,XH | θ) - prototype for item i ∈ IT ,N

13

• T - few-shot task

• IT ,N - items in T
• XH - interactions in T

Initial Item Prototype

Challenges in handling long-tail items:

• due to sparse support sets, the prototypes are noisy and

sensitive to outliers

• due to diversity of tail items, averaging may lack the

resolution to discriminate across them

For these reasons, the few-shot recommender RF needs a strong

inductive bias during prototype learning.

Thus, item-item relationship knowledge acquired by base

recommender RB is used to enhance item prototypes.

14

Initial Item Prototype

Challenges in handling long-tail items:

• due to sparse support sets, the prototypes are noisy and

sensitive to outliers

• due to diversity of tail items, averaging may lack the

resolution to discriminate across them

For these reasons, the few-shot recommender RF needs a strong

inductive bias during prototype learning.

Thus, item-item relationship knowledge acquired by base

recommender RB is used to enhance item prototypes.

14

Head-Tail Meta Knowledge Transfer

Item-item proximity simb(·) in the latent space of RB is denoted

by:

pB(i , j) ∝ simb(hi , hj) = cos(hi , hj) i , j ∈ I

The goal is to extract knowledge from items most related to i .

However, dynamically identifying related items during prototype

construction is not scalable. Thus, a compact representation of

item-item proximity knowledge is required.

15

• RB - base recommender

• hi - item embedding in RB

Group-Enhanced Item Prototype Learning

A set of M (M ≪ |I|) group embeddings ZM is learned to serve

as a basis vectors modeling item-item proximity in the latent space

of RB .

ZM = {zm ∈ RD : m ∈ {1, . . . ,M}}

To enhance prototype of item i ∈ IT ,N , a group-enhanced

prototype gi ∈ RD is synthesized as a mixture over the M group

embeddings.

16

Group-Enhanced Item Prototype Learning

The mixture coefficients of a group-enhanced prototype gi are

estimated by a learnable attention mechanism.

gi =
M∑

m=1

αimzm αim =
exp(Wqpi · km)∑M

m′=1 exp(Wqpi · km′)

Where KM = {km ∈ RD : m ∈ {1, . . . ,M}} is an auxiliary set of

trainable keys to index the group embeddings, and Wq ∈ RDxD

projects the prototype pi into a query to index the centroids.

17

Task-level Stochastic Knowledge Distillation

In order to learn group embeddings ZM that capture item-item

relationships in RB , a knowledge distillation strategy is used.

A compact student model (group embeddings ZM) is encouraged

to emulate predictions of the teacher (item proximity distribution

in RB).

Since operating directly on all items in I is not scalable, student

model is trained at the granularity of each meta-training task T .

18

Task-level Stochastic Knowledge Distillation

For each item i ∈ IT ,N ,

a soft probability distribution

pB(j | i ,RB) over other items j ∈ IT ,N is calculated.

T > 0 is a temperature scaling hyper-parameter.

pB(j | i ,RB) =
exp(pB(i , j)/T)∑

k∈IT ,N
exp(pB(i , k)/T)

i , j ∈ IT ,N

Analogously, item similarity distribution pF (j | i ,ZM) for the

student model ZB is defined.

pF (j | i ,ZM) =
exp(simm(gi , gj))∑

k∈IT ,N
exp(simm(gi , gk)

) i , j ∈ IT ,N

19

• T = {IT ,N ,S,Q} - few-shot task

• IT ,N ⊂ I - items in T
• pB(i , j) - proximity of i , j ∈ I in RB

• gi - group enhanced item prototype

Task-level Stochastic Knowledge Distillation

The two distributions are aligned

by minimizing cross-entropy

between their task-level similarities. Since each item is typically

only related to very few items within task T , the distillation loss

LG minimizes distribution divergence over the top-n related items

(n ≈ 10).

LG = − 1

nN

∑
i∈IT ,N

∑
j∈πB,n(i)

pB(j | i ,RB) log pF (j | i ,ZM)

πB,n(i) denotes the top-n most related items to i within IT ,N

based on teacher RB . The loss is trained jointly with the rest of

the framework.
20

• pB(j | i ,RB) - item similarity

distribution for base recommender

• pF (j | i ,ZM) - item similarity

distribution for group-enhanced

prototypes

Item Prototype Fusion via Neural Gating

The initial prototype pi for item i ∈ IT ,N directly encodes its

support users Si , while the group-enhanced prototype gi captures

the knowledge transferred from related items.

Final gated item prototype ei ∈ RD is created by merging pi and

gi using a neural gating layer.

gate = σ(Wg1pi +Wg2gi + bg) i ∈ IT ,N

ei = gate⊙ pi + (1− gate)⊙ gi

Wg1 ∈ RD×D ,Wg2 ∈ RD×D , and bg ∈ RD are learnable

parameters, ⊙ denotes element-wise product operation, and σ is

the sigmoid non-linearity.

21

Few-shot Recommender Training

Each task T minimizes a negative log-likelihood LP between the

few-shot recommendations for query users Q and their

ground-truth interactions in T .

LP = − 1

KN

∑
i∈IT ,N

∑
u′
i,k′∈Qi

log pF (i | u′i ,k ′ , θ)

pF (i | u′i ,k ′ , θ) is computed based on cosine similarity and the

choice of likelihood function for few-shot training.

22

Few-shot Likelihood Choices

The authors considered the following likelihood functions for

few-shot training:

• Multinomial log-likelihood:

pF (i | u′, θ) =
exp(simm(eu′ , ei))∑

j∈IT ,N
exp(simm(eu′ , ej)

) u′ ∈ Qi

• Logistic log-likelihood:

log pF (i | u′, θ) = β log σ(ŷu′i) +
∑

j∈IT ,N ,u′ /∈Nj

log(1− σ(ŷu′j))

23

LP = −
1

KN

∑
i∈IT ,N

∑
u′
i,k′∈Qi

log pF (i | u′i,k′ , θ)

Few-shot Recommender Training

The overall loss is composed of the few-shot recommendation loss

LP and the knowledge distillation loss LG :

L = LP + λLG

where λ is a tunable hyper-parameter.

24

Model inference

The gated prototype ei is inferred for each item i ∈ I by

sub-sampling K interactions as the support set.

Item recommendations for each user u ∈ U are given by:

ŷf (u, i) = simm(eu, ei) i ∈ I eu = GU(u,X | θ)

The final recommendation is given by ensembling predictions from

RF and RB .

ŷ(u, i) = (1− η) · ŷb(u, i) + η · ŷf (u, i) η ∈ (0, 1)

25

Architecture overview

26

Experiments

(RQ1) Does ProtoCF beat state-of-the-art NCF and sparsity-aware

methods on overall recommendation performance?

(RQ2) What is the impact of item interaction sparsity on the

few-shot recommendation performance of ProtoCF?

(RQ3) How do the different architectural choices impact the few-shot

and overall performance of ProtoCF?

(RQ4) How do the hyper-parameters (distillation loss balance factor

λ and meta-training task size N) affect ProtoCF?

27

Experiments

(RQ1) Does ProtoCF beat state-of-the-art NCF and sparsity-aware

methods on overall recommendation performance?

(RQ2) What is the impact of item interaction sparsity on the

few-shot recommendation performance of ProtoCF?

(RQ3) How do the different architectural choices impact the few-shot

and overall performance of ProtoCF?

(RQ4) How do the hyper-parameters (distillation loss balance factor

λ and meta-training task size N) affect ProtoCF?

27

Experiments

(RQ1) Does ProtoCF beat state-of-the-art NCF and sparsity-aware

methods on overall recommendation performance?

(RQ2) What is the impact of item interaction sparsity on the

few-shot recommendation performance of ProtoCF?

(RQ3) How do the different architectural choices impact the few-shot

and overall performance of ProtoCF?

(RQ4) How do the hyper-parameters (distillation loss balance factor

λ and meta-training task size N) affect ProtoCF?

27

Experiments

(RQ1) Does ProtoCF beat state-of-the-art NCF and sparsity-aware

methods on overall recommendation performance?

(RQ2) What is the impact of item interaction sparsity on the

few-shot recommendation performance of ProtoCF?

(RQ3) How do the different architectural choices impact the few-shot

and overall performance of ProtoCF?

(RQ4) How do the hyper-parameters (distillation loss balance factor

λ and meta-training task size N) affect ProtoCF?

27

Datasets

• Epinions - product ratings for an e-commerce platform

• Yelp - user ratings on local businesses located in the state of

Arizona

• Weeplaces - check-ins for businesses of different categories,

like Nightlife, Outdoors, or Entertainment

• Gowalla - restaurant check-ins by users across different cities

in United States

28

https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://www.yongliu.org/datasets/
https://www.yongliu.org/datasets/
https://www.yongliu.org/datasets/
https://www.yongliu.org/datasets/

Baselines

• Neural Base Recommenders (BPR, VAE-CF, CDAE)

• Neural Collaborative Filtering

• Neural Graph Collaborative Filtering

• Cofactor

• EFM

• DropoutNet

• MetaRec-LWA

• MetaRec-NLBA

29

https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/xiangwang1223/neural_graph_collaborative_filtering
https://github.com/dawenl/cofactor
https://dl.acm.org/doi/abs/10.1145/3077136.3080779
https://www.cs.toronto.edu/~mvolkovs/nips2017_deepcf.pdf
https://papers.nips.cc/paper/2017/hash/51e6d6e679953c6311757004d8cbbba9-Abstract.html
https://papers.nips.cc/paper/2017/hash/51e6d6e679953c6311757004d8cbbba9-Abstract.html

Overall Recommendation Results (RQ1)

30

Overall Recommendation Results (RQ1)

Key observations:

• Models based on autoencoders (VAE-CF, CDAE) and graph

neural networks (NGCF) outperform other latent-factor

models (NCF, BPR)

• Model regularization strategies using item co-occurence

information (CoFactor, EFM) for improving long-tail

recommendations are worse than BPR in overall performance

• Sparsity-aware meta-learning models (MetaRec) perform

poorly in overall item rankings

• ProtoCF outperforms state-of-the-art baselines on overall

item rankings

31

Few-Shot Recommendation Results (RQ2)

32

Model Ablation Study (RQ3)

33

Parameter Sensitivity (RQ4)

34

Reproducibility

35

Reproducibility

35

Reproducibility

35

Conclusion

• A sophisticated solution for a specific problem

• Research orthogonal to mainstream advances in recommender

systems

• Architecture-agnostic method for improving neural

recommenders

36

