ProtoCF: Prototypical Collaborative Filtering for Few-shot Recommendation

Adrian Urbański

ProtoCF: Prototypical Collaborative Filtering for Few-shot Recommendation

Aravind Sankar* asankar3@illinois.edu University of Illinois at Urbana-Champaign Illinois, USA Junting Wang* junting3@illinois.edu University of Illinois at Urbana-Champaign Illinois, USA

ABSTRACT

In recent times, deep learning methods have supplanted conventional collaborative filtering approaches as the backbone of modern recommender systems. However, their gains are skewed towards popular items with a drastic performance drop for the vast collection of *long-tail* items with sparse interactions. Moreover, we empirically show that prior neural recommenders lack the resolution power to accurately rank relevant items within the long-tail.

In this paper, we formulate long-tail item recommendations as a few-shot learning problem of learning-to-recommend few-shot items with very few interactions. We propose a novel meta-learning framework PBOTOCF that learns-to-compose robust prototype representations for few-shot items. ProtoCF utilizes episodic few-shot learning to extract meta-knowledge across a collection of diverse meta-training tasks designed to mimic item ranking within the tail. To further enhance discriminative power, we propose a novel architecture-agnostic technique based on knowledge distillation to extract relate and transfor knowledge from neural base recom-

Figure 1: Item Recall@50 of three neural recommenders for item-groups (increasing popularity) in Epinions. Model performance is considerably lower for *long-tail* items.

are critical to diverse e-commerce applications. However, a close examination of neural recommenders' performance reveals a *paradox*:

Source: ProtoCF

Motivation

Strong bias of NCF methods towards popular items

Figure 1: Item Recall@50 of three neural recommenders for item-groups (increasing popularity) in Epinions. Model performance is considerably lower for *long-tail* items.

Lack of resolution power to accurately rank long-tail items

Item Subset	Top 50	% Items	Bottom 50% Items		
Metric	N@50	R@50	N@50	R@50	
NCF [12]	0.0906	0.1874	0.0352	0.0973	
VAE-CF [24]	0.1055	0.2106	0.0457	0.1125	
CDAE [51]	0.1050	0.2102	0.0471	0.1149	

Table 1: Recommendation performance within top-50% *head* and bottom-50% *tail* items by item popularity on Epinions. R@50 and N@50 denote Recall@50 and NDCG@50 metrics. We observe poor ranking *resolution* within the long-tail.

- sparsity and heterogeneity tail items have few interactions, but belong to diverse item categories
- distribution mismatch overall interaction distribution is biased towards head items

- Few-shot learning to eliminate distribution mismatch
- Composition of discriminative prototypes for tail items
- Architecture-agnostic knowledge transfer from neural base recommender to enhance item prototypes

A neural base recommender \mathbf{R}_B is trained to learn high-quality user representations and infer item-item relationships.

- X interactions
- ϕ model

parameters

- $h_u = F_U(u, X | \phi)$ user preference vector
- $h_i = F_I(i, X | \phi)$ item preference vector
- $\hat{y}_b(u, i) = F_{INT}(h_u, h_i)$ user-item relevance score
- $L_B = l(\hat{y}_b(u, i), y_{ui})$ training objective obtained from a pointwise or pairwise loss function

A neural base recommender \mathbf{R}_B is trained to learn high-quality user representations and infer item-item relationships.

- X interactions
- ϕ model

parameters

- $h_u = F_U(u, X | \phi)$ user preference vector
- $h_i = F_I(i, X | \phi)$ item preference vector
- $\hat{y}_b(u, i) = F_{INT}(h_u, h_i)$ user-item relevance score
- $L_B = l(\hat{y}_b(u, i), y_{ui})$ training objective obtained from a pointwise or pairwise loss function

 F_{INT} is usually modelled using inner product, however for the purposes of few-shot training cosine similarity is used.

The authors considered three neural CF methods as base recommenders \mathbf{R}_B :

- Matrix Factorization (BPR)
- Variational AutoEncoder (VAE-CF)
- Denoising AutoEncoders (CDAE)

Few-Shot Learning

An example of an N-way, K-shot classification problem

Training task 2 · · ·

Support set

Query set

Test task 1 • • • • Support set

Source: Borealis.ai

Collection of meta-training tasks $\{\mathcal{T}_1, \mathcal{T}_2, \dots\}$.

A K-shot, N-item training task $\mathcal{T} = \{\mathcal{I}_{\mathcal{T},N}, \mathcal{S}, \mathcal{Q}\}$ consists of:

- $\mathcal{I}_{\mathcal{T},N} \subset \mathcal{I}$ a subset of items chosen for \mathcal{T}
- $\mathcal{S} = \{\mathcal{S}_i : i \in \mathcal{I}_{\mathcal{T}, N}\}$ a set of support user sets
- $\mathcal{Q} = \{\mathcal{Q}_i : i \in \mathcal{I}_{\mathcal{T}, N}\}$ a set of query user sets
- $S_i = \{u_{i,1}, \dots, u_{i,K}\}$ K users who interacted with item i
- $\mathcal{Q}_i = \{u_{i,1}', \dots, u_{i,K'}'\}$ K' users who interacted with item i

Typically $K \approx 5$ to 20

Learn-to-Recommend

Figure 2: Episodic few-shot learning with meta-training task ${\cal T}$ and item embedding inference at meta-testing.

- + $\mathcal{T} = \{\mathcal{I}_{\mathcal{T}, \mathsf{N}}, \mathcal{S}, \mathcal{Q}\}$ few-shot task
- $\mathcal{I}_{\mathcal{T},\textit{N}} \subset \mathcal{I}$ items in \mathcal{T}
- + ${\mathcal S}$ set of support users in ${\mathcal T}$
- ${\mathcal Q}$ set of query users in ${\mathcal T}$

The *few-shot recommender* \mathbf{R}_F takes as input the support users S to *learn-to-compose* representations for items $i \in \mathcal{I}_{T,N}$

 \mathbf{R}_{F} is trained by matching the item recommendations it generates for query users \mathcal{Q} with their corresponding ground-truth interactions over $\mathcal{I}_{\mathcal{T},N}$ We want \mathbf{R}_F to learn a shared metric space of users and items

- $\mathcal{I}_{\mathcal{T},N}$ items in \mathcal{T}
- X_H interactions in \mathcal{T}

- $F_U(\cdot | \phi)$ pre-trained user encoder of base recommender \mathbf{R}_B , parametrized with ϕ
- G_U(· | θ) few-shot user encoder, with parameters initialized from F_U(· | φ), but parametrized with learnable parameters θ

•
$$\mathbf{p}_i = \frac{1}{S_i} \sum_{u_{i,k} \in S_i} G_U(u_{i,k}, X_H | \theta)$$
 - prototype for item $i \in \mathcal{I}_{\mathcal{T},N}$

Challenges in handling long-tail items:

- due to sparse support sets, the prototypes are noisy and sensitive to outliers
- due to diversity of tail items, averaging may lack the resolution to discriminate across them

Challenges in handling long-tail items:

- due to sparse support sets, the prototypes are noisy and sensitive to outliers
- due to diversity of tail items, averaging may lack the resolution to discriminate across them

For these reasons, the few-shot recommender \mathbf{R}_F needs a strong *inductive bias* during prototype learning. Thus, *item-item* relationship knowledge acquired by base recommender \mathbf{R}_B is used to enhance item prototypes.

• R_B - base recommender

• h_i - item embedding in \mathbf{R}_B

Item-item proximity $sim_b(\cdot)$ in the latent space of \mathbf{R}_B is denoted by:

$$p_B(i,j) \propto sim_b(h_i,h_j) = cos(h_i,h_j)$$
 $i,j \in \mathcal{I}$

The goal is to extract knowledge from items most related to *i*. However, dynamically identifying related items during prototype construction is not scalable. Thus, a compact representation of *item-item proximity* knowledge is required. A set of M ($M \ll |\mathcal{I}|$) group embeddings \mathcal{Z}_M is learned to serve as a *basis vectors* modeling *item-item proximity* in the latent space of \mathbf{R}_B .

$$\mathcal{Z}_{M} = \{z_{m} \in \mathbb{R}^{D} : m \in \{1, \ldots, M\}\}$$

To enhance prototype of item $i \in \mathcal{I}_{\mathcal{T},N}$, a group-enhanced prototype $\mathbf{g}_i \in \mathbb{R}^D$ is synthesized as a mixture over the M group embeddings.

The mixture coefficients of a group-enhanced prototype \mathbf{g}_i are estimated by a learnable attention mechanism.

$$\mathbf{g}_{i} = \sum_{m=1}^{M} \alpha_{im} z_{m} \qquad \alpha_{im} = \frac{\exp(\mathbf{W}_{q} \mathbf{p}_{i} \cdot \mathbf{k}_{m})}{\sum_{m'=1}^{M} \exp(\mathbf{W}_{q} \mathbf{p}_{i} \cdot \mathbf{k}_{m'})}$$

Where $\mathcal{K}_M = \{\mathbf{k}_m \in \mathbb{R}^D : m \in \{1, ..., M\}\}$ is an auxiliary set of trainable keys to index the group embeddings, and $\mathbf{W}_q \in \mathbb{R}^{D \times D}$ projects the prototype \mathbf{p}_i into a query to index the centroids.

- In order to learn group embeddings Z_M that capture item-item relationships in \mathbf{R}_B , a knowledge distillation strategy is used.
- A compact *student* model (group embeddings Z_M) is encouraged to emulate predictions of the teacher (item proximity distribution in \mathbf{R}_B).
- Since operating directly on all items in \mathcal{I} is not scalable, student model is trained at the granularity of each meta-training task \mathcal{T} .

Task-level Stochastic Knowledge Distillation

For each item $i \in \mathcal{I}_{\mathcal{T},N}$,

a soft probability distribution

•
$$\mathcal{T} = \{\mathcal{I}_{\mathcal{T},N}, \mathcal{S}, \mathcal{Q}\}$$
 - few-shot task

- $\mathcal{I}_{\mathcal{T},N} \subset \mathcal{I}$ items in \mathcal{T}
- $p_B(i,j)$ proximity of $i,j \in \mathcal{I}$ in \mathbf{R}_B
- g_i group enhanced item prototype

 $p_B(j \,|\, i, \mathbf{R}_B)$ over other items $j \in \mathcal{I}_{\mathcal{T}, N}$ is calculated.

T > 0 is a temperature scaling hyper-parameter.

$$p_B(j \mid i, \mathbf{R}_B) = \frac{\exp(p_B(i, j)/T)}{\sum_{k \in \mathcal{I}_{\mathcal{T}, N}} \exp(p_B(i, k)/T)} \qquad i, j \in \mathcal{I}_{\mathcal{T}, N}$$

Analogously, item similarity distribution $p_F(j \mid i, \mathbf{Z}_M)$ for the student model \mathcal{Z}_B is defined.

$$p_{\mathcal{F}}(j \mid i, \mathcal{Z}_{\mathcal{M}}) = \frac{\exp(\operatorname{sim}_{m}(\mathbf{g}_{i}, \mathbf{g}_{j}))}{\sum_{k \in \mathcal{I}_{\mathcal{T}, \mathcal{N}}} \exp(\operatorname{sim}_{m}(\mathbf{g}_{i}, \mathbf{g}_{k})}) \qquad i, j \in \mathcal{I}_{\mathcal{T}, \mathcal{N}}$$

Task-level Stochastic Knowledge Distillation

The two distributions are aligned by minimizing cross-entropy

- *p_B(j | i*, **R**_B) item similarity distribution for base recommender
- *p_F*(*j* | *i*, *Z_M*) item similarity distribution for group-enhanced prototypes

between their task-level similarities. Since each item is typically only related to very few items within task T, the distillation loss L_G minimizes distribution divergence over the top-n related items $(n \approx 10)$.

$$L_G = -\frac{1}{nN} \sum_{i \in \mathcal{I}_{\mathcal{T},N}} \sum_{j \in \pi_{B,n}(i)} p_B(j \mid i, \mathbf{R}_B) \log p_F(j \mid i, \mathcal{Z}_M)$$

 $\pi_{B,n}(i)$ denotes the top-*n* most related items to *i* within $\mathcal{I}_{\mathcal{T},N}$ based on teacher **R**_B. The loss is trained jointly with the rest of the framework.

The initial prototype \mathbf{p}_i for item $i \in \mathcal{I}_{\mathcal{T},N}$ directly encodes its support users S_i , while the group-enhanced prototype \mathbf{g}_i captures the knowledge transferred from related items.

Final gated item prototype $\mathbf{e}_i \in \mathbb{R}^D$ is created by merging \mathbf{p}_i and \mathbf{g}_i using a neural gating layer.

$$\begin{aligned} \mathbf{gate} &= \sigma(\mathbf{W}_{g1}\mathbf{p}_i + \mathbf{W}_{g2}\mathbf{g}_i + \mathbf{b}_g) & i \in \mathcal{I}_{\mathcal{T},N} \\ \mathbf{e}_i &= \mathbf{gate} \odot \mathbf{p}_i + (1 - \mathbf{gate}) \odot \mathbf{g}_i \end{aligned}$$

 $\mathbf{W}_{g_1} \in \mathbb{R}^{D \times D}, \mathbf{W}_{g_2} \in \mathbb{R}^{D \times D}$, and $\mathbf{b}_g \in \mathbb{R}^D$ are learnable parameters, \odot denotes element-wise product operation, and σ is the sigmoid non-linearity.

Each task \mathcal{T} minimizes a negative log-likelihood L_P between the few-shot recommendations for query users \mathcal{Q} and their ground-truth interactions in \mathcal{T} .

$$L_{P} = -\frac{1}{KN} \sum_{i \in \mathcal{I}_{\mathcal{T},N}} \sum_{u'_{i,k'} \in \mathcal{Q}_i} \log p_{F}(i \mid u'_{i,k'}, \theta)$$

 $p_F(i | u'_{i,k'}, \theta)$ is computed based on cosine similarity and the choice of likelihood function for few-shot training.

Few-shot Likelihood Choices

$$L_P = -rac{1}{KN}\sum_{i\in\mathcal{I}_{\mathcal{T},N}}\sum_{u'_{i,k'}\in\mathcal{Q}_i}\log p_F(i\mid u'_{i,k'}, heta)$$

The authors considered the following likelihood functions for few-shot training:

• Multinomial log-likelihood:

$$p_{F}(i \mid u', \theta) = \frac{\exp(\operatorname{sim}_{m}(\mathbf{e}_{u'}, \mathbf{e}_{i}))}{\sum_{j \in \mathcal{I}_{\mathcal{T},N}} \exp(\operatorname{sim}_{m}(\mathbf{e}_{u'}, \mathbf{e}_{j})}) \qquad u' \in \mathcal{Q}_{i}$$

• Logistic log-likelihood:

$$\log p_F(i \mid u', \theta) = \beta \log \sigma(\hat{y}_{u'i}) + \sum_{j \in \mathcal{I}_{\mathcal{T}, N}, u' \notin N_j} \log(1 - \sigma(\hat{y}_{u'j}))$$

The overall loss is composed of the few-shot recommendation loss L_P and the knowledge distillation loss L_G :

$$L = L_P + \lambda L_G$$

where λ is a tunable hyper-parameter.

The gated prototype \mathbf{e}_i is inferred for each item $i \in \mathcal{I}$ by sub-sampling K interactions as the support set.

Item recommendations for each user $u \in U$ are given by:

$$\hat{y}_f(u,i) = sim_m(\mathbf{e}_u,\mathbf{e}_i) \qquad i \in \mathcal{I} \qquad \mathbf{e}_u = G_U(u,X \mid \theta)$$

The final recommendation is given by ensembling predictions from \mathbf{R}_F and \mathbf{R}_B .

$$\hat{y}(u,i) = (1-\eta) \cdot \hat{y}_b(u,i) + \eta \cdot \hat{y}_f(u,i) \qquad \eta \in (0,1)$$

Architecture overview

Figure 3: Architecture diagram of PROTOCF depicting the different model components: pre-trained neural base recommender R_B (top left), group embedding learning via stochastic knowledge distillation L_G (bottom left), initial item prototype construction via support set averaging followed by group-enrichment and adaptive gating to construct gated item prototype e, (right).

(RQ1) Does **PROTOCF** beat state-of-the-art NCF and sparsity-aware methods on *overall* recommendation performance?

- (RQ1) Does PROTOCF beat state-of-the-art NCF and sparsity-aware methods on *overall* recommendation performance?
- (RQ2) What is the impact of item *interaction sparsity* on the *few-shot* recommendation performance of PROTOCF?

- (RQ1) Does PROTOCF beat state-of-the-art NCF and sparsity-aware methods on *overall* recommendation performance?
- (RQ2) What is the impact of item *interaction sparsity* on the *few-shot* recommendation performance of PROTOCF?
- (RQ3) How do the different *architectural* choices impact the few-shot and overall performance of PROTOCF?

- (RQ1) Does PROTOCF beat state-of-the-art NCF and sparsity-aware methods on *overall* recommendation performance?
- (RQ2) What is the impact of item *interaction sparsity* on the *few-shot* recommendation performance of PROTOCF?
- (RQ3) How do the different *architectural* choices impact the few-shot and overall performance of PROTOCF?
- (RQ4) How do the *hyper-parameters* (distillation loss balance factor λ and meta-training task size N) affect PROTOCF?

- Epinions product ratings for an e-commerce platform
- Yelp user ratings on local businesses located in the state of Arizona
- Weeplaces check-ins for businesses of different categories, like Nightlife, Outdoors, or Entertainment
- Gowalla restaurant check-ins by users across different cities in United States

- Neural Base Recommenders (BPR, VAE-CF, CDAE)
- Neural Collaborative Filtering
- Neural Graph Collaborative Filtering
- Cofactor
- EFM
- DropoutNet
- MetaRec-LWA
- MetaRec-NLBA

Overall Recommendation Results (RQ₁)

Dataset	Epinions Yelp		Weeplaces		Gowalla			
Metric	N@50	R@50	N@50	R@50	N@50	R@50	N@50	R@50
	STA	NDARD NEUR	AL COLLABOR	ATIVE FILTERI	ING METHODS			
BPR [34]	0.0860	0.1666	0.0749	0.1416	0.2537	0.3778	0.1661	0.2703
NCF [12]	0.0878	0.1694	0.0752	0.1429	0.2462	0.3694	0.1702	0.2745
NGCF [48]	0.0913	0.1725	0.0826	0.1579	0.2533	0.3764	0.1696	0.2758
VAE-CF [24]	0.0938	0.1778	0.0854	0.1602	0.2482	0.3730	0.1710	0.2769
CDAE [51]	0.0927	0.1774	0.0870	0.1611	0.2570	0.3760	0.1634	0.2644
	SPARS	TY-AWARE LO	NG-TAIL ITEM	RECOMMEND.	ATION METHO	DS		
DropoutNet [45]	0.0881	0.1697	0.0761	0.1435	0.2516	0.3751	0.1697	0.2768
Cofactor [23]	0.0845	0.1639	0.0734	0.1402	0.2342	0.3539	0.1596	0.2642
EFM [4]	0.0742	0.1534	0.0741	0.1403	0.2306	0.3429	0.1532	0.2584
MetaRec-NLBA [43]	0.0453	0.0937	0.0381	0.0875	0.1698	0.2889	0.0753	0.1384
MetaRec-LWA [43]	0.0467	0.0943	0.0392	0.1425	0.1702	0.2997	0.0722	0.1391
PROTOTYPICAL COLLABORATIVE FILTERING RECOMMENDERS (PROTOCF)								
PROTOCF + BPR	0.0964	0.1812	0.0815	0.1533	0.2576	0.3879	0.1737	0.2800
PROTOCF + VAE	0.0977	0.1830	0.0857	0.1605	0.2725	0.4035	0.1899	0.3004
PROTOCF + CDAE	0.0972	0.1824	0.0883	0.1623	0.2697	0.4011	0.1786	0.2875
Percentage Gains	4.16%	2.92%	1.50%	0.75%	6.03%	6.80%	11.05%	8.49%

Table 4: Overall item recommendation results on four datasets, R@K and N@K denote Recall@K and NDCG@K metrics at K = 50. Sparsity-aware models are generally outperformed by standard NCF methods on overall item recommendation; PRO-TOCF achieves *overall* NDCG@50 gains of 6% and Recall@50 gains of 4% (over the best baseline) across all datasets.

Key observations:

- Models based on autoencoders (VAE-CF, CDAE) and graph neural networks (NGCF) outperform other latent-factor models (NCF, BPR)
- Model regularization strategies using item co-occurence information (CoFactor, EFM) for improving long-tail recommendations are worse than BPR in overall performance
- Sparsity-aware meta-learning models (MetaRec) perform poorly in overall item rankings
- PROTOCF outperforms state-of-the-art baselines on overall item rankings

Few-Shot Recommendation Results (RQ₂)

Figure 4: Few-shot item recommendation results: Performance comparison for long-tail items with varying number of training interactions K (5 to 30); lines denote model performance (Recall@30) and background histograms indicate the cumulative fraction of the item inventory covered by tail items with $\leq K$ impressions. Overall performance generally increases with Kfor all models; PROTOCF achieves notably stronger gains (over baselines) for items with few training interactions (small K).

Figure 5: Impact of item interaction sparsity: Performance comparison for item-groups sorted in increasing order by their average training interaction counts; lines denote model performance (Recal@600) and background histograms indicate the average number of interactions in each item-group. PROTOCF has significant performance gains (over baselines) on the tail items (item-groups G₁ to G₈) while maintaining comparable performance on the head items (item-groups G₂ to G₁₀).

Model Ablation Study (RQ₃)

Dataset	Epi	inions	Gowalla		
Metric	Overall R@50	Few-shot R@50	Overall R@50	Few-shot R@50	
ProtoCF	0.1830	0.1070	0.3004	0.2195	
w/o Prototype Gating	0.1823	0.0948	0.2992	0.2082	
w/o Knowledge Distillation	0.1805	0.0869	0.2923	0.1983	
ProtoCF-Avg	0.1801	0.0712	0.2898	0.1696	
PROTOCF-logistic	0.1804	0.0896	0.2853	0.1843	
VAE-CF [24]	0.1778	0.0549	0.2769	0.1316	
MetaRec-LWA [43]	0.0943	0.0898	0.1391	0.1804	

Table 5: Model ablation study of PROTOCF; few-shot performance is reported for tail items (less than 20 training interactions). Knowledge transfer and prototype gating contribute 10-19% and 5-11% to few-shot gains respectively.

Parameter Sensitivity (RQ₄)

Figure 6: Few-shot performance on Gowalla (for tail items with less than 20 training interactions) is higher for larger meta-training tasks; the empirically optimal value of balance factor $\lambda = 0.01$ also transfers across all datasets.

set the latent embedding dimension to 128 for consistency. Our implementation of PROTOCF and datasets are publicly available⁴.

set the latent embedding dimension to 128 for consistency. Our implementation of PROTOCF and datasets are publicly available⁴.

 $^{4} https://github.com/aravindsankar28/ProtoCF$

set the latent embedding dimension to 128 for consistency. Our implementation of PROTOCF and datasets are publicly available⁴.

$^{4} https://github.com/aravindsankar28/ProtoCF$

📮 aravindsankar28 / ProtoCF (Public)			
<> Code ⊙ Issues 1 \$\$ Pull requests	⊙ Actions ⊞ Projects 🖽 Wiki (🗓 Security 🗠 Insights	
🌮 main 👻 🏌 1 branch 🛯 🗞 0 tags	Go to file Add file - Code -	About	
aravindsankar28 Initial commit	afd95bd on Jul 28, 2021 🕥 1 commit	Under construction	
C .gitignore Initial commit			
LICENSE Initial commit			
README.md Initial commit		1 watching V o forks	
README.md		Releases	
ProtoCF	No releases published		
Under construction		Packages	

- A sophisticated solution for a specific problem
- Research orthogonal to mainstream advances in recommender systems
- Architecture-agnostic method for improving neural recommenders