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Time Series

• Definition: A time series (xt) is a sequence

x1, x2, . . . , xt , . . .

of some observations of the phenomenon under study in the
successive time instants.

• for the sake of simplicity, we assume that the observations are
recorded in the regular intervals, e.g. monthly, weekly, daily, but in
general they may be also irregular

• although we assume that the sequence is infinite, because the future
is infinite, we usually have a finite sequence of the historical values
and we usually predict a finite sequence of future values
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Time Series

• we assume that the time series (xt) is an instance of a stochastic
process (Xt) being a sequence of random variables

X1,X2, . . . ,Xt , . . .

in such a way that

x1, x ′1, x ′′1 , . . . ← X1
x2, x ′2, x ′′2 , . . . ← X2

...
...

...
...

xt , x ′t , x ′′t , . . . ← Xt

...
...

...
...
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Time Series Prediction

• Goal: using the historical values x1, x2, . . . , xt , predict the future
values xt+1, xt+2, . . . , xt+h, for a given time instant t and a given
time horizon h

• Requirements:
• the time series (xt) is an instance of a stochastic process (Xt)

• the historical values allow to estimate the characteristics of the
random variables X1,X2, . . . ,Xt (e.g. their parameters)

• the characteristic of the entire stochastic process (Xt) (especially the
autocorrelation) allows to characterise the random variables
Xt+1,Xt+2, . . . on the basis of the characteristics of the random
variables X1,X2, . . . ,Xt

• Remark: in practice, even if we predict a longer time horizon h > 1,
we may usually evaluate the entire prediction iteratively, updating it
day by day, so we may usually assume h = 1
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Time Series Prediction

• Approach 1: In some cases, the characteristics of the stochastic
process and its random variables are quite regular and they may be
discovered from the historical values.

• Definition: A stochastic process (Xt) is stationary if for all
t = 1, 2, . . . and for all k = 0, 1, 2, . . .,

• the expected value is constant

E(Xt) = E(Xt+k) = µ

• the autocovariance depends only on k

Cov(Xt ,Xt+k) = Cov(X1,Xk+1) = γk

• In practice, for stationary time series, it usually should be possible to
estimate µ and γ0, γ1, γ2, . . . on the basis of the historical values.
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Time Series Prediction

• Approach 2: If a time series is not stationary, some simple
techniques may stationarize it.

• detecting and removing the trend
• detecting and removing the seasonality
• detecting and removing other anomalies
• differencing

• Approach 3: Even after removing trends/seasonalities/anomalies
some time series may have the variance changing with time and then
may require some different approaches.
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AR(p) model

• Autoregressive AR(p) model:

Xt = c + φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt

where c ∈ R is a constant, φ1, φ2, . . . , φp ∈ R are autoregression
parameters and εt ∼ N (0, 1) is the noise uncorrelated with the
random variables X1,X2, . . . ,Xt

• Random Walk: A special case of AR(1) with c = 0 and φ1 = 1 is
called the random walk.
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MA(q) model

• Moving Average MA(q) model:

Xt = c + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

where c ∈ R is a constant, θ1, θ2, . . . , θq ∈ R are moving average
parameters and εt is the noise
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ARMA(p, q) model

• Autoregressive Moving Average ARMA(p, q) model:

Xt = c+φ1Xt−1+φ2Xt−2+. . .+φpXt−p+εt−θ1εt−1−θ2εt−2−. . .−θqεt−q

where c ∈ R is a constant, φ1, φ2, . . . , φp ∈ R are autoregression
parameters, θ1, θ2, . . . , θq ∈ R are moving average parameters and εt
is the noise
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ARIMA(p, d, q) model

• One of simple techniques of stationarizing a time series is
differencing. It transforms the time series (xt) into the time series
(yt) such that

yt = xt − xt−1.

• Autoregressive Integrated Moving Average ARIMA(p, d, q)
model: is ARMA(p, q) applied to the time series after differencing d

times
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Estimation of Parameters of the ARIMA Model

• General parameters p, d , q may be defined using

• Akaike Information Criterion (AIC)

AIC = 2n − 2 log(L),

where n is the number of parameters of the model, and L is the
maximum value of the likelihood function of the model

• Bayesian Information Criterion (BIC)

BIC = n log(N)− 2 log(L),

where n is the number of parameters of the model, N is the number
of samples, and L is the maximum value of the likelihood function of
the model

• on the basis of the autocorrelation function, etc.
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Estimation of Parameters of the ARIMA Model

• Parameters of the ARIMA model may be defined using

• linear/non-linear least squares estimation
• methods of moments estimation
• Yule-Walker estimation
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Yule-Walker Estimation of the AR(p) Model

For the sake of simplicity, assume that µ = 0. Thus, AR(p) gives

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt . (1)

After multiplying both sides by Xt−1, we have

Xt−1Xt =

p∑
i=1

φiXt−1Xt−i + Xt−1εt ,

so

E(Xt−1Xt) =

p∑
i=1

φiE(Xt−1Xt−i ) + E(Xt−1εt),

but E(Xt−1εt) = 0 because εt is uncorrelated with Xt−1 and E(εt) = 0.
Moreover

E(Xt−1Xt−i ) = E(Xt−1Xt−i )−E(Xt−1)E(Xt−i ) = Cov(Xt−1,Xt−i ) = γi−1,

because E(Xt−1) = E(Xt−i ) = µ = 0, hence

γ1 =

p∑
i=1

φiγi−1.
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Yule-Walker Estimation of the AR(p) Model

Therefore, defining ri =
γi
γ0

for i = 0, 1, 2, . . . , p, we have

r1 =

p∑
i=1

φi ri−1. (2)

Similarly, after multiplying both sides of (1) by Xt−2, we have

r2 =

p∑
i=1

φi ri−2 (3)

(denoting r−i = ri ), after multiplying both sides of (1) by Xt−3, we have

r3 =

p∑
i=1

φi ri−3, (4)

etc.
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Yule-Walker Estimation of the AR(p) Model

Finally,

r1 = φ1r0 + φ2r1 + . . . + φprp−1
r2 = φ1r1 + φ2r0 + . . . + φprp−2

...
rp = φ1rp−1 + φ2rp−2 + . . . + φpr0

(5)

which can be rewritten as
r = Rφ,

where r = (r1, r2, . . . , rp), φ = (φ1, φ2, . . . , φp), and

R =


r0 r1 · · · rp−1
r1 r0 · · · rp−2
...

...
. . .

...
rp−1 rp−2 · · · r0

 ,
thus

φ = R−1r . (6)
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Validation of the Time Series Prediction

• A few error measures are popular for comparing the predicted values
x̂1, x̂2, . . . , x̂T with the original ones x1, x2, . . . , xT

• Mean Square Error (MSE):

MSE(x , x̂) =
1
T

T∑
t=1

(xt − x̂t)
2

• Mean Absolute Error (MAE):

MAE(x , x̂) =
1
T

T∑
t=1

|xt − x̂t |

• Mean Absolute Percentage Error (MAPE):

MAPE(x , x̂) =
1
T

T∑
t=1

|xt − x̂t |
|xt |

where x = (x1, x2, . . . , xT ) and x̂ = (x̂1, x̂2, . . . , x̂T ).
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Time Series Prediction with Computational Intelligence

• see the Introduction to Time Series Prediction jupyter python
notebook for a simple example

• linear/non-linear regression approaches

• linear regression
• ridge regression
• lasso regression
• support vector regression

• neural network approaches

• LSTM
• GRU

• in computational intelligence approaches, parameters are usually
estimated by learning on a train dataset and the model is validated
by testing on the test dataset
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