Introduction to Time Series Prediction

(draft lecture notes in Advanced Data Mining)

Piotr Lipiński

• **Definition:** A time series (x_t) is a sequence

 $x_1, x_2, \ldots, x_t, \ldots$

of some observations of the phenomenon under study in the successive time instants.

- for the sake of simplicity, we assume that the observations are recorded in the regular intervals, e.g. monthly, weekly, daily, but in general they may be also irregular
- although we assume that the sequence is infinite, because the future is infinite, we usually have a finite sequence of the historical values and we usually predict a finite sequence of future values

Time Series

 we assume that the time series (x_t) is an instance of a stochastic process (X_t) being a sequence of random variables

$$X_1, X_2, \ldots, X_t, \ldots$$

in such a way that

Time Series Prediction

- Goal: using the historical values x₁, x₂,..., x_t, predict the future values x_{t+1}, x_{t+2},..., x_{t+h}, for a given time instant t and a given time horizon h
- Requirements:
 - the time series (x_t) is an instance of a stochastic process (X_t)
 - the historical values allow to estimate the characteristics of the random variables X_1, X_2, \ldots, X_t (e.g. their parameters)
 - the characteristic of the entire stochastic process (X_t) (especially the autocorrelation) allows to characterise the random variables X_{t+1}, X_{t+2},... on the basis of the characteristics of the random variables X₁, X₂,..., X_t
- Remark: in practice, even if we predict a longer time horizon h > 1, we may usually evaluate the entire prediction iteratively, updating it day by day, so we may usually assume h = 1

Time Series Prediction

- Approach 1: In some cases, the characteristics of the stochastic process and its random variables are quite regular and they may be discovered from the historical values.
- **Definition:** A stochastic process (X_t) is stationary if for all t = 1, 2, ... and for all k = 0, 1, 2, ...,
 - the expected value is constant

$$\mathbb{E}(X_t) = \mathbb{E}(X_{t+k}) = \mu$$

• the autocovariance depends only on k

$$\operatorname{Cov}(X_t, X_{t+k}) = \operatorname{Cov}(X_1, X_{k+1}) = \gamma_k$$

 In practice, for stationary time series, it usually should be possible to estimate μ and γ₀, γ₁, γ₂,... on the basis of the historical values.

- Approach 2: If a time series is not stationary, some simple techniques may stationarize it.
 - detecting and removing the trend
 - detecting and removing the seasonality
 - detecting and removing other anomalies
 - differencing
- **Approach 3:** Even after removing trends/seasonalities/anomalies some time series may have the variance changing with time and then may require some different approaches.

• Autoregressive AR(p) model:

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + \epsilon_t$$

where $c \in \mathbb{R}$ is a constant, $\phi_1, \phi_2, \ldots, \phi_p \in \mathbb{R}$ are autoregression parameters and $\epsilon_t \sim \mathcal{N}(0, 1)$ is the noise uncorrelated with the random variables X_1, X_2, \ldots, X_t

• **Random Walk:** A special case of AR(1) with c = 0 and $\phi_1 = 1$ is called the random walk.

• Moving Average MA(q) model:

$$X_t = c + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \ldots + \theta_q \epsilon_{t-q}$$

where $c \in \mathbb{R}$ is a constant, $\theta_1, \theta_2, \ldots, \theta_q \in \mathbb{R}$ are moving average parameters and ϵ_t is the noise

• Autoregressive Moving Average ARMA(p, q) model:

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \ldots - \theta_q \epsilon_{t-q}$$

where $c \in \mathbb{R}$ is a constant, $\phi_1, \phi_2, \ldots, \phi_p \in \mathbb{R}$ are autoregression parameters, $\theta_1, \theta_2, \ldots, \theta_q \in \mathbb{R}$ are moving average parameters and ϵ_t is the noise • One of simple techniques of stationarizing a time series is differencing. It transforms the time series (x_t) into the time series (y_t) such that

$$y_t = x_t - x_{t-1}.$$

 Autoregressive Integrated Moving Average ARIMA(p, d, q) model: is ARMA(p, q) applied to the time series after differencing d times

Estimation of Parameters of the ARIMA Model

- General parameters p, d, q may be defined using
 - Akaike Information Criterion (AIC)

$$AIC = 2n - 2\log(L),$$

where n is the number of parameters of the model, and L is the maximum value of the likelihood function of the model

• Bayesian Information Criterion (BIC)

$$BIC = n\log(N) - 2\log(L),$$

where n is the number of parameters of the model, N is the number of samples, and L is the maximum value of the likelihood function of the model

• on the basis of the autocorrelation function, etc.

- Parameters of the ARIMA model may be defined using
 - linear/non-linear least squares estimation
 - methods of moments estimation
 - Yule-Walker estimation

Yule-Walker Estimation of the AR(p) Model

For the sake of simplicity, assume that $\mu = 0$. Thus, AR(p) gives

$$X_{t} = \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \ldots + \phi_{p} X_{t-p} + \epsilon_{t}.$$
 (1)

After multiplying both sides by X_{t-1} , we have

$$X_{t-1}X_{t} = \sum_{i=1}^{p} \phi_{i}X_{t-1}X_{t-i} + X_{t-1}\epsilon_{t},$$

SO

$$\mathbb{E}(X_{t-1}X_t) = \sum_{i=1}^{p} \phi_i \mathbb{E}(X_{t-1}X_{t-i}) + \mathbb{E}(X_{t-1}\epsilon_t),$$

but $\mathbb{E}(X_{t-1}\epsilon_t) = 0$ because ϵ_t is uncorrelated with X_{t-1} and $\mathbb{E}(\epsilon_t) = 0$. Moreover

$$\mathbb{E}(X_{t-1}X_{t-i}) = \mathbb{E}(X_{t-1}X_{t-i}) - \mathbb{E}(X_{t-1})\mathbb{E}(X_{t-i}) = \operatorname{Cov}(X_{t-1}, X_{t-i}) = \gamma_{i-1},$$

because $\mathbb{E}(X_{t-1}) = \mathbb{E}(X_{t-i}) = \mu = 0$, hence

$$\gamma_1 = \sum_{i=1}^{p} \phi_i \gamma_{i-1}.$$

Yule-Walker Estimation of the AR(p) Model

Therefore, defining $r_i = \frac{\gamma_i}{\gamma_0}$ for i = 0, 1, 2, ..., p, we have

$$r_1 = \sum_{i=1}^{p} \phi_i r_{i-1}.$$
 (2)

Similarly, after multiplying both sides of (1) by X_{t-2} , we have

$$r_2 = \sum_{i=1}^{p} \phi_i r_{i-2}$$
(3)

(denoting $r_{-i} = r_i$), after multiplying both sides of (1) by X_{t-3} , we have

$$r_3 = \sum_{i=1}^{p} \phi_i r_{i-3},$$
 (4)

etc.

Yule-Walker Estimation of the AR(p) Model

Finally,

$$r_{1} = \phi_{1}r_{0} + \phi_{2}r_{1} + \dots + \phi_{p}r_{p-1}$$

$$r_{2} = \phi_{1}r_{1} + \phi_{2}r_{0} + \dots + \phi_{p}r_{p-2}$$

$$\vdots$$

$$r_{p} = \phi_{1}r_{p-1} + \phi_{2}r_{p-2} + \dots + \phi_{p}r_{0}$$
(5)

which can be rewritten as

 $\boldsymbol{r} = \boldsymbol{R}\boldsymbol{\phi},$

where $\mathbf{r} = (r_1, r_2, \dots, r_p), \ \phi = (\phi_1, \phi_2, \dots, \phi_p), \ \text{and}$ $\mathbf{R} = \begin{pmatrix} r_0 & r_1 & \cdots & r_{p-1} \\ r_1 & r_0 & \cdots & r_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p-1} & r_{p-2} & \cdots & r_0 \end{pmatrix},$

thus

$$\boldsymbol{\phi} = \boldsymbol{R}^{-1}\boldsymbol{r}.\tag{6}$$

Validation of the Time Series Prediction

- A few error measures are popular for comparing the predicted values $\hat{x}_1, \hat{x}_2, \dots, \hat{x}_T$ with the original ones x_1, x_2, \dots, x_T
 - Mean Square Error (MSE):

$$MSE(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{T} \sum_{t=1}^{T} (x_t - \hat{x}_t)^2$$

• Mean Absolute Error (MAE):

$$\textit{MAE}(\pmb{x}, \hat{\pmb{x}}) = rac{1}{T} \sum_{t=1}^{T} |x_t - \hat{x}_t|$$

• Mean Absolute Percentage Error (MAPE):

$$MAPE(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{T} \sum_{t=1}^{T} \frac{|x_t - \hat{x}_t|}{|x_t|}$$

where $\mathbf{x} = (x_1, x_2, ..., x_T)$ and $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, ..., \hat{x}_T)$.

Time Series Prediction with Computational Intelligence

- see the *Introduction to Time Series Prediction* jupyter python notebook for a simple example
- linear/non-linear regression approaches
 - linear regression
 - ridge regression
 - lasso regression
 - support vector regression
- neural network approaches
 - LSTM
 - GRU
- in computational intelligence approaches, parameters are usually estimated by learning on a train dataset and the model is validated by testing on the test dataset

 G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. *Time Series Analysis: Forecasting and Control.* Wiley, 5th edition, 2015.

- S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman.
 Forecasting: Methods and Applications.
 Wiley, 3rd edition, 1997.
- S. J. Taylor.

Modelling Financial Time Series. World Scientific, 2nd edition, 2007.