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Time Series

e Definition: A time series (x;) is a sequence
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of some observations of the phenomenon under study in the
successive time instants.

e for the sake of simplicity, we assume that the observations are
recorded in the regular intervals, e.g. monthly, weekly, daily, but in
general they may be also irregular

e although we assume that the sequence is infinite, because the future
is infinite, we usually have a finite sequence of the historical values
and we usually predict a finite sequence of future values



e we assume that the time series (x;) is an instance of a stochastic
process (X;) being a sequence of random variables
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Time Series Prediction

e Goal: using the historical values xi, x2, ..., x¢, predict the future
values X;y1,Xt42, ..., Xerh, fOr a given time instant t and a given
time horizon h

e Requirements:

e the time series (x;) is an instance of a stochastic process (X;)

e the historical values allow to estimate the characteristics of the
random variables Xi, Xo, ..., X; (e.g. their parameters)

o the characteristic of the entire stochastic process (X:) (especially the
autocorrelation) allows to characterise the random variables
Xit1, Xet2, - .. on the basis of the characteristics of the random
variables X1, Xa, ..., X;

e Remark: in practice, even if we predict a longer time horizon h > 1,
we may usually evaluate the entire prediction iteratively, updating it
day by day, so we may usually assume h =1



Time Series Prediction

e Approach 1: In some cases, the characteristics of the stochastic
process and its random variables are quite regular and they may be
discovered from the historical values.

e Definition: A stochastic process (X;) is stationary if for all
t=1,2,...andforall k=0,1,2,...,

e the expected value is constant
E(Xt) = E(Xek) = p
e the autocovariance depends only on k
Cov(Xt, Xek) = Cov (X1, Xi+1) = Yk

e In practice, for stationary time series, it usually should be possible to
estimate p and 7o, 71,72, - - - on the basis of the historical values.



Time Series Prediction

e Approach 2: If a time series is not stationary, some simple
techniques may stationarize it.
e detecting and removing the trend
e detecting and removing the seasonality
e detecting and removing other anomalies
e differencing
e Approach 3: Even after removing trends/seasonalities/anomalies
some time series may have the variance changing with time and then
may require some different approaches.



AR(p) model

e Autoregressive AR(p) model:

Xe=c+ g1 Xe 1+ @Xe 2+ .+ 0pXept+ e

where ¢ € R is a constant, ¢1,¢2,...,¢, € R are autoregression
parameters and e; ~ N(0, 1) is the noise uncorrelated with the
random variables X1, X5, ..., X;

e Random Walk: A special case of AR(1) with c =0 and ¢; =1is
called the random walk.



MA(q) model

e Moving Average MA(q) model:
Xt =Cc+ €+ 9161—71 -+ 926t72 + ...+ Qqet,q

where ¢ € R is a constant, 01,6, ...,0, € R are moving average
parameters and ¢; is the noise



ARMA(p, q) model

e Autoregressive Moving Average ARMA(p, q) model:

Xt = C+¢1Xt_1+¢2Xt_2+. o '+¢pXt—p+€t_el€t—l_9261‘—2_- o .—qut_q
where ¢ € R is a constant, ¢1, ¢2,...,¢, € R are autoregression
parameters, 01, 0,...,0, € R are moving average parameters and ¢,

is the noise



ARIMA(p, d, q) model

e One of simple techniques of stationarizing a time series is
differencing. It transforms the time series (x;) into the time series
(y¢) such that

Ye = Xt — Xt—1-

e Autoregressive Integrated Moving Average ARIMA(p, d, q)
model: is ARMA(p, q) applied to the time series after differencing d
times



Estimation of Parameters of the ARIMA Model

e General parameters p, d, g may be defined using
e Akaike Information Criterion (AIC)

AIC =2n— 2log(L),

where n is the number of parameters of the model, and L is the
maximum value of the likelihood function of the model
e Bayesian Information Criterion (BIC)

BIC = nlog(N) — 2log(L),

where n is the number of parameters of the model, N is the number
of samples, and L is the maximum value of the likelihood function of
the model

e on the basis of the autocorrelation function, etc.
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Estimation of Parameters of the ARIMA Model

e Parameters of the ARIMA model may be defined using

e linear/non-linear least squares estimation
e methods of moments estimation
e Yule-Walker estimation
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Yule-Walker Estimation of the AR(p) Model

For the sake of simplicity, assume that ;o = 0. Thus, AR(p) gives
Xe = 1 Xe—1+ G2 Xeo + ... 4+ PpXe—p + €. (1)

After multiplying both sides by X;_1, we have

P
Xe—1 Xy = Z GiXe— 1 Xe—i + Xe16¢,
i=1
SO

P
E(Xe1Xe) = Y $iE(Xe 1 Xe—i) + E(Xe_1€e),
i=1
but E(X;_1€:) = 0 because €, is uncorrelated with X;_; and E(e;) = 0.
Moreover
E(Xe—1Xt—i) = E(Xe—1Xe—i) —E(Xe—1)E(Xe—i) = Cov(Xe—1, Xe—i) = vi-1,
because E(X;_1) = E(X;—;) = u =0, hence
P
n=>y dmi1
i=1
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Yule-Walker Estimation of the AR(p) Model

Therefore, defining r; = % fori=0,1,2,...,p, we have

P

rn = Z Giri-1. (2)
i=1

Similarly, after multiplying both sides of (1) by X;_», we have

P

R=> ¢ifia (3)
i=1

(denoting r—; = r;), after multiplying both sides of (1) by X;_3, we have

p
r3 = Z Giri-3, (4)
i=1

etc.
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Yule-Walker Estimation of the AR(p) Model

Finally,
n = ¢1ro + ¢ari + ...+ Gprpa
rn = o1+ Gar0 + ..+ Ppro2
| (5)
rp = Qirp_1 + @arp2 + ...+ pho
which can be rewritten as
r=Ro,
where r = (r1,r2,...,15), ¢ = (¢1,¢2,...,¢p), and
rp—l
r'p—2
o
thus
¢=R""r. (6)
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Validation of the Time Series Prediction

e A few error measures are popular for comparing the predicted values
X1, X0, ..., X7 with the original ones x1, xo, ..., xT
e Mean Square Error (MSE):

N 1 N
MSE(x,x) = 7 E (xe — Xt)2
e Mean Absolute Error (MAE):

MAE (x, &) TZ|xt—xt\

e Mean Absolute Percentage Error (MAPE):

MAPE (x Z Ixe = %]
||
where x = (x1,x2,...,x7) and X = (X1, X2, ..., X7).
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Time Series Prediction with Computational Intelligence

e see the Introduction to Time Series Prediction jupyter python
notebook for a simple example
e linear/non-linear regression approaches
e linear regression
e ridge regression
e l|asso regression
e support vector regression
e neural network approaches
e LSTM
e GRU
e in computational intelligence approaches, parameters are usually
estimated by learning on a train dataset and the model is validated
by testing on the test dataset

16



References

[§ G.E.P.Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung.
Time Series Analysis: Forecasting and Control.
Wiley, 5th edition, 2015.

[§ S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman.
Forecasting: Methods and Applications.
Wiley, 3rd edition, 1997.

[§ S. J. Taylor.
Modelling Financial Time Series.
World Scientific, 2nd edition, 2007.

17



