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Time Series Clustering

O

How to cluster time series?

see the jupyter python notebook with some examples
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Time Series Clustering

O How to cluster time series?

m  see the jupyter python notebook with some examples
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m APPROACH 1: (for regular time series)

o  daily (or weekly, monthly, annual) average profiles may define patterns

O each day (or week, month, year) time series can be matched to one of these
patterns

o  the time series matched to the same pattern define the cluster
o0  how to match time series to the patterns?
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Time Series Clustering

O How to cluster time series?

m  see the jupyter python notebook with some examples
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= APPROACH 2:

o consider the time series as a vector of numbers, apply one of classic clustering
algorithms, e.g. k-means, DBScan, etc.

o  Difficulties:
u time series may be of various length

| similar, but shifted or rescaled time series will lead to dissimilar vectors

= APPROACH 3:

o stay with original time series, but introduce a distance measure over them
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Similarities between Time Series

O How to measure similarities between time series?
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Similarities between Time Series

O How to measure similarities between time series?

» Euclidean distance
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Similarities between Time Series

O How to measure similarities between time series?

» Euclidean distance
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Similarities between Time Series

O How to measure similarities between time series?
»  Euclidean distance / Manhattan distance / cosine distance / etc.
®m  Euclidean distance with feature-based representation

mean, std, ... mean, std, slope, ... mean, ...

140




Similarities between Time Series

O How to measure similarities between time series?

w  Euclidean distance / Manhattan distance / cosine distance / etc.
®m  Euclidean distance with feature-based representation
® Dynamic Time Warping (DTW)

o  DTW tries to synchronize time series before comparing
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T
Dynamic Time Warping (DTW)

® Dynamic Time Warping (DTW)

O consider s[1..n] and t[1..m]

| for each 1 = 1..n, s[i] must be matched with one or more elements of t
| for each k = 1..m, t[k] must be matched with one or more elements of s
O

s[1] must be matched with t[1]
(but may be also matched with other elements of t, t[ 1] similarly)

| s[n] must be matched with t{m]
(but may be also matched with other elements of t , t[m] similarly)

o  the mapping of elements of s to elements of t must be monotonically increasing,

| for each i, j = 1..n, if 1 <j, then for each k, 1 = 1..m if s[i] matches t[k] and s[j] matches
t[1], thenk <=1
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T
Dynamic Time Warping (DTW)

DTW-Distance(s: array[1..n], t: array[1..m])

DTW := array[0..n, 0..m]
fori:=0ton
forj:=0tom
DTWI/4, j] := infinity

DTWIJO0, 0] :=0
fori:=1ton
forj:=1tom
DTWI4, j] :=d(s[i], t[j]) + min(
DTWIi-1, j],
DTWIi, j-1],
DTWIi-1, j-1])

return DTW|[n, m]
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Time Series Clustering

O How to cluster time series?
» APPROACH 3:

o stay with original time series, but introduce a distance measure over them
o  Difficulties:

= DTW: may be inefficient for larger time series

O(nm)

possible improvements, e.g. PrunedDTW, SparseDTW, FastDTW, MultiscaleDTW, etc.
= K-means: seemingly easy, but

how to define the center of the cluster for DTW distance?

minimizes the quantisation error, related to Euclidean distance, not to DTW distance
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REM

DER: k-means

o LetD={x,,X,, ..., Xy} be the dataset of N data vectors x,, X,, ..., Xy-
Let K be the number of cluster to define.

0O Each cluster C, 1s defined by a point r, , called the center of the cluster.
Each data vector is assigned to the cluster of the closest center.

in the case of equal distances to a few centers, they may be considered in a
predefined order or by random

O The goal is to discover a partition C = {C,, C,, ..., C} of the set D of the
size K (i.e. K parwise disjoint sets C,, C,, ..., Cy such that C, U C, U ...
U Cg = D) minimizing the criterium function

FIO=) Y lx-r |

k=1 xeC,

O k-means is one of the algorithms solving such a problem
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e
REMINDER: k-means

O Minimization of the criteria function

F(O)=) > lix—rI

kzl Xe Ck

may be performed iteratively in two steps:

= having vectors r,, find the optimal assignment of data vector to the clusters —

obviously: each data vector should be assigned to the cluster of the closest
center ry

= having the assignment of data vector to the clusters, find vectors r,
o itis less obvious — mathematical approach based on derivatives

o the solution is to set r, in the barycenter of the set of vectors forming the cluster
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REMINDER: k-means

O k-means

FORk=1,2,...,K
1, = a random point from D
WHILE there are still changes in C,
FORk=1,2,...,K
C,={xeD:d(x, 1) <d(x,r)foreachl=1,2, ..., K, 1#k}
FORk=1,2,...,K

1, = barycenter of C,
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Time Series Clustering

O How to cluster time series?
» APPROACH 3:

o stay with original time series, but introduce a distance measure over them
o  Difficulties:

= DTW: may be inefficient for larger time series

O(nm)

possible improvements, e.g. PrunedDTW, SparseDTW, FastDTW, MultiscaleDTW, etc.
= K-means: seemingly easy, but

how to define the center of the cluster for DTW distance?
minimizes the quantisation error, related to Euclidean distance, not to DTW distance

= APPROACH 4:
o DTW Barycenter Averaging k-means (DBA-k-means)
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DTW Barycenter Averaging k-means (DBA-k-means)

C=[C,C,, ....,Cp] // the initial average sequence
S;=1[S{1>S125 -5 Syl // the 1st sequence to average
S, =1[S515 S295 -+ Sor] // the 2nd sequence to average
S, = [Sy1s Spos -+ s Syt) // the nth sequence to average
A :=array[1..T’] // a table of sets

// A[1] contains the set of coordinates matched with C[i]

A:=1[0,0,...,0]
for Sin[S,,S,, ..., S,]
M :=DTW(C, S) //"a temporary DTW table
1:=T
j:=T
whilei>=1andj>=1
Ali] := Ali] U {S[jl}
(1, j) := NextAssociation(M[1i, j])
fori:=1toT
Cl[1] := mean(A[i])

return C

F. Petitjean, A. Ketterlin, P. Gancarski, "A global averaging method for dynamic time warping, with applications to clustering". Pattern
Recognition, 3(44), 2011, pp.678-693. Piotr Lipinski, Advanced Data Mining 17




