Advanced Data Mining

Piotr Lipiński

Recommender Systems

- □ general recommendations (static)
 - manual (editorial) recommendations
 - **recommendations based on simple statistics**
 - □ TOP10, most popular, recent uploads
- **□** general recommendations (interactive)
 - recommendations based on advanced statistics
 - □ complementary/opposed/similar products
 - association rules

Recommender Systems

- personalized recommendations
 - recommendations based on advanced statistics
 - □ complementary/opposed/similar products
 - association rules
 - content-based recommendations
 - model-based recommendations
 - collaborative filtering

- other approaches
 - cold start problems often force hybrid approaches
 - Factorization Machines, etc.

General recommendations

- □ general recommendations (static)
 - **manual (editorial) recommendations**
 - weaknesses: low scalability, low accuracy, low coverage
 - advantages: do not require much data
 - recommendations based on simple statistics
 - weaknesses: low accuracy, low diversity, low coverage
 - advantages: do not require much data
 - improvements: statistics in categories
- □ general recommendations (interactive)
 - weaknesses: low accuracy, better diversity, better coverage
 - advantages: do not require much data

Personalized recommendations

personalized recommendations

content-based recommendations

- requires product feeds and a definition of the product profile
- requires some user data and a definition of the user profile
- requires metrics between user profiles and product profiles

model-based recommendations

- requires a classifier for each user / group of users
- □ large computational requirements

collaborative filtering

Content-based recommendations

content-based recommendations

- requires product feeds and a definition of the product profile
- requires some user data and a definition of the user profile
- requires metrics between user profiles and product profiles

example:

- product = movie, product features = genres:
 - LOTR = [action=0, adventure=1, comedy=0, fantasy = 1, historical=0, romance=0]
- □ user features = interest in genres (see next slides for details)
- metrics = cosine measure between the user profile and the product profile

	Ac	Ad	Со	Fa	Hi	Ro
I ₁	0	1	0	1	0	0
I ₂	0	0	0	0	1	1
I ₃	0	0	1	0	0	1

	Ac	Ad	Со	Fa	Hi	Ro
\mathbf{U}_{1}	0.3	0.2	0.0	0.1	0.1	0.0
U_2	0.0	0.4	0.3	0.0	0.0	0.1
U_3	0.0	0.0	0.5	0.5	0.0	0.1
U_4	0.4	0.4	0.0	0.0	0.5	0.2
U_5	0.0	0.5	0.3	0.0	0.4	0.8

Content-based recommendations

content-based recommendations

- REQUIREMENT1: the product profile is usually defined on the basis of the product features
 - sometimes the number of features is large and feature selection techniques are necessary
- REQUIREMENT2: the user profile is usually defined on the basis of the user interests
 - how to detect the interests of the user?
- □ REQUIREMENT3: the metrics is usually the cosine measure

explicit receiving user interests is often not reliable

implicit detecting user interests is not easy

- requires some data on user activities
- requires some studies on how user activities corresponds to user interests
- e.g. the TF-IDF approach may be applied to evaluate the interests in the particular features

TF-IDF

□ Term-Frequency (TF) matrix:

$$TF[i, j] = M[i, j] / sum(\{M[k, j] : k = 1, 2, ..., d\})$$

□ Inverse-Document-Frequency (IDF) vector:

$$IDF[i] = log(N/|\{j: M[i, j] > 0\}|)$$

□ TF-IDF matrix:

$$TF-IDF[i, j] = TF[i, j] IDF[i]$$

where M[i, j] is the number of occurences of the term i in the document j, d is the number of terms, and N is the number of documents.

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

□ Input data: matrix R of ratings

Output data: utility U(u, i) of the item i for the user u

□ Collaborative Filtering

- For each user u, find the most similar k users $u_1, u_2, ..., u_k$ and let $U(u, i) = (U(u_1, i) + U(u_2, i) + ... + U(u_k, i)) / k$
- Extensions: normalization with means, with standard deviations, with baselines, etc.

■ Matrix Factorization

Find two matrices A and B, such that $R \approx A \times B$, then

$$U(u, i) = a_u \times b_i$$

3				5	
	4	3			1
			5		
4	4			5	2
	5	3		4	

~

Χ

=

■ Matrix Factorization

 \approx

Χ

■ Algorithms: SVD, SVD++, NMF, PMF, etc.

□ Matrix Factorization

- Funk Matrix Factorization (SVD): $U(u, i) = a_u \times b_i$ $\|R - R'\| + \alpha \|A\| + \beta \|B\|$
- SVD++: $U(u, i) = mean + bias_u + bias_i + a_u \times b_i$

Long-tailed / Heavy-tailed Data

□ Long-tailed data

- some years ago: Pareto 80/20 principle
 - □ e.g. 80% of income is generated by 20% of customers
- currently: long-tailed data (Chris Anderson, 2004)

Long-tailed / Heavy-tailed Data

- □ Long-tailed data
 - some years ago: Pareto 80/20 principle
 - e.g. 80% of income is generated by 20% of customers
 - currently: long-tailed data (Chris Anderson, 2004)

Long-tailed / Heavy-tailed Data

- □ Long-tailed data
 - some years ago: **Pareto 80/20 principle**
 - □ e.g. 80% of income is generated by 20% of customers
 - currently: long-tailed data (Chris Anderson, 2004)

Personalized recommendation

□ Input data: additional data

3				5	
	4	3			1
			5		
4	4			5	2
	5	3		4	

duct>

<Badges>Exclusive</Badges>

Goals

□ Off-line evaluation measures:

- rating prediction accuracy
 - □ MSE, MAE, MAPE, etc.
- user preference
 - users may irrationally prefer some approaches to others
- usage prediction accuracy
 - precision/recall@N, TPR, FPR, ROC, AUC, etc.
- ranking measures
- coverage measures
 - □ item space coverage
 - □ user space coverage
- diversity measures
- novelty / serendipity / adaptivity / etc.

□ On-line evaluation measures:

A/B tests and above approaches

Recommender Systems

- □ Additional issues:
 - Explicit/Implicit Feedback
 - Cold Start new users, new products
 - Personalization
 - Context
 - Volatility over time
 - Noise (e.g. special periods Christmas, holidays, ...)