Advanced Data Mining: Homework set 3

2024,/2025

Problem 1 (4 Points)

In this assignment, you will build and evaluate LSTM and GRU models for a one-step-ahead forecasting task on
a financial time series. Use Python with TensorFlow (Keras) or PyTorch to implement the models. The tasks
are:

A. Data Preparation: Load the weather time series dataset. For instance the Jena climate dataset, you can ob-
tain it by running curl https://www.bgc-jena.mpg.de/wetter/mpi_saale_2021b.zip -o mpi_saale_2021b.zip.
This is likely a multivariate time series (e.g., temperature, pressure, humidity, etc.). For the forecasting task,
choose one target variable to predict (e.g., daily temperature). Define the forecasting horizon (e.g., predict
the next 7 days of the target given the past 30 days of data). Split the data into training/validation/test
segments by date.

B. Implement LSTM Model: Using your chosen framework, define an LSTM-based neural network for forecast-
ing the next time step. (Tip: In Keras you can use tf.keras.layers. LSTM, and in PyTorch use torch.nn. LSTM
within a custom nn.Module). Include necessary layers (e.g., one or two LSTM layers followed by a dense
output layer). Choose a loss function such as Mean Squared Error and an optimizer (e.g., Adam). Train
the LSTM model on the training set. Monitor the training and validation loss over epochs to ensure the
model is learning (you may use early stopping to prevent overfitting).

C. Implement GRU Model: Define a similar neural network using Gated Recurrent Unit layers (tf.keras.layers. GRU
or torch.nn.GRU). Ensure it has a comparable number of parameters to the LSTM model for a fair com-
parison (adjust the number of units if needed). Train the GRU model on the same training data, using the
same training procedure and epochs as the LSTM.

D. Evaluation: For both models, forecast the next time step for each sequence in the test set. Compute error
metrics on the test data, including Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

E. Hyperparameter Experiments: Perform at least one hyperparameter variation for each model. For example,
train a second LSTM with a different number of units or an extra LSTM layer, and note the impact on
performance. Do the same for GRU (or vary learning rate, batch size, etc.). This will illustrate sensitivity
to hyperparameters.

F. Visualization: Plot the model predictions vs. actual values on the test set for a visual comparison. Create
a line plot for a subset of the test period (e.g., last 30 days) showing true vs predicted values for each
model. This helps interpret where the model is performing well or failing (e.g., does it capture trends or
miss sudden changes?).

Baseline Benchmark: Compute a simple baseline forecast (e.g., “naive” forecast where the prediction is just
the last observed value, or a basic linear regression on the last few lags). Compare the deep models’ performance
to this baseline to quantify the value they add.

Interpretability Discussion (1 Bonus Point): Although LSTMs and GRUs are black-box models, examine
their internal behavior if possible. For instance, you can plot the values of the LSTM forget gate over time for a
test sequence to see how it modulates information, or analyze which input timesteps had the most influence on
the prediction (e.g., by partial input perturbation). Discuss any insight gained about how the model is making
decisions.

Problem 2 (A-E for 4 Points, F for 3 Bonus Points)

Encoder-Decoder vs. Decoder-Only: The original Transformer (Vaswani et al. 2017) uses an encoder-decoder
structure. However, for forecasting, sometimes a decoder-only (auto-regressive) transformer is used. Briefly
discuss the difference and why a decoder-only Transformer can be sufficient for time series forecasting.

Research Extension (1 Bonus Point): Identify one transformer-based model tailored for time series forecasting
(for example, the Informer or Temporal Fusion Transformer). Provide a short summary of how it improves on the



basic Transformer for time series (e.g., Informer’s sparse attention mechanism for long series, or TFT’s attention
for interpretable multivariate forecasting)

A.

Data Preparation: Load the weather time series dataset (see previous exercise). This is likely a multivariate
time series (e.g., temperature, pressure, humidity, etc.).

. Transformer Model Implementation: Construct a transformer-based model for time series forecasting. You

have flexibility in design: One approach is to use an encoder-decoder structure: the encoder processes the
past 30 days of multivariate data, and the decoder generates the next 7 days of the target (with appropriate
masking so that at training time the decoder can attend to previous target values). Alternatively, implement
a decoder-only transformer that takes the 30-day history as context and autoregressively predicts each step
up to 7 days (feeding back predictions, using masked self-attention to prevent seeing future data). Use
library components where possible (e.g., torch.nn. Transformer or Keras MultiHead Attention layers) rather
than coding attention from scratch. Include positional encoding in your model. For instance, in PyTorch
you can use nn.Transformer which includes embedding + positional encoding, or manually add sinusoidal
positional features to inputs.

Training: Train the Transformer model on the training set. Because transformers have many parameters,
use techniques to aid learning: e.g., a relatively large batch size (if data allows), learning rate scheduling,
and possibly more epochs. Monitor validation loss for hyperparameter tuning. Training might be slower
than RNNs, so be mindful of training time.

Evaluation — Forecast Accuracy: Evaluate both models (Transformer and LSTM) on the test set by pro-
ducing 7-day forecasts for each window and comparing to actual values. Use metrics suitable for multi-step
forecasts, e.g., Mean Absolute Error and RMSE for each horizon step and/or overall (you can compute an
average MAE over all forecasted points, and also check MAE at day +1, +3, +7 separately to see if error
grows). If the dataset is multivariate and you used additional features, make sure to also feed the necessary
exogenous features to the models at prediction time (if required by your model design).

Hyperparameter Tuning: Experiment with at least one or two hyperparameters on the Transformer. For
instance, try changing the number of attention heads (e.g., 4 vs 8 heads) or the depth (number of Trans-
former layers). Observe the effect on validation performance and training time. You might also try different
sequence lengths for input or different forecast horizon lengths to see how the transformer handles them
versus the LSTM.

Attention Visualization: For one example in the test set, visualize the Transformer’s attention weights. For
instance, pick a specific forecast date and plot the attention scores of the Transformer decoder for that
prediction with respect to the input timeline (and/or previous outputs). This could be done by extracting
the attention matrix from the model (in PyTorch’s nn.Transformer, you can register hooks or use the
attn_output_weights if using MultiheadAttention modules). The goal is to interpret which past time steps
the model found relevant for predicting a particular future step. Include a brief analysis of this: do the
attention weights align with intuitive patterns (e.g., focusing on daily patterns or recent trends)?

Problem 3 (A-F for 4 Points, G for 3 Bonus Points)

A.

Select Dataset: Choose a real-world healthcare time series dataset suitable for a classification or anomaly
detection task. Examples: an ECG dataset where each time series is labeled as normal or arrhythmia
(e.g., the ECG200 dataset from the UCR archive, which contains 200 heartbeat time series for two classes),
or a clinical dataset where sequences of patient vital signs are labeled by outcome. Ensure the data
is preprocessed (e.g., each series has the same length or you truncate/zero-pad as needed, and consider
normalization).

. Install and Configure Models: Use official or existing implementations for TS2Vec and T-Rep (see the

notebooks presented during the lecture). Make sure you understand the input format each expects (TS2Vec
may require creating augmented views; T-Rep’s API might handle that internally). If needed, use a smaller
subset of data to tune any hyperparameters due to time constraints.

Unsupervised Training: Train the TS2Vec model on the training portion of your dataset to learn represen-
tations. This involves feeding the raw time series (without labels) into TS2Vec’s training routine. Similarly,
train T-Rep on the same training data (T-Rep will learn time-step level embeddings and an encoder). Both
models will output some form of encoded representation for each time series or each time step. For consis-
tency, decide on the representation you will extract for the downstream task. For example, you might use



instance-level embeddings (one vector per entire time series) by aggregating TS2Vec’s timestamp embed-
dings (e.g., average or using the final timestamp) and using T-Rep’s output for the final timestamp (or an
average as well).

D. Obtain Representations: After training, use the learned models to encode all training and test samples into
representation vectors. For TS2Vec, this might mean passing each time series (or sub-sequence) through
the trained network to get a sequence of embeddings, then pooling or selecting the relevant part. For T-
Rep, you can use trep.encode(data) as in the provided example to get an array of representations. Ensure
the dimension of these representations is noted (e.g., TS2Vec default might be 128 or 256 per timestamp,
T-Rep default output_dims=128 unless changed).

E. Downstream Classification Task: Using the labeled data, train a simple classifier on top of the learned
representations. For example, train a Logistic Regression or Support Vector Machine (SVM) using the
instance-level representation of each time series as features to predict its class. (In the ECG example, each
heartbeat time series is represented by a learned vector, and you predict “normal” vs “abnormal”). Do
this for both TS2Vec-derived embeddings and T-Rep embeddings separately. Evaluate the classification
accuracy (or Fl-score, etc., depending on the problem) on the test set for each case. If the dataset has a
class imbalance, ensure you use appropriate metrics or techniques.

F. Baseline Comparison: For context, also evaluate a baseline approach. For instance, use raw features or a
simpler representation: you could take the raw time series (normalized) and flatten it or use basic statistics
(mean, std, etc.) as features for the same classifier. Alternatively, train a fully supervised deep learning
model (like a small CNN or RNN) directly on the labeled data for comparison. The goal is to see how the
self-supervised representations stack up against a naive representation or a fully supervised approach with
the same amount of labeled data.

G. Analysis of Representations: Analyze the quality of the learned representations. Perform the following:

e Visualization: Use a dimensionality reduction technique (e.g., t-SNE or PCA) to project the learned
representations of the test set into 2D. Create a scatter plot where each point is a time series in the
embedding space, colored by its true label. Do this for TS2Vec and T-Rep embeddings. Discuss any
observable clustering — e.g., “We see two distinct clusters for the two classes with T-Rep, indicating
good class separation, whereas T'S2Vec embeddings overlap more” or vice versa.

e Nearest Neighbors: Pick a few example time series and find their nearest neighbors in the represen-
tation space (using Euclidean distance or cosine similarity). Check if those neighbors share the same
class or similar characteristics. This can qualitatively show whether the embedding is grouping similar
time series together meaningfully.

e Robustness test (1 Bonus Point): If time permits, test robustness to missing data: e.g., remove or
mask out a portion of the time series and see how the representations change or if the models can still
encode them well (this relates to T-Rep’s claim of resilience to missing data.

Dataset Healthcare Time Series (e.g., ECG Classification): ECG200 from UCR Archive — This dataset contains
200 electrocardiogram sequences each of length 96, labeled as either normal or arrhythmia. We will use 100 series
for training and 100 for testing (balanced classes). The goal is to classify heartbeats using learned representations.

Alternate options: Another possible dataset is the PhysioNet MIT-BIH Arrhythmia ECG dataset (longer heart-
beat signals with multiple classes), or a wearable sensor time series dataset for activity recognition (where each
series is an acceleration signal labeled by activity). Ensure whichever dataset you choose, it has a clear train/test
split and labels for a supervised evaluation. (The ECG200 is convenient and small; if a larger challenge is desired,
choose a more complex dataset but be mindful of training time for representation learning models.)



