Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA 000000	

Evolutionary Algorithms for Dynamic Optimization Problems

Patryk Filipiak

27 Jan 2014

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イヨト イヨト イヨト

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary

Introduction

Iterated Stationary Optimization Problem

Continuous Adaptation

CHC Algorithm

Infeasibility Driven Evolutionary Algorithm

Summary

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イヨト イヨト イヨト

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
00000					
Definitions & Examples					

Dynamic Optimization Problems (DOPs)

It is a special class of dynamic problems that are solved **online** by an optimization algorithm **as time goes by**.

(Yang, Nguyen, Li, 2013)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA 000000	
Definitions & Examples					

Formal definition

Objective function Let d > 0, $D \subseteq \mathbb{R}^d$. Minimize

$$F^{(\alpha)}: D \to \mathbb{R},$$

where α is a vector of parameters changing as time goes by.

Notation:

$$F^{(t)}=F^{(\alpha_t)},$$

where α_t is a vector of parameters α at the time step $t \in \mathbb{N}_+$.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA 000000	
Definitions & Examples					

Formal definition

Constraints

Analogously, define the constraints

$$G_i^{(\alpha)}: \mathbb{R}^d \to \mathbb{R}, \quad i=1,\ldots,m.$$

Notation:
$$G_i^{(t)} = G_i^{(\alpha_t)}, t \in \mathbb{N}_+.$$

Aim

For all $t \in \{t_1, t_2, \dots, t_k\} \subset \mathbb{N}_+$ find $x^{(t)} \in \mathbb{R}^d$ such that

$$x^{(t)} = \arg\min\{F^{(t)}(x) : x \in \mathbb{R}^d \land \forall_{i=1,\dots,m} G^{(t)}_i(x) \ge 0\}.$$

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イポト イヨト イヨト

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
00000					
Definitions & Examples					

Real-world examples

- real-time optimization of investment portfolio,
- resource management (e.g. machines, rooms, vehicles) with the ability to adapt to changing demands,
- air traffic control.

(Bui, Branke, Abbass, 2005)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

伺き くきき くきき

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA 000000	
Definitions & Examples					

Sample benchmark

2D plots of the objective function (including constraints)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	● 000				
Classical Evolutionary Approach					

DOP = iterated Stationary Optimization Problem?

- ► Discrete time sampling t ∈ N+ allows for transforming any DOP into iterated Stationary Optimization Problems (SOPs).
- Iterations of such SOPs can be solved using classical EAs.

Re-initialization

Each iteration of SOP begins with re-initialization of a population. As a result:

- Even small environmental changes imply starting new optimization process from scratch.
- Re-initialization results in the information loss between consecutive time steps.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イロト イヨト イヨト

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA 000000	
Classical Evolutionary Approach					

Alternatively, it is possible to start *t*-th SOP with the individuals being the output of (t-1)-th SOP.

Low reactivity to environmental changes

It takes to much time for a converged population from (t-1)-th SOP to adapt to the new state of the environment at *t*-th SOP.

Dynamic constraints

A presence of time-dependent constraint functions $G_i^{(t)}$ imply that at least some of feasible individuals at the time step t - 1 may become infeasible at the time step t.

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

・ロン ・四 と ・ 回 と ・ 日 と …

	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	
	0000				
Classical Evolutionary Approach					

Example - low reactivity to environmental changes

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

< E

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	
00000	0000	00000000	000000	000000	
Classical Evolutionary A	pproach				

Example – dynamic constraints

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イヨト イヨト イヨト

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	•0000000			

Continuous adaptation

Continuous adaptation only makes sense when the landscapes before and after the change are sufficiently correlated, otherwise it would be at least as efficient to restart the search from scratch.

(Branke et al., 2000)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	00000000			

Simple Genetic Algorithm is not an option

Stagnation

Lack of ability to track moving optima

Premature convergence

Lack of ability to localize newly appearing optima

(日)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	0000000			

Changes detection required

Continuous adaptation requires information about the exact moments of the environmental changes.

- Synchronous changes fixed time periods between changes (e.g. weekly updates, daily reports),
- Asynchronous changes varying time periods between changes; a change detection mechanism is required:
 - random sampling of the search space,
 - frequent re-evaluation of a population,
 - anticipation of changes (based on the past changes).

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

同ト・モト・モ

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	00000000			

Introducing diversity approach

Diversification is introduced as soon as the environmental change is detected.

while not Termination condition do
Perform k > 0 iterations of a classic algorithm.
Look for changes in the environment.
if Change is detected then
Diversify a significant fraction of population.
end if
end while

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

伺 ト イ ヨ ト イ ヨ ト

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	00000000			

Introducing diversity approach

Triggered Hypermutation GA Triggered increase of mutation rate

Drawbacks

- based on changes detection mechanism,
- fixed rate of hypermutation,
- fixed duration of hypermutation period.

(Cobb, 1990)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	00000000			

Maintaining diversity approach

Population is diversified in each generation by

- removing random individuals,
- removing individuals with lowest fitness,
- removing similar individuals,
- promoting *distant* individuals.

Removed individuals are often replaced with random immigrants.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イロト イヨト イヨト

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	000000000			

Maintaining diversity approach

Random Immigrants GA (RIGA) Iterated introduction of random immigrants

Drawbacks

- size of immigrants fraction needs to be estimated,
- dozens of very weak individuals among immigrants.

3

(Grefenstette, 1992)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	000000000			

Memory based approach

Population is extended with a buffer of the former best individuals.

- explicit memory full copies of individuals,
- implicit memory metadata about individuals, e.g.
 - averaged or discrete forms of chromosomes,
 - probability distributions.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
	00000000			

Memory based approach

Memory Enhanced GA (MEGA) Buffer for the former best individuals

Drawbacks

- size of buffer needs to be estimated,
- applicability to recurrent problems only.

(Yang, 2005)

イロト イポト イヨト イヨト 一日

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
		●00000		

CHC algorithm

*C*ross-generational elitist selection, *H*eterogeneous recombination, and *C*ataclysmic mutation

In other words:

- (C) best individual remains unmodified.
- (H) only "sufficiently distant" individuals are mated (incest avoidance).
- (C) mutation of nearly all individuals.

(Eshelman, 1991)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イポト イヨト イヨト

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm ○●○○○○	IDEA 000000	

CHC algorithm – selection

Hamming distance (for chromosomes)

Number of unmatched *allels* in the two chromosomes.

Selection mechanism

- <u>All individuals</u> are mated randomly.
- Only those pairs of individuals with Hamming distance exceeding the threshold value d > 0 are allowed to recombine.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

同下 イヨト イヨ

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
		00000		

CHC algorithm – recombination (crossover)

First, a half of unmatched allels is picked randomly

Then, the selected allels are exchanged

 Note that the above process preserves the Hamming distance of parents.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	
		000000		

CHC algorithm – re-initialization

Re-initialization plays the role of the mutation:

- Only one best individual remains unmodified.
- The rest of individuals are replaced with clones of the best individual with r > 0 randomly perturbed allels.

Let L > 0 be the length of chromosome:

- r near 0 fast convergence, possibility of getting trapped into local optima;
- ► *r* near *L* slow convergence, large diversity of individuals;

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	
00000	0000	00000000	000000	000000	

CHC pseudo-code

Parameters:

- d threshold for Hamming distance,
- L chromosome length.
- r number of allels mutated during re-initialization.

i = 0; d = L/4; Initialize(P_0) while not TerminationCondition(P_i) do Evaluate(P_i) $P'_i = \text{Selection}(P_i)$ if $P'_i \neq \emptyset$ then $C_i = \text{Crossover}(P'_i)$ Evaluate(C_i) $P_{i+1} = \text{Re-initialize}(P_i \cup C_i, r)$ d = L/4else d = d - 1end if i = i + 1end while

イロト イポト イヨト イヨト

3

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
		00000		

CHC algorithm

Advantages

- rapidness,
- high reactivity to the environmental changes,

Disadvantages

- loss of information due to the re-initialization,
- incapability of dealing with multimodal problems.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イポト イヨト イヨト

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
			00000	

Constraints handling

- Should infeasible individuals be removed or repaired?
- What is the fitness of an infeasible individual?
- How to compare two infeasible individuals?

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA o●oooo	

IDEA (Infeasibility-Driven Evolutionary Algorithm)

- Maintaining a fixed-sized fraction of "good yet infeasible" individuals.
- Rank method used in IDEA:
 - All feasible individuals are ranked 0.
 - ► The remaining (i.e. infeasible) individuals are ordered according to their *violation measure* then ranked 1, 2, 3, ...

(Singh, Isaacs, Ray, Smith, 2008)

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イポト イヨト イヨト

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA oo●ooo	

$\mathsf{IDEA}(N, \alpha)$

Parameters: *N* – population size, $0 < \alpha < 1$ rate of infeasible fraction.

```
N_{inf} = \alpha \cdot N
N_f = N - N_{inf}
P_1 = \text{InitPopulation}()
Evaluate(P_1)
while not TerminationCondition(P_i) do
   C_i = \text{Crossover}(P_i)
   C_i = Mutation(C_i)
   Evaluate(C_i)
   (S_f, S_{inf}) = Split(P_i + C_i)
   Rank(S_f)
   Rank(S_{inf})
   P_{i+1} = S_f(1:N_f) + S_{inf}(1:N_{inf})
end while
```

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

Introduction	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA 000●00	

IDEA adapted to DOPs

Although IDEA was designed for SOPs, it is also easily applicable for DOPs.

Singh et al. (2009) proposed the simple modification for that purpose, by introducing Sub-evolve step.

- Sub-evolve step is basically the original IDEA.
- The main loop verifies if the environment has changed since the last time step. If so, it re-evaluates the whole population.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イポト イヨト イヨト

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
			000000	

IDEA adapted to DOPs

```
N_G – number of generations
  P1 = Initialize()
  Evaluate(P_1)
  for i = 2 to N_G do
     if the function has changed then
        Evaluate (P_{i-1})
     end if
     C_{i-1} = Sub-evolve(P_{i-1})
     Evaluate (C_{i-1})
     P_i = \text{Reduce}(P_{i-1} + C_{i-1})
  end for
```

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

(日)

Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA	Summary
			000000	

IDEA adapted to DOPs

Advantages

- good performance in constrained optimization problems,
- applicability to multi-objective problems.

Disadvantages

- necessity to verify feasibility of the individuals during each generation,
- definition of violation measure dedicated to the examined problem.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland

イロト イロト イヨト イヨト

Introduction 00000	Iterated SOP	Continuous Adaptation	CHC Algorithm	IDEA 000000	Summary •

Summary

- DOPs model many real-world optimization problems.
- DOPs are solved with the dedicated adaptations of classical EAs.
- There is no "the one good EA" for all DOPs. There are few classes of EAs instead, each of which suits better a given class of DOPs.
- Developing EAs for DOPs is among the current research problems.

Patryk Filipiak

Computational Intelligence Research Group, Institute of Computer Science, University of Wroclaw, Poland