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GP at a Glance

Intuition

e Genetic Programming
e not to confuse with any other kind of buzzword-Programming

e in this case, it is the computer (specifically the algorithm)
that does the programming

e it happens through an evolutionary process
e GP is not that powerfull as you wish it was

e yet powerfull enough for interesting, real-world applications
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GP at a Glance

® 1964, Fogel - discovering DFA with
EA

e 1981, R. Forsyth - BEAGLE

e 1985, N. Cramer - GA applied to
special programming

languages,
® 1987, Fujiki and Dickinson - GA on
a subset of LISP John Koza
e 1987, simple FORTRAN-based ® 1972 - PhD in Computer Science
ideas, rarely compiled (University of Michigan)
® 1996, Nordin and Banzhaf - Linear ® - 1987 - Scientific Games
GP Corporation
e 1996, Poli - Parallel Distributed GP ~ ® 1988 - MIT
® 1992 - Genetic programming

e 1997, Miller - Cartesian GP
1995 - first recreated patent
(low-pass filter-a-circuit)
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Basics

Basic GP Algorithm

P < InitialPopulation(n);

while not TerminationCondition(P) do

P+ {};

Evaluatelndividuals(P);

while |P'| # |P| do
pl < TournamentSelection(P);
p2 < TournamentSelection(P);
(01, 02) < Crossover(pl, p2);
ol + Mutation(ol);
02 + Mutation(02);
P+ P'U{ol,02};

end

P« P,

end
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Basics

Representation

max(x +x, x + (3 *y))

what can we tell about the search space?

usually, we would like to constrain the size of the chromosome

this is a valid program (or an expression)

bottom-up evaluation
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Basics

Crossover Operator

Parents = Offspring
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Basics

Mutation Operator

Parents

Mutation

Offspring

Mutation
Point

/ Point
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X y

Randomly Generated
Sub-tree
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Basics

Population Initialization

e full method

t=1 t=2 t=3 t=4
O
X X y
t=5 t=6 t=7
X y X y 1 X Yy A 0
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Basics

Population Initialization

e grow method

t=1 t=2 t=3
X X
t=4 t=5
X X
2 2

e in practice: ramped-half-in-half method

GP
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Basics

Demo
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Beyond Basic GP

Linear GP

e tree structures are not that close to "real" coding

e source code is written as consecutive steps, so let
chromosomes be linear

e is software really that fragile?

e linear crossover, mutation
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Beyond Basic GP

Cartesian GP

e Miller (1999)
e encodes graph structures

e genotype is (sort of ) a squashed incidence matrix

. Output genes
function genes
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Connection genes
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Beyond Basic GP

Cartesian GP (cont’d)
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Beyond Basic GP

Cartesian GP (cont’d)

Function | Action
gene
(address)

0 Add

0 3 4 2
00 0T
1 1 + 5 @ 1 Subtract

o

L 0 0 5 7
0O OIN N
0 1 4 _.
3 Divide
(protected)
Genotype
001 100 131 201 044 254 2573
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Beyond Basic GP

Cartesian GP (cont’d)

GP

J",l_ — x0+x1

Vs = Xo*X1
V1= -Xg*x4
y3=

2
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GP at a Glance 3asics Beyond Basic GP Applications

Cartesian GP (cont’d)

Properties
e mutation as the main search operator

e new crossover proposed in 2007 (Clegg, Walker and Miller),
provides faster convergence

e some connections might be ignored (due to different function
arities)

e some nodes might be ignored (not reachable from input
nodes)

e thus genotype to phenotype mapping is many-to-one

o CGP typically uses a (1+4) evolutionary strategy

e casily encodes computer programs, electronic circuits, neural
networks, math equations, ...
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Beyond Basic GP

Probabilistic GP - PIPE

e Salustowicz and Schmidhuber, 1997
® only one Probabilistic Prototype Tree (PPT) is

maintained

® PPT is a complete n-ary tree with infinitely
many nodes

® cach node has

e Pt - probability of selecting
terminal node

e P; - instruction set probability
vector

e R; - constant picked uniformly
from [0; 1)

® subtrees are pruned when terminals are highly
probable, e.g. Pt > 0.99999

® PPT might be grown on-demand; usually
should be twice as large as individuals
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Probabilistic GP - PIPE (cont'd)

=
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©

() do

while not TerminationCondition

if Rand(0,1) > P, then

| ELO:

else

GBL();

end

end
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Beyond Basic GP

Probabilistic GP - PIPE (cont'd)

® EL - Elitist Learning (only from Prog®)
® GBL - Generation-Based Learning

e creation, evaluation and learning
from population
e mutation and prunning of PPT

P(PROGy) = 11 P;(1;(PROG))
j:N; used to generate PROG,

¢+ FIT(Proc®)

P = P(P 1-P(P Adr —o—— =
TARGET (PrOG)) + ( (PROG)) - Ir =+ FIT(Procy)

REPEAT UNTIL P(PROGy) > Prarcer :
P;(I;(PROGY)) := Pj(I;(PROGy)) + ¢" - Ir - (1 — P;j(I;(PROG})))
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Beyond Basic GP

Probabilistic GP - PIPE - function regression example
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f(x)

f(x) = x3- e * - cos(x) - sin(x) - (sin?(x) - cos(x) — 1)

o F={+,—,% %,sin, cos, exp, rlog }

e T={x,R}

e PE = 100,000, FITs = 0.001, e = 0.000001, Pel =0.01,
PS=10, Ir=0.01, PM =0.4, mr=0.4, TR =0.3, TP =0.999999
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Beyond Basic GP

Probabilistic GP - PIPE - function regression example
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Best one (upper-left corner) found after 99390 evaluations.
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GP at a Glance 3asics Beyond Basic GP Applications

Probabilistic GP - PIPE - function regression example

GP

Best individual:
(sin(((x-((cos(((sin((sin(cos((rlog(sin(0.350466))* (((cos(
sin((cos((x-((rlog(cos(((0.359722+cos(x))+(x-0.082538))))*(x-
(0.039232-((x%0.440611)%0.499641))))*0.025812)))-(0.914140%
(x*(0.506207%0.379995)))))) * (x- ((x}hsin(rlog(0.334052)) ) +rlog(((
x+x)*x))))) %exp (exp ((0.743179-0.128703))))+x))))%(((0.507077*
((exp((x-x))-((cos(sin((x-(cos((0.915233%x))-exp(0.709387))))) -
0.492354)%0.840741) ) %cos ((x*0.981004)))) * ((x/cos(x))*(0.091520%
(0.112682+sin(sin(x))))))+x)))%x) % (sin((((cos(sin(rlog((exp(x)%
c0s(0.712427)))))+0.933998)%0.609029) -cos (0.936381) )) % (((cos(
0.790039)-(x-0.069650) ) *sin(x))-x))))+sin(exp(rlog(x))))-((
sin(0.375208) * (exp(rlog(exp(0.697598)))%cos ((cos(0.585192) -
0.095603))))+(((0.395458-(0.282354*sin(0.822447)))%(0.5334487,
(0.785156%0.918876) ) ) *cos ((x-(0.639372%0.524799)))))))-sin((
sin(sin((sin(sin(sin(x)))%sin(cos(0.287498)))))+x))))*(cos (((
0.482642+((0.183318%(0.338145+0.069478) ) *cos ((x+0.496698))) )+
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Beyond Basic GP

Probabilistic GP - more recent algorithms
eCGP (Sastry and Goldberg, 2003)

® Extended Compact Genetic Programming
® combines PIPE with eCGA

EDP (Yanai and Iba, 2003)

e Estimation of Distribution Programming
® ppb is estimated through a Bayesian Network

® no classical crossover nor mutation

N-gram GP (Poli and McPhee, 2008)

® allows evolution of linear programs

® better local search
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Applications

Popular Benchmarks

e Boolean Functions

e Classification

e Predictive Modelling

e Path-finding and Planning
e Control Systems

e Game Playing

e Dynamic Optimization

e Traditional Programming

e Constructed Problems
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Applications

Sample Applications

ST5 antenna evolved by Jason Lohn and his group on Evolvable
Systems at NASA Ames
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Applications

Sample Applications (cont'd)

1000-Pentium Beowulf-Style Cluster Computer (July 29, 1999)
Genetic Programming Inc.

GP Adrian tancucki



GP at a Glance 3asics 3e Applications

Sample Applications (cont'd)

A Genetic Programming Approach to Automated Software Repair
e Stephanie Forrest, Claire Le Goues, ThanhVu Nguyen,
Westley Weimer (2009)
e automatic repair of legacy C code
e programs are loaded as abstract syntax trees
e genetic operators only local to a particular execution path
e positive and negative test cases serve for fitness assessment

e code bloat reduction with heuristics
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Applications

Sample Applications (cont'd)

Microsoft Zune bug (Dec 31, 2008 freeze)

void zunebug_repair (int days) {

void zunebug(int days) {
0; int year = 1980;

int year = 1980;

while (days > 365) { while (days > 365) {
if (isLeapYear (year)){ if (isLeapYear (year)) {
if (days > 366) { if (days > 366)
days -= 366; // days -= 366 // repair deletes
year += 1; year += 1;
}
else { else {
}
} days -= 366; // repair inserts
else { } else {
days -= 365; days -= 365;
year += 1; year += 1;

} }

} }
printf ("current year is %d\n", year); printf ("current year is %d\n", year);
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Problems of GP - Bloat

e expressions grow indefinitely in size

e slow evaluation, memory overruns

Possible remedies:
e constraining tree size
e penalty for large trees

e bloat-aware operators (size-fair crossover)
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Problems of GP - High Evaluation Cost

Caching of outcomes of subprograms

Parallel execution of programs on particular fitness cases

Bloat prevention methods
JIT of individuals

Linear Programming might be translated directly to machine
code
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Riccardo Poli, Bill Langdon, Nic McPhee A Field Guide to
Genetic Programming,

John Koza Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press

Rafat Satustowicz Probabilistic Incremental Program
Evolution, PhD thesis, Berlin 2003

Bill Langdon, Adil Qureshi Genetic Programming — Computers
using “Natural Selection” to generate programs,

= B & = @

Stephanie Forrest, Claire Le Goues, Westley Weimer, ThanhVu
Nguyen Genetic Programming Approach to Automated
Software Repair,
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