Evolutionary Algorithms: Genetic Programming

Adrian Łańcucki

Instytut Informatyki Uniwersytet Wrocławski

December 9, 2013

Intuition

- Genetic Programming
- not to confuse with any other kind of buzzword-Programming
- in this case, it is the computer (specifically the algorithm) that does the programming
- it happens through an evolutionary process
- GP is not that powerfull as you wish it was
- yet powerfull enough for interesting, real-world applications

- 1964, Fogel discovering DFA with EA
- 1981, R. Forsyth BEAGLE
- 1985, N. Cramer GA applied to special programming languages,
- 1987, Fujiki and Dickinson GA on a subset of LISP
- 1987, simple FORTRAN-based ideas, rarely compiled
- 1996, Nordin and Banzhaf Linear GP
- 1996, Poli Parallel Distributed GP
- 1997, Miller Cartesian GP

• ...

John Koza

- 1972 PhD in Computer Science (University of Michigan)
- 1987 Scientific Games Corporation
- 1988 MIT
- 1992 Genetic programming
- 1995 first recreated patent (low-pass filter-a-circuit)

Basic GP Algorithm

GP at a Glance

```
P \leftarrow InitialPopulation(n);
while not TerminationCondition(P) do
    P' \leftarrow \{\};
    EvaluateIndividuals(P);
    while |P'| \neq |P| do
         p1 \leftarrow TournamentSelection(P);
        p2 \leftarrow TournamentSelection(P);
        (o1, o2) \leftarrow Crossover(p1, p2);
        o1 \leftarrow Mutation(o1);
        o2 \leftarrow Mutation(o2);
         P' \leftarrow P' \cup \{o1, o2\};
end
```

Representation

GP at a Glance

- what can we tell about the search space?
- usually, we would like to constrain the size of the chromosome
- this is a valid program (or an expression)
- bottom-up evaluation

at a Glance Basics Beyond Basic GP Applications

Crossover Operator

Mutation Operator

ce Basics Beyond Basic GP Applications

Population Initialization

• full method

Population Initialization

• grow method

• in practice: ramped-half-in-half method

Demo

Linear GP

- tree structures are not that close to "real" coding
- source code is written as consecutive steps, so let chromosomes be linear
- is software really that fragile?
- linear crossover, mutation

Cartesian GP

- Miller (1999)
- encodes graph structures
- genotype is (sort of) a squashed incidence matrix

Cartesian GP (cont'd)

GP at a Glance Basics Beyond Basic GP Applications Tip

Cartesian GP (cont'd)

Function gene	Action
(address)	
<u>0</u>	Add
1	Subtract
2	Multiply
<u>3</u>	Divide (protected)

Genotype

<u>0</u> 0 1 <u>1</u> 0 0 <u>1</u> 3 1 <u>2</u> 0 1 <u>0</u> 4 4 <u>2</u> 5 4

2 5 7 3

Cartesian GP (cont'd)

 $y_3 = 0$

GP at a Glance Basics Beyond Basic GP Applications Tips

Cartesian GP (cont'd)

Properties

- mutation as the main search operator
- new crossover proposed in 2007 (Clegg, Walker and Miller), provides faster convergence
- some connections might be ignored (due to different function arities)
- some nodes might be ignored (not reachable from input nodes)
- thus genotype to phenotype mapping is many-to-one
- CGP typically uses a (1+4) evolutionary strategy
- easily encodes computer programs, electronic circuits, neural networks, math equations, ...

GP at a Glance Basics Beyond Basic GP Applications T

Probabilistic GP - PIPE

- Salustowicz and Schmidhuber, 1997
- only one Probabilistic Prototype Tree (PPT) is maintained
- PPT is a complete n-ary tree with infinitely many nodes
- each node has
 - P_T probability of selecting terminal node
 - \vec{P}_j instruction set probability vector
 - R_j constant picked uniformly from [0; 1)
- subtrees are pruned when terminals are highly probable, e.g. $P_T > 0.99999$
- PPT might be grown on-demand; usually should be twice as large as individuals

GP at a Glance Basics Beyond Basic GP Applications Tips

Probabilistic GP - PIPE (cont'd)


```
\label{eq:gbl} \begin{array}{ll} \textit{GBL}(); & & & \\ & \text{while } \textit{not TerminationCondition}() \text{ do} \\ & & \text{if } \textit{Rand}(0,1) > P_{el} \text{ then} \\ & & & | & \textit{EL}(); \\ & & & \text{else} \\ & & & | & \textit{GBL}(); \\ & & & \text{end} \\ \end{array}
```

Probabilistic GP - PIPE (cont'd)

- EL Elitist Learning (only from Progel)
- GBL Generation-Based Learning
 - creation, evaluation and learning from population
 - mutation and prunning of PPT

$$P(\text{Prog}_b) = \prod_{j:N_j \text{ used to generate Prog}_b} P_j(I_j(\text{Prog}_b))$$

$$P_{TARGET} = P(PROG_b) + (1 - P(PROG_b)) \cdot lr \cdot \frac{\varepsilon + FIT(PROG^{cl}_b)}{\varepsilon + FIT(PROG_b)}$$

$$\begin{split} \text{REPEAT UNTIL} \quad & P(\text{Prog}_b) \geq P_{TARGET}: \\ & P_j(I_j(\text{Prog}_b)) := P_j(I_j(\text{Prog}_b)) + c^{lr} \cdot lr \cdot (1 - P_j(I_j(\text{Prog}_b))) \end{split}$$

Probabilistic GP - PIPE - function regression example

•
$$F = \{+, -, *, \%, sin, cos, exp, rlog\}$$

- $T = \{x, R\}$
- PE = 100,000, FITs = 0.001, e = 0.000001, Pel =0.01, PS=10, Ir=0.01, PM =0.4, mr=0.4, TR =0.3, TP =0.999999

Probabilistic GP - PIPE - function regression example

Best one (upper-left corner) found after 99390 evaluations.

Probabilistic GP - PIPE - function regression example

Best individual:

```
(\sin((x-((\cos(((\sin((\sin((\cos((r\log(\sin(0.350466))*(((\cos(
sin((cos((x-((rlog(cos(((0.359722+cos(x))+(x-0.082538))))*(x-
(0.039232 - ((x\%0.440611)\%0.499641))))*0.025812))) - (0.914140*)
(x*(0.506207%0.379995))))))*(x-((x%sin(rlog(0.334052)))+rlog(((
x+x)*x))))%exp(exp((0.743179-0.128703))))+x))))%(((0.507077*
((\exp((x-x))-((\cos(\sin((x-(\cos((0.915233%x))-\exp(0.709387)))))-
0.492354)\%0.840741))\%cos((x*0.981004))))*((x\%cos(x))*(0.091520*)
(0.112682 + \sin(\sin(x))))) + x)))%(sin(((cos(sin(rlog((exp(x)%))))))
\cos(0.712427))))+0.933998)\%0.609029)-\cos(0.936381)))\%(((\cos(
0.790039)-(x-0.069650)*\sin(x)-x)))+\sin(\exp(r\log(x)))-((
\sin(0.375208)*(\exp(r\log(\exp(0.697598)))\%\cos((\cos(0.585192)-
0.095603)))+(((0.395458-(0.282354*sin(0.822447)))%(0.533448%
(0.785156*0.918876))*\cos((x-(0.639372\%0.524799))))))-\sin((
\sin(\sin(\sin(\sin(\sin(x))))\sin(\cos(0.287498)))))*(\cos(((
0.482642+((0.183318*(0.338145+0.069478))*\cos((x+0.496698))))+
```

at a Glance Basics Beyond Basic GP Applications Tips

Probabilistic GP - more recent algorithms

eCGP (Sastry and Goldberg, 2003)

- Extended Compact Genetic Programming
- combines PIPF with eCGA

EDP (Yanai and Iba, 2003)

- Estimation of Distribution Programming
- ppb is estimated through a Bayesian Network
- no classical crossover nor mutation

N-gram GP (Poli and McPhee, 2008)

- allows evolution of linear programs
- better local search

Popular Benchmarks

- Boolean Functions
- Classification
- Predictive Modelling
- Path-finding and Planning
- Control Systems
- Game Playing
- Dynamic Optimization
- Traditional Programming
- Constructed Problems

P at a Glance Basics Beyond Basic GP **Applications** Tips

Sample Applications

ST5 antenna evolved by Jason Lohn and his group on Evolvable Systems at NASA Ames

GP at a Glance Basics Beyond Basic GP Applications Tips

Sample Applications (cont'd)

1000-Pentium Beowulf-Style Cluster Computer (July 29, 1999)

Genetic Programming Inc.

(ロ) (部) (注) (注) 注 り(で)

Sample Applications (cont'd)

A Genetic Programming Approach to Automated Software Repair

- Stephanie Forrest, Claire Le Goues, ThanhVu Nguyen, Westley Weimer (2009)
- automatic repair of legacy C code
- programs are loaded as abstract syntax trees
- genetic operators only local to a particular execution path
- positive and negative test cases serve for fitness assessment
- code bloat reduction with heuristics

Sample Applications (cont'd)

Microsoft Zune bug (Dec 31, 2008 freeze)

```
void zunebug(int days) {
                                                  void zunebug_repair(int days) {
  int year = 1980;
                                                    int year = 1980;
 while (days > 365)
                                                    while (days > 365) {
    if (isLeapYear(year)) {
                                                      if (isLeapYear (year)) {
      if (davs > 366)
                                                        if (days > 366) {
        days -= 366;
                                                          // days -= 366; // repair deletes
        year += 1;
                                                          year += 1;
      else {
                                                        else {
                                                                           // repair inserts
                                                        days -= 366;
    else {
                                                       } else {
      days -= 365;
                                                        days -= 365;
      year += 1;
                                                        year += 1;
 printf("current year is %d\n", year);
                                                    printf("current year is %d\n", year);
```

Problems of GP - Bloat

- expressions grow indefinitely in size
- slow evaluation, memory overruns

Possible remedies:

- constraining tree size
- penalty for large trees
- bloat-aware operators (size-fair crossover)

Problems of GP - High Evaluation Cost

- Caching of outcomes of subprograms
- Parallel execution of programs on particular fitness cases
- Bloat prevention methods
- JIT of individuals
- Linear Programming might be translated directly to machine code

- Riccardo Poli, Bill Langdon, Nic McPhee A Field Guide to Genetic Programming,
- John Koza Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press
- Rafał Sałustowicz *Probabilistic Incremental Program Evolution*, PhD thesis, Berlin 2003
- Bill Langdon, Adil Qureshi Genetic Programming Computers using "Natural Selection" to generate programs,
- Stephanie Forrest, Claire Le Goues, Westley Weimer, ThanhVu Nguyen Genetic Programming Approach to Automated Software Repair,