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Abstract

We combine two known polynomial time approximation algorithms for the maximum traveling salesman problem to obtain a
randomized algorithm which outputs a solution with expected value of atdémses the optimal one for any given< 25/33.
0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction an approximation algorithm with a better performance
guarantee oﬁ opt (and another paper [4] with even
Let G = (V, E) be a complete (undirected) graph better bounds for the metric case).

with vertex setV and edge setz. For e € E let We first describe Serdyukov’s algorithm. The algo-
w(e) > 0 be its weight. ForE’ € E we denote rithm is very simple and elegant and it is given in the
w(E") =), wle). For a random subsei’ C E, next section. We then combine ideas from [5] and [3]

w(E’") denotes the expected value. Theaximum to form a randomized polynomial algorithm that com-

traveling salesman probleiax TSP) is to compute  putes a tour of expected weight at leasipt for any

a Hamiltonian circuit (atour) with maximum total givenr < 25/33. While the improvement is small, it

edge weight. The problem is max-SNP-hard [1] and at least demonstrates that the bound p# an be

therefore there exists some constgnt 1 such that improved and that further research in this direction is

obtaining a solution with performance guarantee better encouraged. This algorithm is described in Section 3.

thang is NP-hard. Finally, in Section 4 we apply these results to obtain
We denote the weight of an optimal tour lopt new approximation results for thmaximum latency

In [3] we described a polynomial algorithm that TSP

guarantees for any< 5/7 a solution of weight at least

r opt. We were then informed by Alexander Ageev that

a paper by Anatoly Serdyukov [5] already contains 2- Serdyukov’s algorithm

A cycle coveror binary 2-matching is a subgraph
E-mail addresseshassin@math.tau.ac.il (R. Hassin), shlom@ in which e"_"Ch vertex iV’ has a degree of exactly 2.
math.tau.ac.il (S. Rubinstein). A subtouris a set of edges that can be completed

1 This paper was written while R. Hassin visited GSIA, Camegie 10 @ tour (i.e., contains no non-Hamiltonian cycles
Mellon University. and no vertex of degree greater than 2)maximum
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Serdyukov’s Algorithm

input

1. A complete undirected grapti = (V, E) with weightsw, ¢ € E.

returns A tour.

begin

Compute a maximum cycle coee {Cq, ..., Cr}.

Compute a maximum matching.

fori=1,...,r:
Transfer fromC; to W an edge so thav remains a subtour.
end for

CompleteC into a tour 7y .

CompleteW into a tour 7».

return the tour with maximum weight betwe&pand 7>.

end Serdyukov’s Algorithm

Fig. 1. Serdyukov’s algorithm.

cycle coveris one with maximum total edge weight. 3. A new algorithm
A maximum matching a set of vertex-disjoint edges
of maximum total weight. Serdyukov’s algorithm for Algorithm Max_TSPis given in Fig. 2. It constructs
the case in whichV | is even is given in Fig. 1. three tours and selects the one with greater weight.

Note that it is always possible to transfer an edge  The first tour is constructed, as in [3], by Algo-
from C; to W as required. The performance guarantee "thm Al (see Fig. 3). It uses a parameter- 0.
follows easily using the assumption that| is even. It 'ireats differently short cycles such that|C;| <
The weight of the cycle cover is an upper bound ¢ and '0”9 cycles Fo_r ea_ch short cyc!e It com-

. Lo putes a maximum Hamiltonian path on its vertices.

on opt while that of the matching is at Ieaéopt . -
. . 3 For each long cycle it deletes an edge of minimum
it [V]is even. Thusw(T1) + w(T2) > joptand | h The resulting path cover is extended to a
maxw(Ty), w(T2)} > %opt Serdyukov also shows tour 7.
how to modify the algorithm so that the bound holds  The second algorithm (see Fig. 4) is a modified
when|V|is odd but this part is more involved and we  version of Serdyukov’s algorithm. It transfers edges
are interested here only in asymptotic bounds so that from C to W using a randomized selection step, and
the parity of| V| is not important. generates two subtours. The one formed fi@hwith

Max_TSP
input
1. A complete undirected grapti = (V, E) with weightsw, e € E.
2. A constant > 0.
returns A tour 7.
begin
Compute a maximum cycle coee {Cq, ..., Cr}.
Ty := AL1(G,C,¢).
(To, T3) := A2(G, C).
return the tour with the maximum weight amofig, 7> and T5.
endMax_TSP

Fig. 2. AlgorithmMax_TSP.
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Al
input
1. A complete undirected graphi = (V, E) with weightsw, ¢ € E.
2. A cycle cover.
3. A constant > 0.
returns A tour 77.

begin
fori=1,...,r:
if |C;] <&t
then
Compute a maximum Hamiltonian pa#h in the
subgraph induced by the vertices@f.
else
Lete; be a minimum weight edge 6f.
H; == Ci \{¢;}.
end if
end for
ConnectHy, ..., H, in some arbitrary order to form a tour.
return Tj.
endAl

Fig. 3. Algorithm A1.

the transferred edges is augmented arbitrarily to a tour If e, was assigned ta/; then we simply skig:. Else,
T»>. The other one, consisting of the remaining edges if we skippede, because it was not possible to as-
of C, is first augmented by new edges whose two ends sign it to M/ then it is possible to assigey to M. .
belong to different cycles of. Then it is arbitrarily Thus, in this case we assign to M/ rather than
augmented to a toufs. to M;.

A second conflict may occur if bothy ande; were

Lemma 1. When AlgorithmA?2 treats C;, it is pos-  Skipped. Thus we couldn't assign to M; and we

sible to construct the desired matchings and M/ couldn't assigre; to M;. In this case we will assign
such that both matchings are nonempig, U W and e1to M].
M U W are subtours, and each vertex®f is an end In all of the above, the property that each vertex
vertex of at least one edge frabfy U M. of C; is an end of at least one edge M;; U M/ is

1

maintained. It is also easy to see thdf and M/

. . contain at least one edge
Proof. Denote the edges @; by e1, ..., ¢ in cyclic ged

order, starting from an arbitrary edge.

Follow C; starting frome1. Alternately insert edges
of C; to M; and M. If such an insertion (say of;
to M;) would create a cycle ivd; U W (in particular,
if this edge is already irfW) then skipe; and assign
instead the next edge;1 to M;. We observe that the
latter assignment is always possible, and we never skip
two successive edges.

Care must be taken with respect to the last assign- Lemma 2. For each vertex o€';, the probability that
ment. First, there may be a conflict if we assigned both one of the edges incident to it & will be transfered
e1 ande; to M;. We resolve this conflict as follows:  to W by AlgorithmA2 s at leastl/2.

We note that the property that boMi; and M/ are
nonempty is important to assure that after the transfer
of any of these matchings t& at least one edge
from each cycle was transferred and the remaining
edges form a subtour. The following two lemmas now
follow:
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A2

input

1. A complete undirected graphi = (V, E) with weightsw, ¢ € E.

returns AtourT.

begin

Compute a maximum cycle coee {Cq, ..., Cr}.

Let £’ be the edges af with two ends in different cycles 6t

Compute a maximum weight matchiig < E’.

Compute a maximum matching in G.

fori=1,...,r:
Construct disjoint nonempty matchindd; and Ml.’ from edges of’; so thatM; U W and
Ml.’ U W are subtours and each vertex©f is an end of at least one edge fraovfy U Ml.’.
Transfer eitherd; or Ml.’ from C; to W, each with probability%.
end for

CompleteW into a tour 7.

LetP be the set of paths that were formed fréi . . ., C, after the transfer of edges.

M :={(i, j) € M’: i and j have degred. in P}.

% M U P consists of path®y", ..., P¥ and cycle<7, .

each cycle contains at least two edges frah?o

.., Cf such that

P*=(P}...., P},
begin deletion step:
fori=1,....t:
Randomly select an edges C;" N M.
P*:=P*U(CF\e).
end for
end deletion step

CompleteP* to a tour T3 by arbitrary addition of edges.

return Ty, T3.
end A2

Fig. 4. Algorithm A2.

Lemma 3. For every edge € M’, the probability that
itisin M (i.e., both of its end vertices have degtee
in P) is at leastl/4.

By the fact that each cycle a7, ..
at least two edges from, we obtain:

., C} contains

Lemma 4. For every edge € M, the probability that
it will be deleted by the deletion step of Algorith?2
is at mostl/2.

Theorem 5.
max{w(T1), w(T2), w(T3)} S 209
1 ’ 2 ’ 3 = 33_32‘9 p .
Proof. Let T be an optimal tour. Defin@in; (Text)
to be the edges o' whose end vertices are in the

same (in different) connectivity components 6f
Supposeav(Tint) = ew(T) = a opt Consider the tour
T1. For each short cycle @f Algorithm A1 computed

a maximum weight Hamiltonian path and therefore its
contribution to the weight of is at least the weight
of Tint in the graph induced by its vertices. Sintes a
maximum cycle covernp(C;) is at least the weight of
Tint in the subgraph induced by the verticesf In
each long cycle we deleted a minimum weight edge,
thus subtracting from its weight at most a factorof
Thereforew(T1) > (1 — &)w(Tint) = (1 — &) Opt.

Now consider7, and 73. Let § opt be the total
weight of the edges transferred frahto W. Since the
original weight of W is at least} opt, thenw(72) >
(3+8)opt
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The weight of P, the set of paths formed fro
after the transfer of edges, is at le@$t— &) opt To
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subgraph induced biyvertices. Since for short cycles
I < &1 this amounts to ©:22%/¢). Thus the overall

this we added edges as follows: We first computed a complexity is Qn2(n + 21/%)). Given any factor <

maximum matchingy’ over G'. w(M') > %w(Text)
sinceText can be covered by two disjoint matchings in
G’'. We then obtained/ by deleting all of the edges

of M’ except those whose two ends have degree 1 in

P. By Lemma 3, each edge ifi’ has with probability
1/4 two ends that have degree 17m Therefore,

1,1 1
w(M) > ZwM') > Gu(Te) = 5(1—a) opt.

At this stage we considered the edgedbbn cycles
of M U P and deleted each € M with probability
at most J¥2. The expected weight of the remaining
edges is at leasfw(M) > (1 — «) opt Finally, we
obtainedTs by connecting the remaining edgesio

This step may only increase the weight of the solution.

Thusw(7T3) > ((1—8) + &(1— o)) opt
We conclude that

max{w(T1), w(T2), w(T3)}

> mad (- e =18, = —5— 2| opt
= - 8 b ~ 9 A~ - A .
*27%16 7 ° 18P

The minimum value of the right hand side obtains
whena = 5525 and it then equal§a’z= opt O

The two time consuming parts of the algorithm are
the computation of a maximum 2-matching and the
computation of maximum Hamiltonian paths on the

25/33 we can fixc > 0 and obtain a solution of value
at least- optin O(r®) time.

4. Maximum latency TSP

Chalasani and Motwani [2] considered the fol-
lowing maximum latency traveling salesman problem
(Max latency TSP) in relation to their treatment of dy-
namic delivery problems. Given an undirected graph
G with vertices {vg, v1,...,v,} and edge weights
w(e), find a Hamiltonian path starting frony such
that the totalatencyof the vertices is maximized. If
in a given pathP the length of theth edge traversed
is w;, then the latency of thgth vertex visited is

Lj= Z{Zl w; and the total latency.(P) is

L(P) =2Lj =Z(n — i+ Dw;.
j=1 i=1

Chalasani and Motwani showed that, under the as-

sumption that the edge weights satisfy the triangle in-

equality, thefarthest neighboalgorithm, starting from

vo, yields a solution of latency at least half the optimal.
We now point out a relation between Max TSP and

Max latency TSP that yields a bounded performance

guaranteewithout assuming the triangle inequality

subgraphs induced by the short cycles. The first can Specifically, we suggest the algorithm given in Fig. 5.

be done in @:%) time and the latter can be done by
applying dynamic programming in time (32') per

Let P be a maximum latency path. L&t be the
Hamiltonian tour obtained by adding tB the edge

Max_Latency
input

1. A complete undirected graphi = (V, E) with weightsw, e € E.

2. A distinguished vertexg € V.
returns

A Hamiltonian path starting atyg.
begin

Compute a touff.

Lete1 andes the two edges df which are incident withyg.

LetP,» =T\{ei}i=1,2.

return the path with maximum latency betwenpand P».

end Max_Latency

Fig. 5. Maximum latency algorithm.
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between its first and last vertices. LRt be the alter-
native solution obtained by deleting the first edgeof
(i.e., the one incident tag) from T.Thus,P’ visits the
vertices, other thang, in reverse order oP. It is easy
to see that each edgeﬁfprecedes each of the vertices
v1,..., v, in exactly one of the two pathB and P’.
Therefore, each of these edges contributéisnes its
weight to the suniL(P) + L(P’). It follows that

L(P)+L(P)=nw(T)
and in particular,
L(P) <nw(T).

Suppose now that the weight of the tducomputed
by Max_Latencyis guaranteed to be at leasttimes
that of a maximum weight tour irGG. In particular
w(T) = aw(T). Then,L(P1) + L(P2) = nw(T) >
anw(f). Thus,

max{L(Py), L(P2)} > %nw(?) > %L(P).

With Serdyukov’s algorithm we obtain g8 algo-
rithm for the maximum latency TSP while with our

R. Hassin, S. Rubinstein / Information Processing Letters 75 (2000) 181-186

new algorithm for Max TSP we obtain a randomized
algorithm with a 25/66 bound.
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