
An Operational Foundation
for the Tactic Language of Coq

Wojciech Jedynak
Institute of Computer Science

University of Wrocław
wjedynak@gmail.com

Małgorzata Biernacka
Institute of Computer Science

University of Wrocław
mabi@cs.uni.wroc.pl

Dariusz Biernacki
Institute of Computer Science

University of Wrocław
dabi@cs.uni.wroc.pl

ABSTRACT
We introduce a semantic toolbox for Ltac, the tactic lan-
guage of the popular Coq proof assistant. We present three
formats of operational semantics, each of which has its use in
the practice of tactic programming: a big-step specification
in the form of natural semantics, a model of implementa-
tion in the form of an abstract machine, and a small-step
characterization of computation in the form of reduction se-
mantics. The three semantics are provably equivalent and
have been obtained via off-the-shelf derivation techniques of
the functional correspondence and the syntactic correspon-
dence. We also give examples of Ltac programs and discuss
some of the issues that the formal semantics help to clarify.

With this work we hope to enhance the operational under-
standing of Ltac as well as to set up a framework to reason
about Coq scripts and to build tools supporting tactic pro-
gramming based on rigorous semantics.

Categories and Subject Descriptors
D.3.1 [PROGRAMMING LANGUAGES]: Programm-
ing Languages—Formal definitions and theory; F.3.2 [LO-
GICS AND MEANINGS OF PROGRAMS]: Seman-
tics of Programming Languages—Operational semantics;
F.4.1 [MATHEMATICAL LOGIC AND FORMAL
LANGUAGES]: Mathematical Logic—Mechanical theo-
rem proving

General Terms
Languages, Theory

Keywords
proof assistant Coq, tactics, natural semantics, abstract ma-
chine, reduction semantics

1. INTRODUCTION
After several decades of work on proof assistants and logi-

cal frameworks the state-of-the-art tools have become pretty

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PPDP ’13, September 16 - 18 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-2154-9/13/09$15.00.
http://dx.doi.org/10.1145/2505879.2505890.

mature and widely used. Many reported successes show that
it is now possible to carry out large-scale realistic develop-
ments in computer science and to provide machine-checkable
proofs for whole areas of mathematics. Some representative
projects in the former category include a certified compiler
for a C-like imperative language (the CompCert project [25])
in Coq [3], the verification of a whole microkernel (the seL4
project [20]) in Isabelle [29] or the formalization of the type
safety of Standard ML [23] in Twelf [32]. The latter category
includes the work on the Four Colour Theorem [14] and the
Odd Order Theorem [15] led by Gonthier and done in Coq.

In some areas of computer science the use of proof assis-
tants is particularly beneficial: they not only help ensure
correctness but some of them also allow a high degree of
proof automation, thus relieving the burden of formal veri-
fication and supporting the process of finding a proof.

The more widespread the use of proof assistants, the more
pressing the need for tools to support proof development
and refactorization. In [6], Bourke et al. describe their ex-
periences of participating in some of the projects mentioned
above and analyze the challenges of large-scale proof man-
agement.

Most big verification and formalization projects use a pro-
cedural tactic-based approach to theorem proving. In this
approach the user constructs the proof indirectly by using
tactics (if the system constructs an explicit proof term, it
is hidden from the user). User-defined tacticals can be used
to increase automation, to improve maintainability and reli-
ability of proof scripts. In particular, well-designed generic
tactics can drastically remove repetition and make the script
resilient to small representation changes.

Coq is one of the popular proof assistants endowed with
a powerful tactic language Ltac due to Delahaye. Unfortu-
nately, the semantics of Ltac has been presented only in-
formally, both by the author [11, 12] and in the documen-
tation, including the reference manual for the latest release
[35]. While the provided informal description is good enough
as an introduction to the system, many of the features and
corner cases are left unspecified or imprecise. Expert users
take advantage of those unspecified behaviors, also to good
use – we will discuss some examples of useful tactics in Sec-
tion 2.3. These examples are taken from a Coq textbook,
yet inexperienced users have to rely on intuition and exper-
imentation to understand the mechanisms used to structure
them.

As far as we are aware, the only effort to formally capture
the semantics of Ltac has been done by Kirchner [18] who
provided a small-step operational semantics in the form of

a reduction semantics. However, he considered Ltac as orig-
inally described by Delahaye, so his work pertains to an
obsolete version of Ltac. Moreover, he made some simplifi-
cations in the treatment of the exception mechanism of Ltac
and thus does not give it full justice.

In this work we attempt to fill the voids in the formal
treatment of Ltac described above by performing a compre-
hensive semantic study of the Coq tactic language and by
providing a coherent toolset of formal semantics of different
flavors. To this end, we propose an operational foundation
for Ltac by means of:

• a natural semantics that is well suited to both quickly
grasp the meaning of various constructs by the user as
well as a basis for studying equivalence of tactics;

• an abstract machine that provides a model of imple-
mentation;

• a reduction semantics that describes the small-step
computation and can be useful for execution tracing.

The starting point of this work is the natural semantics for a
core subset of Ltac (dubbed CoreLtac) from which we derive
the other two formats by adapting existing techniques of the
functional correspondence [1] and the syntactic correspon-
dence [9].

We postulate that these semantic artifacts can form a ba-
sis both for the formal study of Ltac and for the design of
its variants or extensions. Hopefully, it might also serve as
a reference point for its users.

The rest of the article is organized as follows: In Section
2 we review the general idea of tactics and discuss practical
examples. We next motivate the need for a formal semantics
by analyzing useful but possibly confusing examples of Ltac
scripts. In Section 3 we introduce CoreLtac, a representative
subset of Ltac. In Section 4 we present a natural seman-
tics for CoreLtac. In Section 5 we derive the corresponding
abstract machine. In Section 6 we extract a reduction se-
mantics from the abstract machine. In Section 7 we discuss
some possible variants and extensions of our development.
In Section 8 we survey related work and in Section 9 we
conclude and sketch directions for future work.

2. TACTICS, TACTICALS AND LTAC
In this section we provide a short discussion of some of

the features of Ltac.

2.1 Tactic-based proving
Coq is a proof assistant that takes advantage of the proofs-

as-programs paradigm (or the so-called Curry-Howard iso-
morphism) in that proofs of theorems are identified with
terms of the corresponding type. The consequence of this
fact is that the user can prove a theorem simply by writing
the entire proof term directly and explicitly.

A more convenient approach, employed by some proof as-
sistants (e.g. Coq, PVS, HOL, Isabelle) is to work interac-
tively by using tactics, i.e., procedures that allow backward
reasoning and that construct (parts of) the proof terms upon
execution.

Basic building blocks in tactic-based programming are
atomic tactics that roughly correspond to single inference
rules of the logic underlying the system. This level of gran-
ularity also quickly becomes impractical – bigger proofs be-
come bloated and unmaintainable. As one of the means for

proof structuring, Coq provides tacticals (tactic combina-
tors, higher-order tactics).

Many available tacticals date back all the way to LCF
and are more than 30 years old. The most fundamental
combinator is the sequential composition denoted t1; t2. Its
informal meaning is “apply t2 to every subgoal produced by
the execution of t1 in the current proof context.”

Whenever a tactic cannot be applied successfully, the exe-
cution results in a failure which is reported back to the user
who can then try some other tactic. This allows for a unique
experience: at each step the user can blindly invoke a set of
her favorite tactics, hoping that the goal is simple enough
for the machine to resolve. Only otherwise need the proof
context be manually introspected.

Coq’s tacticals are very useful for combining existing deci-
sion procedures into a single tactic. The failure-based notion
of control allows one to create powerful heuristics. For in-
stance, first [t1|t2|...|tn] executes the tactics t1, t2, . . . tn one
by one until a non-failing one is found; otherwise the whole
first fails. The following example presents a typical use case:

induction e;
first [assumption | trivial | congruence

| intuition | auto | eauto with arith].

The execution of the induction tactic can generate dozens of
cases that may vary in complexity but often many of them
are easy enough to be solved automatically. However, some
automations can be time expensive, so it makes sense to try
the cheap ones first.

Coq comes equipped with more than a hundred built-in
tactics of varying range of generality and granularity, includ-
ing sophisticated decision procedures for arithmetic theories,
propositional and first-order logic and others. Some of them
are very general and take long to complete, so in some cases
the user has to instrument the system to use them only un-
der certain conditions. Ltac’s matching constructions fit this
role nicely.

2.2 Practical examples of Ltac scripts
In this section we show example tactics that demostrate

typical use cases of most of Ltac’s distinctive features. An
interested reader can find many examples of sophisticated
tactics in Chlipala’s textbook [7].

2.2.1 Assumption reimplementation
Pattern backtracking allows us to provide a concise im-

plementation of the built-in assumption tactic:

Ltac my_assumption :=
match goal with
| [H : _ |- _] => exact H
end.

To analyze this example, we must review the semantics of
Coq’s matching constructions. match goal provides pattern
backtracking upon failure: all possible matchings of the goal
against the given pattern are tried out in turn: if the tactic
on the right hand side of the clause fails, then it is back-
tracked, and another instantiation (for the same clause) is
tried.

[H : |-] is a proof context pattern that can match
any assumption and exact fails when the goal is not imme-
diate from the argument. Here, because of the backtracking
semantics of match goal, exact will be applied to every as-

sumption until the goal is solved or no assumption matches.

2.2.2 A decision procedure for the theory of booleans
Next we present a simple decision procedure for the theory

of booleans.

Ltac analyze_bool_cases :=
repeat
match goal with
| [H : bool |- _] => destruct H
end;

simpl in *; congruence.

Since bool has only two inhabitants, we can perform case
analysis on all booleans in the context and hope that the goal
can be proved using simplification and equational reasoning.
Proof context patterns can pattern-match inside the type of
the goal and assumptions, and we use this possibility to filter
boolean assumptions; repeat makes sure that we destruct all
booleans.

2.2.3 Contradiction by asymmetry
We demonstrate the use of non-linear pattern matching

for automatic lemma argument instantiation.

Axiom asymmetry: forall n m,
n < m -> m < n -> False.

Ltac contradiction_by_asymmetry :=
match goal with
| [H1 : ?n < ?m, H2 : ?m < ?n |- _] =>
elim (asymmetry H1 H2)

end.

To use the asymmetry lemma, we need to find a suitable pair
of arguments n,m. It is possible to perform this instantia-
tion by hand (by hardwiring the names from the proof con-
text), but that would make the script very brittle – if the
names change in the future, the script will break. An auto-
mated tactic has the advantage that it can be easily reused,
making the script more compositional.

2.2.4 Term normalization example
Here we demonstrate the use of let, eval and change for

term simplification.

Ltac my_cbv x :=
let y := eval cbv in x in
change x with y

We bind y to the normalized version of x and then use change
to replace all occurrences of x with y.

2.3 Complex tactics and pitfalls
Consider the following Ltac tactic, taken from the Coq

textbook by Chlipala [7]:

Ltac notHyp P :=
match goal with
| [_ : P |- _] => fail 1
| _ =>
match P with
| ?P1 /\ ?P2 =>

first [notHyp P1 | notHyp P2 | fail 2]
| _ =>

idtac
end

end.

The intention is that notHyp should succeed whenever there
exists a subformula of P that is not among the assumptions
of the proof context. Chlipala uses notHyp to prevent his
decision procedure for propositional logic from extending the
proof context with the same proposition over and over again.
To comprehend this example it is crucial to understand the
interplay between failure levels, first and match goal’s clause
and pattern backtracking.

In the documentation of the system the description of
most tacticals includes the behavior in case of argument
failure, but it is only true for failure at level 0. To ana-
lyze this tactic, we need to know what happens when the
active argument of first yields an exception with a positive
level. Chlipala’s explanation suggests (and our experiments
confirm it) that in that case the level is decremented and
the exception is rethrown.

In his book Chlipala gives numerous examples like this
one that uncover and take advantage of various subtleties
of Ltac; these examples are not artificial but quite useful.
By providing rigorous account of Ltac semantics, we aim to
facilitate analysis and reasoning about Coq proof scripts,
especially when advanced features are combined (perhaps
abused) in non-obvious and creative ways.

3. CORE LTAC
In this section we present the syntax of CoreLtac, a subset

of Ltac that is representative of the full language and rich
enough to illustrate many of the most interesting features
of Ltac. In the full formalization we plan to include more
features common in functional languages, such as recursion
or pattern matching on terms as well as to scale the devel-
opment to cover all of Ltac.

It should be noted that CoreLtac is designed for presenta-
tional purposes and not intended as an intermediate tactic
language. We therefore include multi-argument functions as
present in Ltac in contrast with the use of currying in the
lambda calculus.

We introduce the following syntactic categories:

(expression) e ::= v
| x
| e es
| let x := e1 in e2
| mgoal ~cl

(expression list) es ::= ε | (e : es)

(value) v ::= t | dne | λ~x.e
(tactic) t ::= idtac

| fail a
| e1; e2
| repeat e
| first es
| progress e

(atom) a ::= x | dne
(clause) cl ::= (p, e)

The grammar of expressions includes, apart from standard
functional constructs, a match-goal expression that performs
a form of pattern matching on goal. We note that an appli-
cation is in a general form: an expression can be applied to
a list of expressions as arguments. In Ltac, the user is more
constrained in that in the function position one can only use
an identifier, but we relax this requirement for technical rea-

sons. Values include tactics, natural numbers, and lambda
abstractions.

The tactic language is built on top of a logic with its
proof terms. In case of Coq the logic is the Calculus of
Inductive Constructions (CIC), and Gallina is its specifica-
tion language. The grammar of Gallina terms and the infer-
ence rules of CIC are largely orthogonal to our development,
therefore we do not give a full account of them here. For the
same reason, we do not explicitly introduce the atomic tac-
tics of Coq.

Similarly, we do not commit to any particular grammar of
proof context patterns. The natural semantics, presented in
the next section, treats proof context matching in a modular
fashion by introducing an abstract representation of instan-
tiation candidate generation.

4. NATURAL SEMANTICS
Natural semantics is a big-step operational semantics that

defines the relation between a term and the result of its eval-
uation in terms of the meaning of its subterms. It is partic-
ularly convenient for formalizing meaning of programs in a
high-level, human-readable form and to reason about equiv-
alence of programs, correctness of program transformations,
etc.

In this section we introduce natural semantics of CoreLtac.
The semantics faithfully accounts for Ltac behavior for the
constructs of the core language. It is based on the informal
semantics of Ltac for Coq v.8.4 presented in the manual as
well as on hands-on experiments with the system, especially
to resolve corner cases [35].

CoreLtac is a language that combines pure functional be-
havior of expressions that can be evaluated with imperative
constructs that modify the state, i.e., the current goal. A
goal in Coq’s terminology is simply a logical judgment that
we try to prove by executing a tactic. The execution of a
tactic can change the goal into a new goal or a list of goals.
The proof is finished when the tactic produces the empty
list of goals. Apart from being successful, a tactic can raise
an error that in Coq signals roughly two types of failure:
a dynamic type error (CoreLtac is untyped), or a “wrong
tactic” failure which means that the current tactic cannot
prove or simplify the current goal. The latter failure can
be also prescribed by the programmer by means of the fail
tactic which combined with the backtracking semantics of
match-goal gives the user a powerful tool for automating
proof search.

The informal semantics indicates that in CoreLtac a tac-
tic can be seen as a special kind of expression that can be
evaluated and then executed. A Coq proof script consists
of a sequence of tactics, each followed by a dot indicating
the execution of the tactic. Therefore, in the following, a
statement of the form t. denotes a tactic to be executed (as
in a Coq script).

The natural semantics is shown in Figures 2 and 3. It
uses two main judgments reflecting the natural distinction
between evaluation and execution. In the following, we ex-
plain the two modes of operation and comment on some of
the rules.

The ⊕ operator denotes concatenation of goal lists, used
to flatten lists of subgoals into a single subgoal list. [G]
denotes the singleton list containing G.

4.1 The notion of modes
Consider the following (artificial) Ltac script:

let x := idtac in first [auto | x].

While idtac and first are both tacticals, it is clear that we
want x to be bound not to the result of the execution of
idtac, but to the idtac tactic itself. On the other hand, we
do want to actually execute the first tactic.

Generalizing, we come to the realization that given the
script:

let x := e1 in e2.

we should treat e1 and e2 differently: while both e1 and e2
should be evaluated, only e2 should be executed in the next
step.

To make this distinction precise, we say that a computa-
tion can operate in one of two modes: v for evaluation and
x for execution. As a consequence, in the natural semantics
we have two main judgments, one for each mode.

4.2 The judgments
The first judgment denotes tactic execution and is written

G . t ↓x rx

The result can be either a list of subgoals Gs or a level-n
failure ⊥n, the semantic representation of fail dne. We say
that a tactic solves the goal G when Gs is the empty list.

The second judgment formalizes expression evaluation and
is written

G . e ↓v rv

The result can be a value v, a list of subgoals Gs or a level-n
failure ⊥n. It is somewhat surprising that we include Gs in
rv. This is caused solely by the distinct interaction between
let and match goal. Otherwise the reader is free to ignore
this possibility in the context of almost any other rule.

In our presentation expression evaluation and tactic exe-
cution are composed in one of two ways. First of all, we need
to be able to execute an expression. This will be written

G . e ⇓ rx

This judgment can be summarized as

1. Evaluate e to tactic t

2. Execute t

Formal rules (given in Figure 1, top row) also state that if
evaluation does not yield a tactic then the whole computa-
tion fails. In a typical programming language, a situation
like this would be called a type error and could lead to a
stuck term. In Ltac it is however possible to trap (and re-
cover from) virtually all errors, because they get reported as
failures.

Throughout the whole interaction with the user, the proof
engine maintains a stack of open subgoals (the goal stack).
Initially it contains a single element – the theorem the user
wants to prove. When the goal stack becomes empty, the
original goal is solved and the theorem is proved. Whenever
a top-level tactic execution is requested (in Coq, this is the
dot command, denoted e.), the tactic e is applied on the top
of the stack and new subgoals thus generated are pushed

EEX1

G . e ↓v Gs
G . e ⇓ Gs EEX2

G . e ↓v t
G . t ↓x rx
G . e ⇓ rx

EEX3

G . e ↓v ⊥n

G . e ⇓ ⊥n
EEX4

G . e ↓v v
v = dne | λ~x.e
G . e ⇓ ⊥0

EEV1

G . e ↓v Gs
G . e ↓vx Gs

EEV2

G . e ↓v t
G . t ↓x rx
G . e ↓vx rx

EEV3

G . e ↓v ⊥n

G . e ↓vx ⊥n
EEV4

G . e ↓v v
v = dne | λ~x.e
G . e ↓vx v

Figure 1: Natural semantics – expression execution (top) and extended expression evaluation (bottom)

IDTAC

G . idtac ↓x [G]
FAIL

G . fail dne ↓x ⊥n

FIRST1
G . first ε ↓x ⊥0

FIRST2

G . e ⇓ Gs
G . first (e : es) ↓x Gs

FIRST3

G . e ⇓ ⊥s(n)

G . first (e : es) ↓x ⊥n

FIRST4

G . e ⇓ ⊥0 G . first es ↓x rx
G . first (e : es) ↓x rx

PROGR1

G . e ⇓ ⊥n

G . progress e ↓x ⊥n
PROGR2

G . e ⇓ [G]

G . progress e ↓x ⊥0
PROGR3

G . e ⇓ Gs Gs 6= [G]

G . progress e ↓x Gs

SEMI1

G . e1 ⇓ ⊥n

G . e1; e2 ↓x ⊥n
SEMI2

G . e1 ⇓ Gs Gs . e2 ↓seq rx
G . e1; e2 ↓x rx

REP1

G . progress e ↓x ⊥0

G . repeat e ↓x [G]
REP2

G . progress e ↓x ⊥s(n)

G . repeat e ↓x ⊥n
REP3

G . progress e ↓x Gs
Gs . (repeat e) ↓seq rx
G . repeat e ↓x rx

SEQ1
ε . e ↓seq ε

SEQ2

G . e ⇓ ⊥n

(G : Gs) . e ↓seq ⊥n

SEQ3

G . e ⇓ Gs′
Gs . e ↓seq ⊥n

(G : Gs) . e ↓seq ⊥n

SEQ4

G . e ⇓ Gs′
Gs . e ↓seq Gs′′

(G : Gs) . e ↓seq Gs′ ⊕Gs′′

Figure 2: Natural semantics – tactic execution

VAL
G . v ↓v v

APP1

e = dne | t
G . e es ↓v ⊥0

APP2

G . es ↓args ⊥n

G . (λ~x.e) es ↓v ⊥n

APP3

G . es ↓args ~v
|~v| < |~x|

(~x1, ~x2) = split ~x at |~v|
G . (λ~x.e) es ↓v λ ~x2.e[~x1 := ~v]

APP4

G . es ↓args ~v
|~v| = |~x|

G . e[~x := es] ↓v rv
G . (λ~x.e) es ↓v rv

APP5

G . es ↓args ~v
|~x| < |~v|

(~v1, ~v2) = split ~v at |~x|
G . e[~x := ~v1] ~v2 ↓v rv
G . (λ~x.e) es ↓v rv

ARGS1
G . ε ↓args ε

ARGS2

G . e ⇓ ⊥n

G . (e : es) ↓args ⊥n

ARGS3

G . e ⇓ Gs
G . (e : es) ↓args ⊥0

ARGS4

G . e ⇓ v G . es ↓args ⊥n

G . (e : es) ↓args ⊥n

ARGS5

G . e ⇓ v G . es ↓args ~v
G . (e : es) ↓args (v : ~v)

LET1

G . e1 ↓v ⊥n

G . let x := e1 in e2 ↓v ⊥n
LET2

G . e1 ↓v Gs
G . let x := e1 in e2 ↓v ⊥0

LET3

G . e1 ↓v v G . e2[x := v] ↓v rv
G . let x := e1 in e2 ↓v rv

MG1
G .mgoal ε ↓v ⊥0

MG2

G . (start G p) · e · ~cl ↓pattern rx
G .mgoal ((p, e) : ~cl) ↓v rx

PAT1

next m = Done G .mgoal ~cl ↓v rx
G .m · e · ~cl ↓pattern rx

PAT2

next m = Match(σ,m′)
G . σ(e) ↓vx rx
rx = v | Gs

G . m · e · ~cl ↓pattern rx
PAT3

next m = Match(σ,m′)
G . σ(e) ↓vx ⊥s(n)

G .m · e · ~cl ↓pattern ⊥n

PAT4

next m = Match(σ,m′)
G . σ(e) ↓vx ⊥0

G .m′ · e · ~cl ↓pattern rx
G .m · e · ~cl ↓pattern rx

Figure 3: Natural semantics – expression evaluation

back onto the stack. Given the dot command, Coq computes
the response according to the expression evaluation relation.

To describe the computation of match goal clauses we need
to alter the above behavior; the second composition is called
extended expression evaluation and written

G . e ↓vx reeval

The rules are presented in Figure 1 (bottom row). The
only difference is that if evaluation yields a value v that is
not a tactic, then we do not consider it as an error and v is
the result. Since tactics are executed as before, the result
can be a non-tactic value, a list of subgoals Gs or a level-n
failure ⊥n.

Finally, we have helper judgments for sequential tactic
execution, sequential argument evaluation and for pattern
instantiation backtracking.

4.3 Tactic execution
The rules for tactic execution are shown in Figure 2.
progress e performs expression execution on e and, in case

of a success, checks if the computation has been meaning-
ful, i.e., the goal has been changed. repeat e executes e
and then executes itself in each subgoal recursively, stop-
ping upon failure. repeat wraps e with progress to prevent
infinite loops.1

Whenever a tactic expression e needs to be applied in more
than one goal, it makes use of a sequentialization mechanism
that in the natural semantics is expressed with the judgment
Gs . e ↓seq r.

4.4 Expression evaluation
The rules for expression evaluation are shown in Figure 3.
Multiple argument application is handled by the judgment

G . es ↓args r.
To model pattern instantiation backtracking, we have the

following judgment:

G .m · t · ~cl ↓pattern rx

where m is an abstract representation of the pattern match-
ing functionality. Ltac has the unique behavior concerning
pattern matching: if more than one hypothesis matches a
given pattern then they are tried one-by-one until either
evaluation of the right-hand-side of the clause (with the cur-
rent substitution) succeeds or we run out of possible instan-
tiations.

To reflect this behavior in the semantics, we assume two
functions: start and next. Given a goal context G and a
pattern p, start initializes the pattern matching machinery.
Given a m, next returns either Done when all possible in-
stantiations have been tested, or Match(σ,m′). In that case,
σ is a functional representation of the substitution induced
by the matching and m′ is the abstract object with updated
internal state. The simplest and most natural implemen-
tation of the m abstraction uses lazy lists – next is then a
plain list destructor. Using the LogicT library introduced
by Kiselyov et al. [19] it is also possible to implement this
interface using continuations.

4.5 The let and match goal pitfall
match goal is a unique expression, because its evaluation

may require tactic execution. This occurs precisely when the

1This was not the case in older versions of Coq.

right hand side of a matching clause happens to evaluate to
a tactic – it is then immediately executed. Therefore, the
matching construction can return a list of subgoals.

On the other hand, to evaluate let x := e1 in e2 we first
evaluate e1 to a result r. r is supposed to be a value, so
when r = ⊥n or r = Gs the whole expression fails.

In practice, when we execute the script

let x := match goal with
| _ => eauto
end

in idtac x.

Coq produces the following error message2:

Error: Immediate match producing tactics not allowed in
local definitions.

When combining let with match goal as above, the user
might intend one of the following:

1. To bind x to the whole match goal expression and e.g.
pass it as a parameter to a higher-order tactic (thus
performing the matching later).

2. To bind x to the right hand side of the clause matching
right now.

In the first case the trick [7] is to coerce the match goal
expression into a tactic by replacing it with

(idtac ; match goal with ... end)

In the second case one could think of delaying the com-
putation using Ltac’s lambdas, but recent versions of Coq
provide a much cleaner solution – the lazymatch goal variant
of match goal, which does not perform backtracking [35].

5. ABSTRACT MACHINE
In this section our goal is to obtain an abstract machine

for CoreLtac. Traditionally, abstract machines were designed
by hand, often in an ad-hoc manner [22, 21, 24, 31], which
required skill and experience. In contrast, techniques de-
veloped by Danvy et al. [1, 9] allow one to obtain abstract
machines mechanically, by performing transformations on
existing semantics. In this section we take advantage of the
technique know as functional correspondence [1].

The functional correspondence (in the original formula-
tion by Ager et al. [1]) begins with an evaluator, e.g., im-
plementing a natural semantics of a programming language,
and consists of a conversion to CPS (continuation-passing
style) followed by Reynolds’s defunctionalization [34] giving
as a result an abstract machine. Recently, Piróg and Bier-
nacki have demonstrated in [33] that one can just as well
begin with a natural semantics and perform the transforma-
tions not on programs, but on the rules of the semantics.

The abstract machine that we present in this section has
been mechanically derived from the natural semantics of Sec-
tion 4 using the functional correspondence. Transforming
the natural semantics into defunctionalized continuation-
passing style leads to the following mutually inductively de-
fined grammars of stacks (that represent defunctionalized

2This may take a moment, as eauto can lead to a long proof
search.

〈G, v, Sv〉ve ⇒ 〈Sv, v〉va
〈G, e es, Sv〉ve ⇒ 〈G, e,App(G, es) : Sv〉ve
〈G, let x := e1 in e2, Sv〉ve ⇒ 〈G, e1, Let(G, x, e2) : Sv〉ve
〈G,mgoal ε, Sv〉ve ⇒ 〈Sv,⊥0〉va
〈G,mgoal ((p, e) : ~cl), Sv〉ve ⇒ 〈G, start G p, e, ~cl, Sv〉p

〈G, idtac, Sx〉xe ⇒ 〈Sx, [G]〉xa
〈G, fail n, Sx〉xe ⇒ 〈Sx,⊥n〉xa
〈G, progress e, Sx〉xe ⇒ 〈G, e,Prog(G) : Sx〉eee
〈G, first ε, Sx〉xe ⇒ 〈Sx,⊥0〉xa
〈G, first (e : es), Sx〉xe ⇒ 〈G, e,First(G, es) : Sx〉eee
〈G, e1; e2, Sx〉xe ⇒ 〈G, e1, Semi(e2) : Sx〉eee
〈G, repeat e, Sx〉xe ⇒ 〈G, progress e,Rep(G, e) : Sx〉xe

〈G,m, e, ~cl, Sv〉p ⇒ 〈G,mgoal ~cl, Sv〉ve
if next m = Done

〈G,m, e, ~cl, Sv〉p ⇒ 〈G, σ(e),Pat(G, e,m′, ~cl) : Sv〉vxe
if next m = Match(σ,m′)

〈G, ε, Sa〉ase ⇒ 〈Sa, ε〉aa
〈G, e : es, Sa〉ase ⇒ 〈G, e,Args(G, es) : Sa〉ve

〈ε, e, Sx〉s ⇒ 〈Sx, ε〉xa
〈G : Gs, e, Sx〉s ⇒ 〈G, e, Seq1(Gs, e) : Sx〉eee

〈G, e, Sv〉vxe ⇒ 〈G, e,EExec1(G) : Sv〉ve

〈G, e, Sx〉eee ⇒ 〈G, e,EExpr(G) : Sx〉ve

Figure 4: Abstract machine – expression evaluation and tactic execution

〈Args1(G,λ~x.e) : Sv,⊥n〉aa ⇒ 〈Sv,⊥n〉va

〈Args1(G,λ~x.e) : Sv, ~v〉aa ⇒

|~v| < |~x| → let (~x1, ~x2) = split ~x at |~v| in 〈Sv, λ ~x2.e[~x1 := ~v]〉va

|~v| = |~x| → 〈G, e[~x := ~v], Sv〉ve

|~v| > |~x| → let (~v1, ~v2) = split ~v at |~x| in 〈G, e[~x := ~v1] ~v2, Sv〉ve
〈Args2(v) : Sa,⊥n〉aa ⇒ 〈Sa,⊥n〉aa
〈Args2(v) : Sa, ~v〉aa ⇒ 〈Sa, v : ~v〉aa

Figure 5: Abstract machine – function application

continuations):

(evaluation stack) Sv ::= Let(G, x, e) : Sv

| App(G, es) : Sv

| Args(G, es) : Sa

| Pat(G,m, e, ~cl) : Sv

| EExec1(G) : Sv

| EExpr(G) : Sx

(argument stack) Sa ::= Args1(G,λ~x.e) : Sv

| Args2(v) : Sa

(execution stack) Sx ::= Nil
| Prog(G) : Sx

| First(G, es) : Sx

| Semi(e) : Sx

| Rep(G, e) : Sx

| Seq1(Gs, e) : Sx

| Seq2(Gs) : Sx

| EExec2 : Sv

The transition relation of the derived abstract machine is
shown in Figures 4, 5, 6, and 7. Figure 4 defines the transi-
tions interpreting expressions and tactics. Figure 5 defines
the evaluation of function application to multiple arguments.
We observe that the machine implements the eval/apply
model of function application [26] that is inherited from the
natural semantics. Figure 6 contains the transitions inter-
preting the stack controlling expression evaluation. Finally,
Figure 7 displays the transitions interpreting the stack con-
trolling tactic execution.

The initial configurations of the machine are of the form

〈G, e,Nil〉eee

whereas the final configurations are of the form

〈Nil, r〉xa.

We state the correctness of the abstract machine with re-
spect to the natural semantics:

Theorem 1. For any goal G and closed expression e we
have:

G . e ⇓ r iff 〈G, e,Nil〉eee ⇒∗ 〈Nil, r〉xa,

where ⇒∗ denotes the reflexive-transitive closure of ⇒.

This theorem follows from the correctness of the func-
tional correspondence, but it can also be established inde-
pendently along the lines of the proof for the STG machine
of Piróg and Biernacki [33].

In fact, through the functional correspondence, the ab-
stract machine is not only extensionally but also intension-
ally equivalent with the natural semantics, i.e., the two are
different representations of the same evaluation model. It
follows that all design choices made at the level of the nat-
ural semantics are reflected in the abstract machine. Fur-
thermore, any future change in the semantics of CoreLtac
can be introduced at the level of the natural semantics and
immediately accounted for in the abstract machine by the
derivation method of the functional correspondence.

The abstract machine of this section directly corresponds
to the natural semantics of CoreLtac and it has not been

〈Let(G, x, e2) : Sv, Gs〉va ⇒ 〈Sv,⊥0〉va
〈Let(G, x, e2) : Sv,⊥n〉va ⇒ 〈Sv,⊥n〉va
〈Let(G, x, e2) : Sv, v〉va ⇒ 〈G, e2[x := v], Sv〉ve

〈App(G, es) : Sv,⊥n〉va ⇒ 〈Sv,⊥n〉va
〈App(G, es) : Sv, Gs〉va ⇒ 〈Sv,⊥0〉va
〈App(G, es) : Sv, dne〉va ⇒ 〈Sv,⊥0〉va
〈App(G, es) : Sv, t〉va ⇒ 〈Sv,⊥0〉va
〈App(G, es) : Sv, λ~x.e〉va ⇒ 〈G, es,Args1(G,λ~x.e) : Sv〉ase

〈Args(G, es) : Sa, v〉va ⇒ 〈G, es,Args2(v) : Sa〉ase
〈Args(G, es) : Sa, Gs〉va ⇒ 〈Sa,⊥0〉aa
〈Args(G, es) : Sa,⊥n〉va ⇒ 〈Sa,⊥n〉aa

〈Pat(G,m, e, ~cl) : Sv, v〉va ⇒ 〈Sv, v〉va
〈Pat(G,m, e, ~cl) : Sv, Gs〉va ⇒ 〈Sv, Gs〉va
〈Pat(G,m, e, ~cl) : Sv,⊥0〉va ⇒ 〈G,m, e, ~cl, Sv〉p
〈Pat(G,m, e, ~cl) : Sv,⊥s(n)〉va ⇒ 〈Sv,⊥n〉va

〈EExec1(G) : Sv,⊥n〉va ⇒ 〈Sv,⊥n〉va
〈EExec1(G) : Sv, Gs〉va ⇒ 〈Sv, Gs〉va
〈EExec1(G) : Sv, dne〉va ⇒ 〈Sv, dne〉va
〈EExec1(G) : Sv, λ~x.e〉va ⇒ 〈Sv, λ~x.e〉va
〈EExec1(G) : Sv, t〉va ⇒ 〈G, t,EExec2 : Sv〉xe

〈EExpr(G) : Sx,⊥n〉va ⇒ 〈Sx,⊥n〉xa
〈EExpr(G) : Sx, Gs〉va ⇒ 〈Sx, Gs〉xa
〈EExpr(G) : Sx, dne〉va ⇒ 〈Sx,⊥0〉xa
〈EExpr(G) : Sx, λ~x.e〉va ⇒ 〈Sx,⊥0〉xa
〈EExpr(G) : Sx, t〉va ⇒ 〈G, t, Sx〉xe

Figure 6: Abstract machine – evaluation stack

〈Prog(G) : Sx,⊥n〉xa ⇒ 〈Sx,⊥n〉xa
〈Prog(G) : Sx, Gs〉xa ⇒ 〈Sx,⊥0〉xa if Gs = [G]

〈Prog(G) : Sx, Gs〉xa ⇒ 〈Sx, Gs〉xa if Gs 6= [G]

〈First(G, es) : Sx,⊥0〉xa ⇒ 〈G, first es, Sx〉xe
〈First(G, es) : Sx,⊥s(n)〉xa ⇒ 〈Sx,⊥n〉xa
〈First(G, es) : Sx, Gs〉xa ⇒ 〈Sx, Gs〉xa

〈Semi(e) : Sx,⊥n〉xa ⇒ 〈Sx,⊥n〉xa
〈Semi(e) : Sx, Gs〉xa ⇒ 〈Gs, e, Sx〉s

〈Rep(G, e) : Sx,⊥0〉xa ⇒ 〈Sx, [G]〉xa
〈Rep(G, e) : Sx,⊥s(n)〉xa ⇒ 〈Sx,⊥n〉xa
〈Rep(G, e) : Sx, Gs〉xa ⇒ 〈Gs, repeat e, Sx〉s

〈Seq1(Gs, e) : Sx,⊥n〉xa ⇒ 〈Sx,⊥n〉xa
〈Seq1(Gs, e) : Sx, Gs

′〉xa ⇒ 〈Gs, e, Seq2(Gs
′) : Sx〉s

〈Seq2(Gs) : Sx,⊥n〉xa ⇒ 〈Sx,⊥n〉xa
〈Seq2(Gs

′) : Sx, Gs
′′〉xa ⇒ 〈Sx, Gs

′ ⊕Gs′′〉xa
〈EExec2 : Sv, r〉xa ⇒ 〈Sv, r〉va

Figure 7: Abstract machine – execution stack

optimized in any way. However, at least two optimizations
are possible. First of all, we could replace substitution with
environments to make the process of function application
more efficient, as is traditional in the design of abstract ma-
chines for functional languages [17]. Second of all, we could
handle failures ⊥n much more efficiently by re-designing the
stacks of the abstract machine in a way resembling typical
architecture of an abstract machine for exceptions or for de-
limited continuations [4], where the presence of a meta-stack
(a stack of stacks) supports handling jumps.

6. REDUCTION SEMANTICS
Reduction semantics is a small-step operational seman-

tics with explicit representation of contexts and a notion of
reduction that characterizes basic steps of computation.

In this section we present a calculus of closures built on
top of CoreLtac and we present its reduction semantics that
faithfully accounts for CoreLtac.

The development is carried out along the lines of previous
work of Biernacka and Danvy on the syntactic correspon-
dence [5] and it consists in first defining a language with
closures in which the intended reduction strategy can be rep-
resented, and then deriving an abstract machine using the
refocusing procedure. In the present case, we observe that
the machine for the language of closures can be transformed
by short-circuiting redundant transitions and unfolding clo-
sures if we only want to operate on CoreLtac expressions and
not on all closures. As a result we obtain a machine that

coincides with the machine of Figures 4, 5, 6, and 7.
In CoreLtac, a computation is done in the context of a

goal, therefore we introduce new syntactic categories of goal
closures for each of the CoreLtac syntactic categories of Sec-
tion 3. In order to be able to express single steps of computa-
tion of CoreLtac, the resulting calculus of closures introduces
some auxiliary closures. The notion of reduction is defined
by a separate relation for each mode.

The grammar of closures is as follows:

(expression closure) c ::= rv
| G . e
| c cs
| let x := c1 in c2
| mgoal (m, c, ~cl)

| meval (m, pat (G, e) . c, ~cl)
| eval ct
| exec1 G . c

(list closure) cs ::= ε | G . es | (c : cs) | ⊥n

(tactic closure) ct ::= rx
| exec G . e
| G . t
| ct; e
| seq s
| repeat (G, e) ct
| first (ct,~c)
| progress G ct

(betav) (G . λ~x.e) ~v →v

|~v| < |~x| → let (~x1, ~x2) = split ~x at |~v| in λ ~x2.e[~x1 := ~v]

|~v| = |~x| → G . e[~x := ~v]

|~v| > |~x| → let (~v1, ~v2) = split ~v at |~x| in G . e[~x := ~v1] ~v2
(beta bot) (G . λ~x.e) ⊥n →v ⊥n

(prop app) G . (e es) →v (G . e) (G . es)
(app l bot) ⊥n cs →v ⊥n

(app l nval) c cs →v ⊥0 if c 6= ⊥n and c 6= λ~x.e
(prop let) G . let x := e1 in e2 →v let x := G . e1 in G . e2
(let gs) let x := Gs in c →v ⊥0

(let bot) let x := ⊥n in c →v ⊥n

(let v) let x := v in c →v c[x := v]
(mg nil) G .mgoal ε →v ⊥0

(prop mg) G .mgoal ((p, e) : ~cl) →v mgoal (start G p,G . e, ~cl)

(mg none) mgoal (m,G . e, ~cl) →v G .mgoal ~cl if next m = Done

(mg match) mgoal (m,G . e, ~cl) →v meval (m′, pat (G, e) . (exec1 G . (G . σ(e))), ~cl)
if next m = Match(σ,m′)

(mg val) meval (m′, pat (G, e)) . v, ~cl) →v v

(mg gs) meval (m′, pat (G, e) . Gs, ~cl) →v Gs

(mg bot0) meval (m′, pat (G, e) .⊥0, ~cl) →v mgoal (m′, G . e, ~cl)

(mg botS) meval (m′, pat (G, e) .⊥S n, ~cl) →v ⊥n

(exec1 tac) exec1 G . t →v eval (G . t)
(exec1 res) exec1 G . rx →v rx
(exec1 val) exec1 G . v →v v if v 6= t
(eval res) eval rx →v rx
(goal val) G . v →v v

Figure 8: Contraction rules for CoreLtac with closures – evaluation

(sequence) s ::= ε | Gs . e | (ct : s)

(evaluation result) rv ::= rx | veval

(execution result) rx ::= Gs | ⊥n

The grammar of closures allows propagation of a goal in-
side a term in order to make it possible to compose interme-
diate results of computation. In addition, the results of exe-
cution (newly generated goals Gs and the signal of error ⊥n)
now become part of the syntax. As a consequence, execution
errors can now also be propagated through single-step reduc-
tions. Moreover, we include“conversion”closures of the form
eval ct, exec G . e and exec1 G . c that serve to make transi-
tions from one computation mode to the other. Specifically,
eval ct denotes a closure that is first executed and then the
result is used in the evaluation mode, in exec G . e the clo-
sure is first evaluated and if the result is a tactical, then it
is executed. exec1 G.c is used only when evaluating clauses
of the mgoal construct.

We have the following reduction contexts:

(evaluation context) Ev ::= Ev[let x := [] in c]

| Ev[[] cs]

| Ea[[] : cs]

| Ev[mgoal (m, [], ~cl)]

| Ev[exec1 G . []]

| Ex[exec G . []]

(argument context) Ea ::= Ev[G . (veval [])]

| Ea[veval : []]

(execution context) Ex ::= []

| Ex[progressG []]

| Ex[first ([] : cs)]

| Ex[[]; e]

| Ex[repeat (G, e) []]

| Ex[[]; s]

| Ex[Gs . []]

| Ev[eval []]

Echoing the previous semantics, we have three types of re-
duction contexts: evaluation-mode contexts Ev, execution-
mode contexts Ex, and an auxiliary context Ea for evalua-
tion in an argument list (with appropriate markers indicat-
ing transitions between modes). Contexts correspond one-
to-one to the stacks that appear in the abstract machine of
the previous section, but here they are presented as “terms
with a hole.”

A single step of computation in a reduction semantics con-
sists of the following 3 operations:

1. decompose the expression into a redex and a context

2. contract the redex

3. plug the contractum back into the context

This procedure is iterated until a result (here, a value or an
error) or a stuck term is reached.

We omit the functions for decomposition and plugging
from the presentation due to lack of space and present only
the contraction rules in Figures 8 and 9.

(idtac) G . idtac →x [G]
(fail) G . fail n →x ⊥n

(prop progress) G . progress e →x progress G (exec G . e)
(progress eq) progress G Gs →x ⊥0 if [G] = Gs
(progress neq) progress G Gs →x Gs if [G] 6= Gs
(progress bot) progress G ⊥n →x ⊥n

(prop repeat) G . repeat e →x repeat (G, e) (progress G (exec G . e))
(repeat bot0) repeat (G, e)⊥0 →x [G]
(repeat botS) repeat (G, e)⊥S n →x ⊥n

(repeat gs) repeat (G, e)Gs →x Gs . repeat e
(seq bot l) ⊥n; e →x ⊥n

(seq gs) Gs; e →x Gs . e
(seq app) Gs;Gs′ →x Gs⊕Gs′
(seq bot r) Gs;⊥n →x ⊥n

(prop semi) G . e1; e2 →x (exec G . e1); e2
(prop first nil) G . first ε →x ⊥0

(prop first cons) G . first (e : es) →x first (exec G . e,G . es)
(first bot0) first (⊥0, G . es) →x G . first es
(first botS) first (⊥S n, G . es) →x ⊥n

(first gs) first (Gs,G . es) →x Gs
(execg res) exec G . rx →x rx
(execg val) exec G . v →x ⊥0

(execg tac) exec G . t →x G . t

(prop args nil) G . ε →a ε
(prop args cons) G . (e : es) →a (G . e) : (G . es)
(args goals) Gs : (G . es) →a ⊥0

(args bot) ⊥n : (G . es) →a ⊥n

(varg bot) v : ⊥n →a ⊥n

(seq end) ε . e →s ε
(seq cons) (G : Gs) . e →s (exec G . e); (Gs . e)

Figure 9: Contraction rules for CoreLtac with closures – execution and auxiliary contractions

We have already seen in the natural semantics that a dy-
namic semantics for CoreLtac interleaves computation in two
modes. This was exemplified by indexing the judgment with
a mode. We use the same approach here: we have evalua-
tions of the form Ev[c1]→ Ev[c2] if c1 →v c2 and executions
of the form Ex[ct1] → Ex[ct2] if ct1 →x ct2. We also use
auxiliary reductions →a and →s to process lists of argu-
ments and sequences of goals and we have Ea[cs]→ Ea[cs′]
if cs→a cs

′ and Ex[seq s]→ Ex[seq s′] if s→s s
′. The one-

step reduction relation → is thus the compatible closure of
all the types of contraction.

The reduction semantics is deterministic. The key lemma
is the unique decomposition property:

Lemma 1 (Unique decomposition). Each expression
closure is either a result or it can be uniquely decomposed
into a potential redex (either a true redex as defined by con-
traction, or a stuck expression) and a reduction context (ei-
ther an eval-context, an exec-context or an args-context).

We state the correctness of the reduction semantics with
respect to the abstract machine:

Theorem 2. For any goal G and closed expression e we
have:

exec G . e→∗ r iff 〈G, e,Nil〉eee ⇒∗ 〈Nil, r〉xa,

where →∗ is the reflexive-transitive closure of →.

7. EXTENSIONS

7.1 Interaction with Gallina
An interesting feature of Ltac is the possibility of inject-

ing Gallina terms (tm) in the tactic language. Ltac has a
typeof tm construction, which computes the type of term
tm. Another useful feature is the ability to normalize a given
(Gallina) term using eval redexpr in tm, where redexpr al-
lows to choose, for instance, which evaluation strategy to
use (cbv, lazy). We could add these two constructions to
our language by the following rules:

G `Gallina tm : tp

G . constr : tm ↓v constr : tm

¬(G `Gallina tm : tp)

G . constr : tm ↓v ⊥0

G . e ↓x ⊥n

G . typeof e ↓x ⊥n

G . e ↓x constr : tm
G `Gallina tm : tp

G . typeof e ↓x constr : tp

G . e ↓x ⊥n

G . eval redexpr in e ↓x ⊥n

G . e ↓x constr : tm
NormalizeGallina tm redexpr = tmnf

G . eval redexpr in e ↓x constr : tmnf

Terms of Gallina extend the category of values, but the
evaluation rule has to invoke the internal typechecker to ver-
ify that the constructed term is well formed. This is because
Ltac is dynamically typed.

7.2 More tactics
While we have kept CoreLtac as minimal as possible, it

would not be a problem to extend it to support a larger
set of Ltac’s constructions. For instance, once we have in-
troduced the ability to construct terms of Gallina, we can
easily add the term matching construction (match e with).
We would need a different implementation of the match-
ing abstraction, but apart from that, the rules would be
the same as for match goal. Similarly, we could extend the
pattern matching functionality with the context patterns,
which allow one to match on all subterms on the given
form – apart from syntactic matters, this also would require
changes only in the matching abstraction. The same applies
for match reverse goal.

A number of tacticals can be seen as syntactic sugar, e.g.
try, solve, e1 || e2 can all be explained in terms of first and fail.
Other tacticals can be seen as close variants of the presented
ones: e.g. do n e is similar to repeat e and the semantics
for e; [e1|e2|...|en] (the branching composition operator from
LCF) can be easily obtained from the rules for e1; e2.

8. RELATED WORK
There exist a number of articles on the formal semantics

of tactics, tacticals and tactic programming languages [27,
8, 2, 36, 13], but in this section we briefly review only the
literature concerning Ltac.

In 1979, Gordon et al. [16] described the tactics and tacti-
cals of Edinburgh LCF. The former are mostly inverted in-
ference rules of the underlying logic (explained semi-formally
as transformation of goals into subgoals) while the latter are
defined by their implementation in ML.

20 years later, Delahaye designed Ltac, a Turing-complete
domain specific language, to provide an intermediate ground
between the limited capabilities of the tactic language avail-
able at the time in Coq (v.6.3, c. 2000) and the burden of
programming tactics directly in the meta-language (which
in case of Coq is OCaml [30]). He reported in [11, 12] that
the rewrite of one of the decision procedures resulted in a
significant gain in performance along with a dramatic de-
crease in the code size. This success was the consequence
of the powerful backtracking behavior of the matching con-
structions that he introduced. He has only given an informal
big-step semantics for Ltac.

Kirchner proposed a small-step operational semantics for
Ltac in the form of a reduction semantics in [18]. The dif-
ference with our version is that he has assumed a rather
complex interface of proof context objects and uses fairly
complicated side conditions, while ours is rather abstract
and thus perhaps more user-friendly. Moreover, he gives a
simplified account for the exception mechanism.

Finally, it should be noted that the matching construc-
tions as originally designed by Delahaye and described by
Kirchner implemented backtracking only for the matchings
of a single pattern. If the tactic from the right-hand side
of the clause failed for all possible instantiations, then the

whole expression failed. In the recent versions of Coq, other
clauses are tried in such a case (unless the failure had a
positive level).

9. CONCLUSION AND PERSPECTIVES
This article proposes an operational foundation for the

tactic language of Coq. To the best of our knowledge, none
of the existing work explains the failure raising and failure
handling behavior inside Ltac in such detail. The abstract
machine we presented appears to be the first abstract ma-
chine for tactic execution in the literature. Furthermore,
all three semantic formats that we introduced are intercon-
nected by known derivation methods and equivalent by con-
struction. Consequently, any future extensions and modi-
fications of the natural semantics described in this article
will be mechanically accounted for in each of the remaining
semantics.

We identify several directions for future work. First, we
plan to define a formal semantics of a bigger subset of Ltac,
and in particular to cover atomic tactics and more impor-
tantly, to treat some subtleties related to the dependent
type theory of Coq, such as existential variables [3]. Sec-
ond, we would like to consider applications of each of the
presented semantic formats, including: a notion of equiva-
lence of tactics and sound and complete reasoning techniques
(natural or reduction semantics), tracing and debugging of
proof scripts (reduction semantics), and semantic-based im-
plementation (an optimized abstract machine).

Another line of work that we are going to pursue is a de-
sign, prescribed by a formal semantics, of a tactic language
cleaner than Ltac, where evaluation of expressions and exe-
cution of tactics would be separated in a clear way. Such a
separation could be supported by a lightweight type system
with modalities, as is usual in the presence of staged com-
putation [10]. As a matter of fact, designing a user-friendly
type system for Ltac, statically eliminating certain common
type errors, is a worthwhile task in its own right.

Acknowledments
We thank Pawe l Wieczorek and Lukasz D ↪abek for discus-
sions and their heroic late-night proofreading. Thanks are
also due to the anonymous referees for their invaluable com-
ments. This work has been supported by the Polish National
Science Center, grant number DEC-011/03/B/ST6/00348.

10. REFERENCES
[1] M. S. Ager, D. Biernacki, O. Danvy, and J.

Midtgaard. A functional correspondence between
evaluators and abstract machines. In PPDP 2003, pp.
8–19, Uppsala, Sweden, 2003.

[2] D. Aspinall, E. Denney, and C. Lüth. Tactics for
hierarchical proof. Mathematics in Computer Science,
3(3):309–330, 2010.

[3] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development: Coq’Art: The
Calculus of Inductive Constructions. Springer, 2004.

[4] M. Biernacka, D. Biernacki, and O. Danvy. An
operational foundation for delimited continuations in
the CPS hierarchy. Logical Methods in Computer
Science, 1(2:5):1–39, 2005.

[5] M. Biernacka and O. Danvy. A concrete framework for
environment machines. ACM Transactions on

Computational Logic, 9(1):1–30, 2007.

[6] T. Bourke, M. Daum, G. Klein, and R. Kolanski.
Challenges and experiences in managing large-scale
proofs. In ICICM, pp. 32–48, Bremen, Germany, 2012.

[7] A. Chlipala. Certified programming with dependent
types. http://adam.chlipala.net/cpdt/.

[8] C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli.
Tinycals: Step by step tacticals. ENTCS,
174(2):125–142, 2007.

[9] O. Danvy and L. R. Nielsen. Syntactic theories in
practice. In RULE 2001, ENTCS, 59(4), Firenze, Italy,
2001.

[10] R. Davies and F. Pfenning. A modal analysis of staged
computation. Journal of the ACM, 48(3):555–604,
2001.

[11] D. Delahaye. A tactic language for the system Coq. In
LPAR 2000, LNCS 1955, pp. 85–95, Reunion Island,
2000.

[12] D. Delahaye. A Proof Dedicated Meta-Language. In
LFM 2002, ENTCS, 70(2), pp. 96–109, Copenhagen,
Denmark, 2002.

[13] E. Denney, J. Power, and K. Tourlas. Hiproofs: A
hierarchical notion of proof tree. ENTCS, 155, pp.
341–359, 2006.

[14] G. Gonthier. The four colour theorem: Engineering of
a formal proof. In ASCM 2007, LNCS 5081, pp.
333–333. Singapore, 2007.

[15] G. Gonthier. Engineering mathematics: the odd order
theorem proof. In POPL 2013, pp. 1–2, Rome, Italy,
2013.

[16] M. J. C. Gordon, R. Milner, and C. Wadsworth.
Edinburgh LCF: A Mechanized Logic of Computation,
LNCS 78, 1979.

[17] T. Hardin, L. Maranget, and B. Pagano. Functional
runtime systems within the lambda-sigma calculus.
Journal of Functional Programming, 8(2):131–172,
1998.

[18] F. Kirchner. Coq tacticals and PVS strategies: A
small-step semantics. In Design and Application of
Strategies/Tactics in Higher Order Logics, pp. 69–83,
2003.

[19] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman,
and Amr Sabry. Backtracking, interleaving, and
terminating monad transformers. In ICFP 2005,
SIGPLAN Notices, Vol. 40, No. 9, pp. 192–203,
Tallinn, Estonia, 2005.

[20] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D.
Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4:
formal verification of an OS kernel. In SIGOPS 2009,
pp. 207–220. 2009.

[21] J.-L. Krivine. A call-by-name lambda-calculus
machine. Higher-Order and Symbolic Computation,
20(3):199–207, 2007.

[22] P. J. Landin. The mechanical evaluation of
expressions. The Computer Journal, 6(4):308–320,
1964.

[23] D. K. Lee, K. Crary, and R. Harper. Towards a
mechanized metatheory of Standard ML. In POPL
2007, pp. 173–184, Nice, France, 2007.

[24] X. Leroy. The Zinc experiment: an economical
implementation of the ML language. Rapport
Technique 117, INRIA Rocquencourt, Le Chesnay,
France, 1990.

[25] X. Leroy. Formal certification of a compiler back-end
or: programming a compiler with a proof assistant. In
POPL 2006, pp. 42–54, Charleston, South Carolina,
2006.

[26] S. Marlow and S. L. Peyton Jones. Making a fast
curry: push/enter vs. eval/apply for higher-order
languages. Journal of Functional Programming,
16(4-5):415–449, 2006.

[27] A. P. Martin, H. B. Gardiner, and J. C. P. Woodcock.
A tactic calculus – abridged version. Formal Aspects
of Computing, 8(4):479–489, 1996.

[28] A. P. Martin and J. Gibbons. A monadic
interpretation of tactics. Unpublished note, 2002.

[29] T. Nipkow, M. Wenzel, and L. C. Paulson.
Isabelle/HOL: a proof assistant for higher-order logic.
Springer-Verlag, 2002.

[30] The Caml Language. http://caml.inria.fr/.

[31] S. L. Peyton Jones. Implementing lazy functional
languages on stock hardware: The spineless tagless
G-machine. Journal of Functional Programming,
2(2):127–202, 1992.

[32] F. Pfenning and C. Schürmann. System description:
Twelf – a meta-logical framework for deductive
systems. In CADE 1999, LNAI 1632, pp. 202–206,
Trento, Italy, 1999.

[33] M. Piróg and D. Biernacki. A systematic derivation of
the STG machine verified in Coq. In Jeremy Gibbons,
editor, Haskell’10, pp. 25–36, Baltimore, MD, 2010.

[34] J. C. Reynolds. Definitional interpreters for
higher-order programming languages. Higher-Order
and Symbolic Computation 11(4):363–397, 1998.

[35] The Coq Development Team. The Coq Proof Assistant
Reference Manual, Version 8.4pl2, 2013.

[36] I. Whiteside, D. Aspinall, L. Dixon, and G. Grov.
Towards formal proof script refactoring. In ICICM
2011, pp. 260–275, Bertinoro, Italy, 2011.

