
A Syntactic Correspondence between

Context-Sensitive Calculi and Abstract Machines

Małgorzata Biernacka and Olivier Danvy

BRICS∗

Department of Computer Science
University of Aarhus†

Version of December 17, 2006 at 16:15

Abstract

Wepresent a systematic construction of environment-based abstract machines from context-
sensitive calculi of explicit substitutions, and we illustrate it with ten calculi and machines
for applicative order with an abort operation, normal order with generalized reduction
and call/cc, the lambda-mu-calculus, delimited continuations, stack inspection, proper
tail-recursion, and lazy evaluation. Most of the machines already exist but they have been
obtained independently and are only indirectly related to the corresponding calculi. All of
the calculi are new and they make it possible to directly reason about the execution of the
corresponding machines.

To appear in TCS (revised version of BRICS RS-05-22).

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {mbiernac,danvy}@brics.dk

i

Contents

1 Introduction 1
1.1 Calculi and machines . 1
1.2 Calculi of explicit substitutions and environment-based machines 2
1.3 Calculi of explicit substitutions for computational effects and environment-based ma-

chines . 2
1.4 Overview . 2

2 Preliminaries 3

2.1 Reduction semantics . 3
2.2 Context-sensitive reduction . 3
2.3 Our base calculus of closures: λρ̂ . 4

3 The λρ̂A-calculus 5

3.1 A reduction semantics for applicative order and abort . 6
3.1.1 Decomposition . 7
3.1.2 Context-sensitive contraction . 7
3.1.3 Plugging . 8
3.1.4 One-step reduction . 8
3.1.5 Reduction-based evaluation . 8

3.2 A pre-abstract machine . 8
3.3 A staged abstract machine . 10
3.4 An eval/apply abstract machine . 11
3.5 Transition compression . 11
3.6 An environment machine . 12
3.7 Correctness . 12
3.8 Conclusion . 12

4 The λρ̂K-calculus 13

4.1 The language of λρ̂K . 13
4.2 Notion of context-sensitive reduction . 13
4.3 Krivine’s machine . 14
4.4 Formal correspondence . 14

5 The λρ̂µ-calculus 14
5.1 The language of λρ̂µ . 15
5.2 Notion of context-sensitive reduction . 15
5.3 An eval/apply abstract machine . 15
5.4 Formal correspondence . 16

6 Delimited continuations 16

6.1 The λρ̂S-calculus . 17
6.1.1 The language of λρ̂S . 17
6.1.2 The eval/apply/meta-apply abstract machine . 17
6.1.3 Notion of context-sensitive reduction . 18
6.1.4 Formal correspondence . 18
6.1.5 The CPS hierarchy . 18

6.2 The λρ̂F-calculus . 19
6.2.1 The language of λρ̂F . 19
6.2.2 Notion of context-sensitive reduction . 19

ii

6.2.3 The eval/apply abstract machine . 19
6.2.4 Formal correspondence . 20
6.2.5 A hierarchy of control delimiters . 20

6.3 Conclusion . 20

7 Stack inspection 21

7.1 The λρ̂sec-calculus . 22
7.1.1 The language of λρ̂sec . 22
7.1.2 Notion of context-sensitive reduction . 22
7.1.3 An eval/apply abstract machine . 23
7.1.4 Formal correspondence . 23

7.2 Properly tail-recursive stack inspection . 23
7.2.1 The storeless cm machine . 23
7.2.2 The underlying calculus λρ̂cmsec . 24

7.3 State-based properly tail-recursive stack inspection . 25
7.3.1 The unzipped storeless cm machine . 25
7.3.2 The language of λρ̂ucmsec . 26
7.3.3 Notion of context-sensitive reduction . 26
7.3.4 Formal correspondence . 26

7.4 Conclusion . 26

8 A calculus for proper tail-recursion 27

8.1 A simplified version of Clinger’s abstract machine . 27
8.2 The language of λρ̂ptr . 27
8.3 Notion of context-sensitive reduction . 27
8.4 Formal correspondence . 28

9 A lazy calculus of closures 28

9.1 The language of λρ̂l . 28
9.2 Notion of context-sensitive reduction . 28
9.3 An eval/apply abstract machine . 29
9.4 Formal correspondence . 29

10 Conclusion 30

iii

1 Introduction
How does one construct a new semantic artifact?

1.1 Calculi and machines

Sixty-five years ago, the λ-calculus was introduced [15]. Forty-five years ago, its expressive power
was observed to be relevant for computing [68, 84]. Forty years ago, a first abstract machine for the
λ-calculus was introduced [62]. Thirty years ago, calculi and abstract machines were formally con-
nected [71]. Twenty years ago, a calculus format—reduction semantics—with an explicit represen-
tation of reduction contexts was introduced [41]. Today calculi and abstract machines are standard
tools to study programming languages. Given a calculus, it is by now a standard activity to design a
corresponding abstract machine and to prove its correctness [43].

From calculus to machine by refocusing and transition compression: Recently, Danvy and Nielsen
have pointed out that the reduction strategy for a calculus actually determines the structure of the
corresponding machine [36]. They present a method for constructing an abstract machine out of a
reduction semantics satisfying the unique-decomposition property. In such a reduction semantics, a
non-value term is reduced by

1. decomposing it (uniquely) into a redex and its context,

2. contracting the redex, and

3. plugging the contractum into the reduction context,

yielding a new term. A reduction-based evaluation function is defined by iterating the one-step re-
duction function:

◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F

◦
contract

// ◦

plug
;;xxxxxxxxx

◦
contract

// ◦

plug
;;xxxxxxxxx

◦
contract

//

Danvy and Nielsen have observed that the intermediate terms, in the composition of plug and de-
compose, could be avoided by fusing the composition into a ‘refocus’ function:

◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F

//____ ◦
contract

// ◦

plug
;;xxxxxxxxx

refocus
//________ ◦
contract

// ◦

plug
;;xxxxxxxxx

refocus
//________ ◦
contract

//

The resulting ‘refocused’ evaluation function is defined by iterating refocusing and contraction.
The refocus function takes the form of a state-transition function, i.e., an abstract machine. The

refocused evaluation function therefore also takes the form of an abstract machine. Compressing its
intermediate transitions (i.e., short-circuiting them) yields abstract machines that are often indepen-
dently known: for example, for the pure λ-calculus with normal-order reduction, the resulting abstract
machine is a substitution-based version of the Krivine machine (i.e., a push/enter machine); for the
pure λ-calculus with applicative-order reduction, the resulting abstract machine is Felleisen et al.’s
CK machine (i.e., an eval/apply machine). Refocusing has also been applied to the term language
of the free monoid, yielding a reduction-free normalization function [26], and to context-based CPS
transformations, improving them from quadratic time to operating in one pass [36].

1

1.2 Calculi of explicit substitutions and environment-based machines

Twenty years ago, Curien observed that while most calculi use actual substitutions, most implemen-
tations use closures and environments [22]. He then developed a calculus of closures, λρ [23], thereby
launching the study of explicit substitutions [1, 24, 52, 66, 76].

From calculus to machine by refocusing, transition compression, and closure unfolding: Recently,
we have applied the refocusing method to λρ̂, a minimal extension of λρwhere one can express single-
step computations; we added an unfolding step to make the machine operate not on a closure, but on
a term and its environment [8]. We have shown how λρ̂ with left-to-right applicative order directly
corresponds to the CEK machine [44], how λρ̂ with normal order directly corresponds to the Krivine
machine [20, 23], how λρ̂ with normal order and generalized reduction directly corresponds to the
original version of Krivine’s machine [60], and how λρ̂ with right-to-left applicative order and gen-
eralized reduction directly corresponds to the ZINC abstract machine [65]. All of these machines are
environment-based and use closures.

1.3 Calculi of explicit substitutions for computational effects and environment-based
machines

Twenty years ago, Felleisen introduced reduction semantics—a version of small-step operational se-
mantics with an explicit representation of reduction contexts—in order to provide calculi for control
and state [41, 44]. In these calculi, reduction rules are not oblivious to their reduction context; on
the contrary, they are context sensitive in that the context takes part in some reduction steps, e.g.,
for call/cc. Reduction semantics are in wide use today, e.g., to study the security technique of stack
inspection [16, 48, 72].

From calculus to machine by refocusing, transition compression, and closure unfolding: In this
article, we apply the refocusing method to context-sensitive extensions of λρ̂ accounting for a variety
of computational effects. We present ten calculi of closures and the corresponding environment-based
machines. What is significant here is that each machine is mechanically derived from the correspond-
ing calculus (instead of designed and then proved correct) and also that each machine directly corre-
sponds to this calculus (instead of indirectly via an ‘unload’ function at the end of each run [71] or via
a compilation / decompilation scheme in the course of execution [52]).

1.4 Overview

We successively consider call by name: Krivine’s machine with call/cc (Section 4) and the λµ-calculus
(Section 5); call by value: static and dynamic delimited continuations (Section 6), stack inspection (Sec-
tion 7), and proper tail-recursion (Section 8); and call by need (Section 9). Towards this end, we first
present the λρ̂-calculus and the notion of context-sensitive reduction (Section 2) and then a detailed
walkthrough for the λρ̂-calculus with an abort operation (Section 3). The subsequent repetitiveness of
Sections 4 to 9 (language, notion of context-sensitive reduction, abstract machine, and formal corre-
spondence) is a deliberate feature, not an inadvertent presentational bug: we apply the same simple
method to many situations that have been separately studied so far. Each of these sections can there-
fore be read independently of the others.

2

2 Preliminaries

2.1 Reduction semantics

A reduction semantics [41,43] consists in a grammar of terms from a source language, syntactic notions
of value and redex, a collection of contraction rules, and a reduction strategy. This reduction strategy
is embodied in a grammar of reduction contexts (terms with a hole as induced by the compatibility
rules) and a plug function mapping a term and a context into a new term. One-step reduction of a
non-value term consists in

1. decomposing the term into a redex and a reduction context,

2. contracting the redex, and

3. plugging the contractum in the reduction context.

In some reduction semantics, non-value terms are uniquely decomposed into a redex and a con-
text. Decomposition can then be implemented as a function mapping a non-value term to a redex
and a reduction context. Danvy and Nielsen have shown that together with the unique decomposi-
tion property, the following property of a reduction semantics is sufficient to define a decomposition
function by induction on terms and reduction contexts [36, Figure 2, page 8]:

Property 1. For each syntactic construct building a term out of n subterms, there is a number 0 ≤ i ≤ n and
a fixed traversal order of subterms encoded in the grammar of the reduction contexts for this construct such that
the holes of these contexts are precisely the positions of the i subterms. Furthermore, a term with all the chosen i

subterms reduced to values is either a value or a potential redex (i.e., an actual redex or a “stuck term”) but not
both.

If the redexes do not overlap, the contraction rules can be implemented as a function.

2.2 Context-sensitive reduction

Traditional specifications of one-step reduction as the compatible closure of a notion of reduction pro-
vide a local characterization of a computation step in the form of a redex.1 This local characterization is
not fit for non-local reductions such as one involving a control operator capturing all its surrounding
context in one step, or a global state. For these, one needs a notion of context-sensitive reduction, i.e., a
binary relation defined both on redexes and on their reduction context instead of only on redexes [41].
This relation is given by context-sensitive contraction rules of the form 〈r, C〉 → 〈c ′, C ′〉, where

〈r, C〉 denotes the decomposition of a program into a potential redex r and its context C.
A one-step reduction relation for a given notion of context-sensitive reduction is defined as fol-

lows: A program p reduces in one step to p ′ if decomposing p yields 〈r, C〉, reducing 〈r, C〉 yields
〈c ′, C ′〉, and plugging c ′ into C ′ yields p ′.
A context-sensitive reduction implicitly assumes a decomposition of the entire program, and there-

fore it cannot be used locally. One way to recover compatibility in the context-sensitive setting is to
add explicit local control delimiters to the language (see Section 6 for an illustration). For a language
without explicit control delimiters (as the λρ̂-calculus with call/cc), there is an implicit global control
delimiter around the program [42].

1For example, a potential redex in the λ-calculus is the application of a value to a term. If the value is a λ-abstraction, the
potential redex is an actual one and it can be β-reduced. If no reduction rule applies, the potential redex is not an actual one
and the program is stuck [71].

3

2.3 Our base calculus of closures: λρ̂

Since Landin [62], most abstract machines implementing variants and extensions of the λ-calculus use
closures and environments, and the substitution of terms for free variables is thus delayed until a
variable is reached in the evaluation process. This implementation technique has motivated the study
of calculi of explicit substitutions [1, 23, 76] to mediate between the traditional abstract specifications
of the λ-calculus and its traditional concrete implementations [52].
To derive an abstract machine for evaluating λ-terms, a weak calculus of explicit substitutions suf-

fices. The first (and simplest) of such calculi was Curien’s calculus of closures λρ [23]. Although this
calculus is not expressive enough to model full normalization, it is suitable for evaluating a λ-term,
i.e., to produce the correspondingweak head normal form. Its operational semantics is specified using
multi-step reductions, but its syntax is too restrictive to allow single-step computations, which is what
we need to apply the refocusing method. For this reason, in our earlier work [8], we have proposed a
minimal extension of λρ with one-step reduction rules, the λρ̂-calculus.
The language of λρ̂ is as follows:

(terms) t ::= i | λt | t t

(closures) c ::= t[s] | c c

(substitutions) s ::= ∅ | c · s

(For comparison, λρ does not have the c c production.)
We use de Bruijn indices for variables in a term (i ≥ 1). A closure is a term equipped with a

substitution, i.e., a list of closures to be substituted for free variables in the term. Programs are closures
of the form t[∅]where t does not contain free variables.
The notion of reduction in the λρ̂-calculus is given by the following rules:

(Var) i[c1 · · · cj]
bρ
→ ci if i ≤ j

(Beta) ((λt)[s]) c
bρ
→ t[c · s]

(Prop) (t0 t1)[s]
bρ
→ (t0[s]) (t1[s])

We write s(i) for the ith element of the substitution s considered as a list. (So [c1 · · · cj](i) = ci if
1 ≤ i ≤ j.)
Finally, the one-step reduction relation (i.e., the compatible closure of the notion of reduction)

extends the notion of reduction with the following rules:

(L-Comp)
c0

bρ
→ c ′

0

c0 c1
bρ
→ c ′

0 c1

(R-Comp)
c1

bρ
→ c ′

1

c0 c1
bρ
→ c0 c ′

1

(Sub)
ci

bρ
→ c ′

i

t[c1 · · · ci · · · cj]
bρ
→ t[c1 · · · c ′

i · · · cj]
for i ≤ j

These rules bijectively correspond to the following grammar of reduction contexts (minus the first
production):

(reduction contexts) C ::= [] | C[[] c] | C[c []] | C[t[c1 · · · [] · · · cj]]

Specific, deterministic reduction strategies can be obtained by restricting the compatibility rules
and thus the grammar of reduction contexts. In the following sections, we consider two such strate-
gies:

4

the normal-order strategy: it is obtained in the usual way by discarding the (Sub) and (R-Comp)
rules and by phrasing the grammars of values, redexes and reduction contexts as follows:

(values) v ::= (λt)[s]

(redexes) r ::= i[s] | v c | (t0 t1)[s]

(reduction contexts) C ::= [] | C[[] c]

the left-to-right applicative-order strategy: it is obtained in the usual way by discarding the (Sub)
rule, by restricting the (Beta) and (R-Comp) rules, and by phrasing the grammars of values,
redexes and reduction contexts as follows:

(values) v ::= (λt)[s]

(substitutions) s ::= ∅ | v · s

(redexes) r ::= i[s] | v v | (t0 t1)[s]

(reduction contexts) C ::= [] | C[[] c] | C[v []]

All of the calculi presented in this article extend the λρ̂-calculus. For each of them, we define a
suitable notion of reduction, denoted→X, where X is a subscript identifying a particular calculus. For
each of them, we then define a one-step reduction relation as the composition of: decomposing a non-
value closure into a redex and a reduction context, contracting a (context-sensitive) redex, and then
plugging the resulting closure into the resulting context. Finally, we define the evaluation relation
(denoted→∗

X) using the reflexive, transitive closure of one-step reduction, i.e., we say that c evaluates
to c ′ if c →∗

X c ′ and c ′ is a value closure. We define the convertibility relation between closures as
the smallest equivalence relation containing→∗

X. If two closures c and c ′ are convertible, they behave
similarly under evaluation (i.e., either they both evaluate to the same value, or they both diverge).

3 The λρ̂A-calculus

As an illustration, we present a detailed and systematic derivation of an abstract machine for call-
by-value evaluation in the λ-calculus with an abort operation, starting from the specification of the
applicative-order reduction strategy in the λρ̂-calculus with an abort operation. We follow the steps
outlined by Biernacka, Danvy, and Nielsen [8, 36]:

Section 3.1: We specify the applicative-order reduction strategy in the form of a reduction semantics,
i.e., with a one-step reduction function specified as decomposing a non-value term into a reduc-
tion context and a redex, contracting this redex, and plugging the contractum into the context.
As is traditional, we also specify evaluation as the iteration of one-step reduction.

Section 3.2: We replace the combination of plugging and decomposition by a refocus function that
iteratively goes from redex site to redex site in the reduction sequence. The resulting ‘refocused’
evaluation function is the iteration of the refocus function and takes the form of a ‘pre-abstract
machine.’

Section 3.3: We merge the definitions of the iteration and the refocus function into a ‘staged abstract
machine’ that implements the reduction rules and the compatibility rules of the λρ̂-calculus with
two separate transition functions.

Section 3.4: We inline the transition function implementing the reduction rules. The result is an
eval/apply abstract machine consisting of an ‘eval’ transition function dispatching on closures
and an ‘apply’ transition function dispatching on contexts.

5

Section 3.5: Observing that in a reduction sequence, an (App) reduction step is always followed
by a decomposition step, we coalesce these two steps into one. Observing that in a reduction
sequence, an (Abort) reduction step is always followed by a decomposition step, we coalesce
these two steps into one. This shortcut makes the resulting abstract machine dispatch on terms
rather than on closures, and enables the following step.

Section 3.6: We unfold the data type of closures, making the abstract machine operate over two
components—a term and a substitution—instead of over one—a closure. The substitution com-
ponent is the traditional environment of environment machines, and the resulting machine is
an environment machine. This machine coincides with the CEK machine with an abort opera-
tor [43].

In Section 3.7, we state the correctness of the resulting CEK machine with respect to evaluation in the
λρ̂-calculus with an abort operation.

3.1 A reduction semantics for applicative order and abort

A reduction semantics for applicative-order reduction in the λρ̂A-calculus builds on the applicative-
order strategy presented in Section 2.3. The grammar of terms and closures contains additional pro-
ductions for the abort operation:

(Term) t ::= . . . | A t

(Closure) c ::= . . . | A c

The reduction semantics is context-sensitive and its contraction rules contain the contractions of the
λρ̂-calculus (here stated in the context-sensitive form):

(Var) 〈i[v1 · · · vj], C〉 →A 〈vi, C〉 if i ≤ j

(Beta) 〈((λt)[s]) v, C〉 →A 〈t[v · s], C〉

(Prop) 〈(t0 t1)[s], C〉 →A 〈(t0[s]) (t1[s]), C〉

as well as two new contractions for the abort operation:

(PropA) 〈(A t)[s], C〉 →A 〈A (t[s]), C〉

(Abort) 〈A v, C〉 →A 〈v, []〉

The last contraction resets the context.
Finally, the grammar of reduction contexts reads as follows:

(Context) C ::= [] | C[[] c] | C[v []] | C[A []]

This reduction semantics satisfies the conditions stated in Section 2.1. We can therefore define the
following three functions:

decompose : Closure → Value + (Redex × Context)
contract : Redex × Context → Closure × Context

plug : Closure × Context → Closure

6

3.1.1 Decomposition

We define decompose as a state-transition function over closures and reduction contexts:

decompose : Closure → Value + (Redex × Context)
decompose c = decompose ′ (c, [])

decompose ′ : Closure × Context → Value + (Redex × Context)
decompose ′ (i[s], C) = (i[s], C)

decompose ′ ((λt)[s], C) = decompose ′
aux (C, (λt)[s])

decompose ′ ((t0 t1)[s], C) = ((t0 t1)[s], C)

decompose ′ (c0 c1, C) = decompose ′ (c0, C[[] c1])

decompose ′ ((A t)[s], C) = ((A t)[s], C)

decompose ′ (A c, C) = decompose ′ (c, C[A []])

decompose ′
aux : Context × Value → Value + (Redex × Context)

decompose ′
aux ([], v) = v

decompose ′
aux (C[[] c], v) = decompose ′ (c, C[v []])

decompose ′
aux (C[v ′ []], v) = (v ′ v, C)

decompose ′
aux (C[A []], v) = (A v, C)

The main decomposition function, decompose, uses two auxiliary transition functions that work ac-
cording to Property 1:

• decompose ′ is passed a closure and a reduction context. It dispatches on the closure and itera-
tively builds the reduction context:

– if the current closure is a value, then decompose ′
aux is called to inspect the context;

– if the current closure is a redex, then a decomposition is found; and

– otherwise, a subclosure of the current closure is chosen to be visited in a new context.

• decompose ′
aux is passed a reduction context and a value. It dispatches on the reduction context:

– if the current context is empty, then the value is the result of the function;

– if the top constructor of the context is that of a function application, the actual parameter is
decomposed in a new context; and

– otherwise, a redex has been found.

The decomposition function is total. (It is also in defunctionalized form [26].)

3.1.2 Context-sensitive contraction

We define contract by cases, as a straightforward implementation of the contraction rules:

contract : Redex × Context → Closure × Context
contract (i[v1 · · · vm], C) = (vi, C)

contract ((t0 t1)[s], C) = ((t0[s]) (t1[s]), C)

contract (((λt)[s]) v, C) = (t[v · s], C)

contract ((A t)[s], C) = (A (t[s]), C)

contract (A v, C) = (v, [])

In general, the contraction function is partial because of stuck terms.

7

3.1.3 Plugging

We define plug by structural induction over the reduction context. It iteratively peels off the context
and thus also takes the form of a state-transition function:

plug : Closure × Context → Closure
plug (c, []) = c

plug (c0,C[[] c1]) = plug (c0 c1,C)

plug (c1,C[c0 []]) = plug (c0 c1,C)

plug (c,C[A []]) = plug (A c,C)

The plugging function is total.

3.1.4 One-step reduction

Given these three functions, we can define the following one-step reduction function that testswhether
a closure is a value or can be decomposed into a redex and a context, that contracts this redex together
with its context, and that plugs the contractum in the resulting context:

reduce : Closure → Closure
reduce c = case decompose c

of v ⇒ v

| (r, C) ⇒ plug (c ′,C ′) where (c ′, C ′) = contract (r, C)

In general, the one-step reduction function is partial because of the contraction function.
The following proposition is a consequence of the unique-decomposition property.

Proposition 1. For any non-value closure c and for any closure c ′, c →A c ′ ⇔ reduce c = c ′.

3.1.5 Reduction-based evaluation

Finally, we can define evaluation as the iteration of one-step reduction. For simplicity, we use decompose
to test whether a value has been reached:

iterate : Value + (Redex × Context) → Value
iterate v = v

iterate (r, C) = iterate (decompose (plug (c ′,C ′)))

where (c ′, C ′) = contract (r, C)

evaluate : Term → Value
evaluate t = iterate (decompose (t[∅]))

This evaluation function is partial because of the one-step reduction function and also because a re-
duction sequence might not terminate.

Proposition 2. For any closed term t and any value v, t[∅] →A
∗ v ⇔ evaluate t = v.

3.2 A pre-abstract machine

The reduction sequence implemented by evaluation can be depicted as follows:

◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F

◦
contract

// ◦

plug
;;xxxxxxxxx

◦
contract

// ◦

plug
;;xxxxxxxxx

◦
contract

// ◦

8

At each step, an intermediate term is constructed by the function plug; it is then immediately decom-
posed by the subsequent call to decompose. In their earlier work [36], Danvy and Nielsen pointed
out that the composition of plug and decompose (which are total) could be replaced by a more effi-
cient function, refocus (which is also total), that would directly go from redex site to redex site in the
reduction sequence:

◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F

//____ ◦
contract

// ◦

plug
;;xxxxxxxxx

refocus
//________ ◦

contract
// ◦

plug
;;xxxxxxxxx

refocus
//________ ◦

contract
// ◦

The essence of refocusing for a reduction semantics satisfying the unique decomposition property is
captured in the following proposition:

Proposition 3 (Danvy & Nielsen [26, 36]). For any closure c and reduction context C,

decompose (plug (c,C)) = decompose ′ (c, C)

In words: refocusing amounts to continuing the decomposition of the given contractum in the given
context.
The definition of the refocus function is therefore a clone of that of decompose ′. In particular, it

involves an auxiliary function refocusaux and takes the form of two state-transition functions, i.e., of
an abstract machine:

refocus : Closure × Context → Value + (Redex × Context)
refocus (i[s], C) = (i[s], C)

refocus ((λt)[s], C) = refocusaux (C, (λt)[s])

refocus ((t0 t1)[s], C) = ((t0 t1)[s], C)

refocus (c0 c1, C) = refocus (c0, C[[] c1])

refocus ((A t)[s], C) = ((A t)[s], C)

refocus (A c, C) = refocus (c, C[A []])

refocusaux : Context × Value → Value + (Redex × Context)
refocusaux ([], v) = v

refocusaux (C[[] c], v) = refocus (c, C[v []])

refocusaux (C[v ′ []], v) = (v ′ v, C)

refocusaux (C[A []], v) = (A v, C)

In this abstract machine, the configurations are pairs containing a closure and a context; the final
transitions are specified by the first, third, and fifth clauses of refocus and by the first, third, and
fourth clauses of refocusaux which all lead to an accepting state; and the initial transition is specified
by two clauses of the corresponding ‘refocused’ evaluation function, which reads as follows:

iterate : Value + (Redex × Context) → Value
iterate v = v

iterate (r, C) = iterate (refocus (c ′, C ′))

where (c ′, C ′) = contract (r, C)

evaluate : Term → Value
evaluate t = iterate (refocus (t[∅], []))

(For the initial call to iterate, we have exploited the double equality decompose (t[∅]) =

decompose (plug (t[∅], [])) = refocus (t[∅], []).)

9

This evaluation function computes the iteration of refocus and contract using the auxiliary func-
tion iterate as a trampoline [49]. Due to the non-tail call to refocus in iterate, we refer to this evaluation
function as a ‘pre-abstract machine’ in that it is a trivial state machine with two configurations (one
with a value and one pairing a redex and a context) and a state-transition function, the composition
of refocus and contract.

3.3 A staged abstract machine

To transform the pre-abstract machine into an abstract machine, we distribute the calls to iterate from
the definitions of evaluate and of iterate to the definitions of refocus and refocusaux:

evaluate : Term → Value
evaluate t = refocus (t[∅], [])

iterate : Value + (Redex × Context) → Value
iterate v = v

iterate (r, C) = refocus (c ′, C ′)

where (c ′, C ′) = contract (r, C)

refocus : Closure × Context → Value
refocus (i[s], C) = iterate (i[s], C)

refocus ((λt)[s], C) = refocusaux (C, (λt)[s])

refocus ((t0 t1)[s], C) = iterate ((t0 t1)[s], C)

refocus (c0 c1, C) = refocus (c0, C[[] c1])

refocus ((A t)[s], C) = iterate ((A t)[s], C)

refocus (A c, C) = refocus (c, C[A []])

refocusaux : Context × Value → Value
refocusaux ([], v) = iterate v

refocusaux (C[[] c], v) = refocus (c, C[v []])

refocusaux (C[v ′ []], v) = iterate (v ′ v, C)

refocusaux (C[A []], v) = iterate (A v, C)

The resulting definitions of evaluate, iterate, refocus, and refocusaux are that of fourmutually recursive
state-transition functions that form an abstract machine, where the configurations are pairs of a closure
and a context, the initial transition is specified by evaluate, and the final transition in the first clause of
iterate. In this abstract machine, the compatibility rules are implemented by refocus and refocusaux,
and the reduction rules by the call to contract in the second clause of iterate. We can make this last
point even more manifest by inlining contract in the definition of iterate:

iterate : Value + (Redex × Context) → Value
iterate v = v

iterate (i[v1 · · · vm], C) = refocus (vi, C)

iterate ((t0 t1)[s], C) = refocus ((t0[s]) (t1[s]), C)

iterate (((λt)[s]) v, C) = refocus (t[v · s], C)

iterate ((A t)[s], C) = refocus (A (t[s]), C)

iterate (A v, C) = refocus (v, [])

By construction, the machine therefore separately implements the reduction rules (with iterate) and
the compatibility rules (with refocus and refocusaux); for this reason, we refer to it as a ‘staged abstract
machine’ [52].

10

3.4 An eval/apply abstract machine

As already observed by Danvy and Nielsen in their work on refocusing, inlining iterate yields an
eval/apply abstract machine [67]. Inlining the calls to iterate in the staged abstract machine yields the
following eval/apply machine, where refocus (the ‘eval’ transition function) dispatches on closures
and refocusaux (the ‘apply’ function) dispatches on contexts:

evaluate : Term → Value
evaluate t = refocus (t[∅], [])

refocus : Closure × Context → Value
refocus (i[v1 · · · vm], C) = refocus (vi, C)

refocus ((λt)[s], C) = refocusaux (C, (λt)[s])

refocus ((t0 t1)[s], C) = refocus ((t0[s]) (t1[s]), C)

refocus (c0 c1, C) = refocus (c0, C[[] c1])

refocus ((A t)[s], C) = refocus (A (t[s]), C)

refocus (A c, C) = refocus (c, C[A []])

refocusaux : Context × Value → Value
refocusaux ([], v) = v

refocusaux (C[[] c], v) = refocus (c, C[v []])

refocusaux (C[((λt)[s]) []], v) = refocus (t[v · s], C)

refocusaux (C[A []], v) = refocus (v, [])

3.5 Transition compression

In four cases, the eval/apply machine of Section 3.4 yields a configuration that uniquely determines
the subsequent transition. Let us shortcut these “corridor transitions:”

• Substitutions contain only values and therefore the (Var) reduction step (first clause of refocus)
always produces a value and is thus always followed by a shift to refocusaux (second clause of
refocus). As a shortcut, we coalesce the two consecutive transitions into one, replacing the first
clause of refocuswith the following one:

refocus (i[v1 · · · vm], C) = refocusaux (C, vi)

• The machine only produces an application of closures through an (App) reduction step (third
clause of refocus). We observe that in a reduction sequence, an (App) reduction step is always
followed by a decomposition step (fourth clause of refocus). As a shortcut, we coalesce the
two consecutive transitions into one, replacing the third and fourth clauses of refocus with the
following one:

refocus ((t0 t1)[s], C) = refocus (t0[s], C[[] (t1[s])])

• The machine only produces an application of A through an (Abort) reduction step (second-to-
last clause of refocus). We observe that in a reduction sequence, an (Abort) reduction step is
always followed by a decomposition step (last clause of refocus). As a shortcut, we coalesce the
two consecutive transitions into one, replacing the last two clauses of refocuswith the following
one:

refocus (A (t[s]), C) = refocus (t[s], C[A []])

• The configuration refocus(v, []) always yields the configuration refocusaux([], v), which triggers
a final transition. As a shortcut, we coalesce these three consecutive transitions into one final
transition, replacing the last clause of refocusaux with the following one:

refocusaux (C[A []], v) = v

11

3.6 An environment machine

Because of the two first compressions of Section 3.5, refocus is now defined by structural induction
over terms instead of by structural induction over closures. Its type can therefore be refined to (Term×
Substitution) × Context → Value + (Redex × Context), in effect unfolding closures into a term and a
substitution. We thus replace each closure in the compressed definition of evaluate and refocus by its
unfolding. Flattening (Term × Substitution) × Context into Term × Substitution × Context yields the
following abstract machine:

(Value) v ::= (λt, s)

(Context) C ::= [] | C[[] (t, s)] | C[v []] | C[A []]

evaluate : Term → Value
evaluate t = refocus (t, ∅, [])

refocus : Term × Substitution × Context → Value
refocus (i, v1 · · · vm, C) = refocusaux (C, vi)

refocus (λt, s, C) = refocusaux (C, (λt, s))

refocus (t0 t1, s, C) = refocus (t0, s, C[[] (t1, s)])

refocus (A t, s, C) = refocus (t, s, C[A []])

refocusaux : Context × Value → Value
refocusaux ([], v) = v

refocusaux (C[[] (t, s)], v) = refocus (t, s, C[v []])

refocusaux (C[(λt, s) []], v) = refocus (t, v · s, C)

refocusaux (C[A []], v) = v

We observe that this machine coincides with the CEK machine extended with an abort operator—
an extension that was designed as such [43] and is in defunctionalized form [2]. In particular, the
substitution component assumes the role of the environment.

3.7 Correctness

We state the correctness of the final result—the CEK machine—with respect to evaluation in the λρ̂A-
calculus.

Theorem 1. For any closed term t in λρ̂A,

t[∅] →A
∗ (λt ′)[s ′] if and only if evaluate t = (λt ′, s ′).

Proof. The proof relies on the correctness of refocusing [36], and the (trivial) meaning preservation of
each of the subsequent transformations.

The theorem states that the CEK machine is correct in the sense that it computes closed weak head
normal forms, and that it realizes the applicative-order strategy in the λρ̂A-calculus, which makes it
a call-by-value machine [71]. Furthermore, each of the intermediate abstract machines is also correct
with respect to call-by-value evaluation in the λρ̂A-calculus.

3.8 Conclusion

We have presented a detailed and systematic derivation of an abstract machine for call-by-value eval-
uation in the λ-calculus with an abort operation. We started from the specification of the applicative-
order reduction strategy in the λρ̂-calculus with an abort operation and we finished with a formal
correspondence between the calculus and tbe abstract machine.

12

In the next six sections, we apply the same method in a variety of computational situations, each
of which has been separately studied and reported in the literature. Our presentation is structured
around four elements: language, notion of context-sensitive reduction, abstract machine, and formal
correspondence. The rest is mechanical and therefore omitted.

4 The λρ̂K-calculus

The Krivine machine is probably the best-known abstract machine implementing the normal-order
reduction strategy in the λ-calculus [30]. In our previous work [8], we have pointed out that Krivine’s
original machine [60] does not coincide with the Krivine Machine As We Know It [21, 23] in that it
implements generalized instead of ordinary β-reduction: indeed Krivine’s machine reduces the term
(λλt) t1t2 in one step whereas the Krivine machine reduces it in two steps. Furthermore, an extension
of the archival version of Krivine’s machine [61, Section 3] also caters for a call-by-name variant of
call/cc (noted K below).
In our previouswork [8], we have presented the calculus and the reduction strategy corresponding

to the original version of Krivine’s machine. This machine uses closures and an environment and
correspondingly, the calculus is one of explicit substitutions, λρ̂.
Here, we present the calculus corresponding to the archival version of Krivine’s machine extended

with K. This machine also uses closures and an environment. Correspondingly, the calculus is one
of explicit substitutions, λρ̂K. We build on top of Krivine’s language of terms by specifying syntactic
categories of closures and substitutions as shown below. Like Krivine, we consider the normal-order
reduction strategy and therefore call by name [71].

4.1 The language of λρ̂K

The abstract syntax of the language is as follows:

(terms) t ::= i | λnt | t t | K t

(closures) c ::= t[s] | c c | K c | pCq

(values) v ::= (λnt)[s] | pCq

(substitutions) s ::= ∅ | c · s

(reduction contexts) C ::= [] | C[[] c] | C[K[]]

A nested λ-abstraction of the form λnt is to be understood as a syntactic abbreviation for λλ. . . λ︸ ︷︷ ︸
n

t,

where t is not a λ-abstraction.
In λρ̂K, a value is either a closure with a λ-abstraction in the term part, or the representation of a
reduction context captured by K.

4.2 Notion of context-sensitive reduction

The notion of reduction is specified by the rules shown below. (Var) and (Prop) are as in the λρ̂-
calculus, and (Beta+) supersedes (Beta) in that it performs a generalized β-reduction in one step:

(Var) 〈i[c1 · · · cj], C〉 →K 〈ci, C〉 if i ≤ j

(Beta+) 〈(λnt)[s], C[[. . . [[] cn] . . .] c1]〉 →K 〈t[cn · · · c1 · s], C〉

(BetaC) 〈pC ′
q, C[[] c]〉 →K 〈c, C ′〉

(Prop) 〈(t0 t1)[s], C〉 →K 〈(t0[s]) (t1[s]), C〉

13

(PropK) 〈(K t)[s], C〉 →K 〈K (t[s]), C〉

(Kλ) 〈K ((λt)[s]), C〉 →K 〈t[pCq · s], C〉

(KC) 〈K pC ′
q, C〉 →K 〈pC ′

q pCq, C〉

The three last rules account for call/cc: the first is an ordinary propagation rule, and the two others
describe the capture of a context. In the first case, the current context is captured and passed to a
function, and in the second, it is captured and passed to an already captured context. In (BetaC), a
captured context is reinstated in place of the current context, which is tossed away.

4.3 Krivine’s machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of closures me-
chanically yields the following environment-based machine:

〈i, s, C〉 ⇒K 〈t ′, s ′, C〉 if s(i) = (t ′, s ′)

〈i, s, C〉 ⇒K 〈C, pC ′
q〉 if s(i) = pC ′

q

〈λnt, s, C〉 ⇒K 〈C, (λnt, s)〉

〈t0 t1, s, C〉 ⇒K 〈t0, s, C[[] (t1, s)]〉

〈K t, s, C〉 ⇒K 〈t, s, C[K[]]〉

〈[], v〉 ⇒K v

〈C[[. . . [[] cn] . . .] c1], (λnt, s)〉 ⇒K 〈t, cn · · · c1 · s, C〉

〈C[[] (t, s)], pC ′
q〉 ⇒K 〈t, s, C ′〉

〈C[[] pC ′′
q], pC ′

q〉 ⇒K 〈C ′, pC ′′
q〉

〈C[K[]], v〉 ⇒K 〈C[[] pCq], v〉

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, []〉. It halts with value
v if it reaches a configuration 〈[], v〉. Its definition coincides with that of the extension of Krivine’s
machine with K—an extension which was designed as such and not connected to any calculus [61,
Section 3]. Because of the generalized reduction, it is not in defunctionalized form.

4.4 Formal correspondence

Proposition 4. For any term t in the λρ̂K-calculus,

t[∅] →∗
K v if and only if 〈t, ∅, []〉 ⇒∗

K v.

The λρ̂K-calculus therefore directly corresponds to the archival version of Krivine’s machine with
call/cc.

5 The λρ̂µ-calculus

In this section we present a calculus of closures that extends Parigot’s λµ-calculus [70] and the corre-
sponding call-by-name abstract machine obtained by refocusing.
Wewant to compare our derived abstract machine with an existing one designed by de Groote [38]

and therefore we adapt his syntax, which differs from Parigot’s in that arbitrary terms can be ab-
stracted by µ (not only named ones). In addition, de Groote presents a calculus of explicit substitu-
tions built on top of the λµ-calculus, and uses it to prove the correctness of his machine. We show that
a λρ̂-like calculus of closures is enough to model evaluation in the λµ-calculus and to derive the same
abstract machine as de Groote.

14

The λµ-calculus is typed, and suitable typing rules can be given to the calculus of closures we
present below. The reduction rules we show satisfy the subject reduction property, and in conse-
quence, the machine we derive operates on typed terms. To remain concise, though, we omit all the
typing considerations and concentrate on the syntactic correspondence between the calculus and the
machine.

5.1 The language of λρ̂µ

We use de Bruijn indices for both the λ-bound variables and the µ-bound variables. The two kinds of
variables are represented using the same set of indices, which leads one to an abstract machine with
one environment [38]. Alternatively, we could use two separate sets of indices, which would then
yield two environments in the resulting machine (one for each kind of variable).
The abstract syntax of the language is specified as follows:

(terms) t ::= i | λt | t t | µt | [i]t

(closures) c ::= t[s] | c c

(values) v ::= (λt)[s]

(substitutions) s ::= ∅ | C · s | c · s

(reduction contexts) C ::= [] | C[[] c]

We consider only closed λ-terms, and i ≥ 0. Bound variables are indexed starting with 1, and a
(free) occurrence of a variable 0 indicates a distinguished toplevel continuation (similar to tp in Ariola
et al.’s setting [6]). A substitution is a non-empty sequence of either closures—to be substituted for
λ-bound variables, or captured reduction contexts—to be used when accessing µ-bound variables.
Programs are closures of the form t[[] · ∅], where the empty context is to be substituted for the

toplevel continuation variable 0.

5.2 Notion of context-sensitive reduction

The notion of reduction extends that of the λρ̂ with two rules: (Mu), which captures the entire reduc-
tion context and stores it in the substitution, and (Rho), which reinstates a captured context when a
µ-bound variable is applied in an empty context:

(Beta) 〈(λt)[s], C[[] c]〉 →µ 〈t[c · s], C〉

(Var) 〈i[s], C〉 →µ 〈c, C〉 if s(i) = c

(Prop) 〈(t0 t1)[s], C〉 →µ 〈(t0[s]) (t1[s]), C〉

(Mu) 〈(µt)[s], C〉 →µ 〈t[C · s], []〉

(Rho) 〈([i]t)[s], []〉 →µ 〈t[s], C〉 if s(i) = C

5.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of closures me-
chanically yields the following environment-based machine:

〈λt, s, C〉 ⇒µ 〈C, (λt, s)〉

〈i, s, C〉 ⇒µ 〈t ′, s ′, C〉 if s(i) = (t ′, s ′)

〈t0 t1, s, C〉 ⇒µ 〈t0, s, C[[] (t1, s)]〉

〈µt, s, C〉 ⇒µ 〈t, C · s, []〉

〈[i]t, s, []〉 ⇒µ 〈t, s, C〉 if s(i) = C

15

〈[], v〉 ⇒µ v

〈C[[] c], (λt, s)〉 ⇒µ 〈t, c · s, C〉

Thismachine evaluates a closed term t by starting in the configuration 〈t, [] · ∅, []〉. It halts with value
v if it reaches a configuration 〈[], v〉. Its definition coincides with that of de Groote’s final abstract
machine [38, p. 24], except that instead of traversing the environment as a list, it directly fetches the
right substitutee for a given index i. It is in defunctionalized form.

5.4 Formal correspondence

Proposition 5. For any term t in the λρ̂µ-calculus,

t[[] · ∅] →∗
µ v if and only if 〈t, [] · ∅, []〉 ⇒∗

µ v.

The λρ̂µ-calculus therefore directly corresponds to de Groote’s abstract machine for the λµ-calculus,
and a similar story can be told for an applicative-order reduction strategy and the corresponding
call-by-value machine.

6 Delimited continuations

Continuations have been discovered multiple times [73], but they acquired their name for describing
jumps [85], using what is now known as continuation-passing style (CPS) [83]. A full-fledged control
operator, J [63, 88], however, existed before CPS, providing first-class continuations in direct style.
Continuations therefore existed before CPS, and so one could say that it was really CPS that was
discovered multiple times [34].
Conversely, delimited continuations, in the form of the traditional success and failure continua-

tions and to CPS [77], have been regularly used in artificial-intelligence programming [14, 55, 86] for
generators and backtracking. They also occur in the study of reflective towers [82], where the notions
of meta-continuation [93] and of “jumpy” vs. “pushy” continuations [33] arose. A full-fledged de-
limited control operator, # (pronounced “prompt”), however, was introduced independently of CPS
and of reflective towers, to support operational equivalence in λ-calculi with first-class control [42,45].
Only subsequently were control delimiters connected to success and failure continuations [31].
The goal of this section is to provide a uniform account of delimited continuations. Three data

points are in presence—a calculus and an abstract machine, both invented by Felleisen [42], and an
extension of CPS, as discovered by Danvy and Filinski [31]:

Calculus: As we show below, an explicit-substitutions version of Felleisen’s calculus of dynamic de-
limited continuations can be refocused into his extension of the CEK machine, which uses clo-
sures and an environment.

Abstract machine: Aswe have shown elsewhere [11], Felleisen’s extension of the CEKmachine is not
in defunctionalized form (at least for the usual notion of defunctionalization [35, 74]); it needs
some adjustment to be so, which leads one to a dynamic form of CPS that threads a state-like
trail of delimited contexts.

CPS: Defunctionalizing Danvy and Filinski’s continuation-based evaluator yields an environment-
based machine [7], and we present below the corresponding calculus of static delimited contin-
uations.

The syntactic correspondence makes it possible to directly compare (1) the calculi of dynamic and
of static delimited continuations, (2) the extendedCEKmachine and themachine corresponding to the
calculus of static delimited continuations and to the continuation-based evaluator, and (3) the eval-
uator corresponding to the extended CEK machine and the continuation-based evaluator. In other

16

words, rather than having to relate heterogeneous semantic artifacts such as a calculus with actual
substitutions, an environment-based machine, and a continuation-based evaluator, we are now in po-
sition to directly compare two calculi, two abstract machines, and two continuation-based evaluators.
We address static delimited continuations in Section 6.1 and dynamic delimited continuations in

Section 6.2. In both cases, we consider the left-to-right applicative-order reduction strategy and there-
fore the left-to-right call-by-value evaluation strategy.

6.1 The λρ̂S-calculus

The standard λ-calculus is extended with the control operator shift (written S) that captures the cur-
rent delimited continuation and with the control delimiter reset (written 〈〈〈·〉〉〉) that initializes the current
delimited continuation.

6.1.1 The language of λρ̂S

The abstract syntax of the language is as follows:

(terms) t ::= i | λt | t t | S t | 〈〈〈t〉〉〉

(closures) c ::= t[s] | c c | S c | 〈〈〈c〉〉〉 | pC1q

(values) v ::= (λt)[s] | pC1q

(substitutions) s ::= ∅ | v · s

(contexts) C1 ::= [] | C1[[] c] | C1[v []] | C1[S[]]

(meta-contexts) C2 ::= • | C1 · C2

For readability, we write C1 · C2 rather than C2[〈〈〈C1[]〉〉〉].
The control operator S captures the current delimited context and replaces it with the empty con-

text. The control delimiter 〈〈〈·〉〉〉 initializes the current delimited context, saving the then-current one
onto the meta-context. When a captured delimited context is resumed, the current delimited context
is saved onto the meta-context. When the current delimited context completes, the previously saved
one, if there is any, is resumed; otherwise, the computation terminates. This informal description
paraphrases the definitional interpreter for shift and reset, which has two layers of control—a cur-
rent delimited continuation (akin to a success continuation) and a meta-continuation (akin to a failure
continuation), as arises naturally when one CPS-transforms a direct-style evaluator twice [31]. Else-
where [7], we have defunctionalized this interpreter into an environment-based machine, which we
present next.

6.1.2 The eval/apply/meta-apply abstract machine

The environment-based machine is in “eval/apply/meta-apply” form (to build on Peyton Jones’s
terminology [67]) because the continuation is defunctionalized into a context and the corresponding
apply transition function, and the meta-continuation is defunctionalized into a meta-context (here a
list of contexts) and the corresponding meta-apply transition function:

〈i, s, C1, C2〉 ⇒S 〈C1, v, C2〉 if s(i) = v

〈λt, s, C1, C2〉 ⇒S 〈C1, (λt, s), C2〉

〈t0 t1, s, C1, C2〉 ⇒S 〈t0, s, C1[[] (t1, s)], C2〉

〈S t, s, C1, C2〉 ⇒S 〈t, s, C1[S[]], C2〉

〈〈〈〈t〉〉〉, s, C1, C2〉 ⇒S 〈t, s, [], C1 · C2〉

〈[], v, C2〉 ⇒S 〈C2, v〉

〈C1[[] (t, s)], v, C2〉 ⇒S 〈t, s, C1[v []], C2〉

〈C1[(λt, s) []], v, C2〉 ⇒S 〈t, v · s, C1, C2〉

17

〈C1[pC
′
1q []], v, C2〉 ⇒S 〈C ′

1, v, C1 · C2〉

〈C1[S[]], (λt, s), C2〉 ⇒S 〈t, pC1q · s, [], C2〉

〈C1[S[]], pC ′
1q, C2〉 ⇒S 〈C ′

1, pC1q, [] · C2〉

〈•, v〉 ⇒S v

〈C1 · C2, v〉 ⇒S 〈C1, v, C2〉

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, [], •〉. It halts with value
v if it reaches a configuration 〈•, v〉. As pointed out initially, it is in defunctionalized form.
We have observed that this machine is in the range of refocusing, transition compression, and

closure unfolding for the following calculus λρ̂S .

6.1.3 Notion of context-sensitive reduction

The λρ̂S-calculus uses two layers of contexts: C1 and C2. A non-value closure is decomposed into a
redex, a context C1, and a meta-context C2, and the notion of reduction is specified by the following
rules:

(Var) 〈i[v1 · · · vj], C1, C2〉 →S 〈vi, C1, C2〉 if i ≤ j

(Beta) 〈((λt)[s]) v, C1, C2〉 →S 〈t[v · s], C1, C2〉

(BetaC) 〈pC ′
1qv , C1, C2〉 →S 〈〈〈〈C ′

1[v]〉〉〉, C1, C2〉

(Prop) 〈(t0 t1)[s], C1, C2〉 →S 〈(t0[s]) (t1[s]), C1, C2〉

(PropS) 〈(S t)[s], C1, C2〉 →S 〈S (t[s]), C1, C2〉

(Prop〈〈〈·〉〉〉) 〈〈〈〈t〉〉〉[s], C1, C2〉 →S 〈〈〈〈t[s]〉〉〉, C1, C2〉

(Sλ) 〈S ((λt)[s]), C1, C2〉 →S 〈t[pC1q · s], [], C2〉

(SC) 〈S pC ′
1q, C1, C2〉 →S 〈pC ′

1q pC1q, [], C2〉

(Reset) 〈〈〈〈v〉〉〉, C1, C2〉 →S 〈v, C1, C2〉

Since none of the contractions depends on the meta-context, it is evident that the notion of reduction
→S is compatible with meta-contexts. It is, however, not compatible with contexts, due to Sλ and SC.
The 〈〈〈·〉〉〉 construct therefore delimits the parts of non-value closures in which context-sensitive reduc-
tions may occur, and partially restores the compatibility of reductions. In particular, 〈〈〈〈t[s]〉〉〉, C1, C2〉 is
decomposed into 〈t[s], [], C1 · C2〉 in the course of decomposition towards a context-sensitive redex.

6.1.4 Formal correspondence

Proposition 6. For any term t in the λρ̂S-calculus,

t[∅] →∗
S v if and only if 〈t, ∅, [], •〉 ⇒∗

S v.

The λρ̂S-calculus therefore directly corresponds to the abstract machine for shift and reset.

6.1.5 The CPS hierarchy

Iterating the CPS transformation on a direct-style evaluator for the λ-calculus gives rise to a family
of CPS evaluators. At each iteration, one can add shift and reset to the new inner layer. The result
forms a CPS hierarchy of static delimited continuations [31, 37] which Filinski has shown to be able
to represent layered monads [47]. Recently, Kameyama has proposed an axiomatization of the CPS
hierarchy [57]. Elsewhere [7], we have studied its defunctionalized counterpart and the corresponding
hierarchy of calculi.

18

6.2 The λρ̂F -calculus

The standard λ-calculus is extendedwith the control operatorF that captures a segment of the current
context and with the control delimiter prompt (noted #) that initializes a new segment in the current
context.

6.2.1 The language of λρ̂F

The abstract syntax of the language is as follows:

(terms) t ::= i | λt | t t | F t | #t

(closures) c ::= t[s] | c c | F c | # c | pCq

(values) v ::= (λt)[s] | pCq

(substitutions) s ::= ∅ | v · s

(reduction contexts) C ::= [] | C[[] c] | C[v []] | C[F []] | C[#[]]

6.2.2 Notion of context-sensitive reduction

The control operator F captures a segment of the current context up to a mark. The control delimiter
sets a mark on the current context. When a captured segment is resumed, it is composed with the
current context. For the rest, the notion of reduction is as usual:2

(Var) 〈i[v1 · · · vj], C〉 →F 〈vi, C〉 if i ≤ j

(Beta) 〈((λt)[s]) v, C〉 →F 〈t[v · s], C〉

(BetaC) 〈pC ′
qv , C〉 →F 〈C ′[v], C〉

(Prop) 〈(t0 t1)[s], C〉 →F 〈(t0[s]) (t1[s]), C〉

(PropF) 〈(F t)[s], C〉 →F 〈F (t[s]), C〉

(Prop#) 〈(#t)[s], C〉 →F 〈# (t[s]), C〉

(Fλ) 〈F ((λt)[s]), C[#C ′]〉 →F 〈t[pC ′
q · s], C〉 if C ′ contains no mark

(FC) 〈F pC ′′
q, C[#C ′]〉 →F 〈pC ′′

q pC ′
q, C〉 if C ′ contains no mark

(Prompt) 〈# v, C〉 →F 〈v, C〉

Alternatively, we could specify the reduction rules using two layers of contexts, similarly to the
λρ̂S-calculus [7,10,11]. The difference between the two calculi would then be only in the rule (BetaC):

(BetaC) 〈pC ′
1qv , C1, C2〉 →F 〈C ′

1[v], C1, C2〉

where there is no delimiter around C ′
1[v]. As in the previous case of the λρ̂S-calculus, such two-layered

decomposition makes it evident that the contraction rules are compatible with the meta-context, since
it is isolated by the use of a control delimiter.

6.2.3 The eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of closures me-
chanically yields the following environment-based machine:

〈i, s, C〉 ⇒F 〈C, v〉 if s(i) = v

〈λt, s, C〉 ⇒F 〈C, (λt, s)〉

〈t0 t1, s, C〉 ⇒F 〈t0, s, C[[] (t1, s)]〉

〈F t, s, C〉 ⇒F 〈t, s, C[F []]〉

〈#t, s, C〉 ⇒F 〈t, s, C[#[]]〉

2The original version ofF does not reduce its argument first, but its successors do. The present version ofF does likewise
here, for a more direct comparison with S .

19

〈[], v〉 ⇒F v

〈C[[] (t, s)], v〉 ⇒F 〈t, s, C[v []]〉

〈C[(λt, s) []], v〉 ⇒F 〈t, v · s, C〉

〈C[pC ′
q []], v〉 ⇒F 〈C ′ ◦ C, v〉

〈C[#C ′[F []]], (λt, s)〉 ⇒F 〈t, pC ′
q · s, C〉 where C ′ contains no mark

〈C[#C ′[F []]], pC ′′
q〉 ⇒F 〈C ′′ ◦ C, pC ′

q〉 where C ′ contains no mark

〈C[#[]], v〉 ⇒F 〈C, v〉

where ◦ concatenates contexts: ...
Thismachine evaluates a closed term t by starting in the configuration 〈t, ∅, []〉. It halts with value

v if it reaches a configuration 〈[], v〉. Its definition coincides with that of Felleisen’s extension of the
CEKmachine—an extensionwhich was designed as such [42, Section 3] and is not in defunctionalized
form because of the concatenation of contexts [11].

6.2.4 Formal correspondence

Proposition 7. For any term t in the λρ̂F-calculus,

t[∅] →∗
F v if and only if 〈t, ∅, []〉 ⇒∗

F v.

This proposition parallels Felleisen’s second correspondence theorem [42, p. 186]. The λρ̂F-calculus
therefore directly corresponds to Felleisen’s extension of the CEK machine.

6.2.5 A hierarchy of control delimiters

As described by Sitaram and Felleisen [81], one could have not one but several marks in the context
and have control operators capture segments of the current context up to a particular mark. For these
marks not to interfere in programming practice, they need to be organized hierarchically, forming
a hierarchy of control delimiters [81, Section 5]. Alternatively, one could iterate Biernacki et al.’s
dynamic CPS transformation [11] to give rise to a hierarchy of dynamic delimited continuations with
a functional (CPS) counterpart. Except for the work of Gunter et al. [51] and more recently of Dybvig
et al. [39], this area is little explored.

6.3 Conclusion

The syntactic correspondence has made it possible to exhibit the calculus corresponding to static de-
limited continuations as embodied in the functional idiom of success and failure continuations and
more generally in the CPS hierarchy, and to show that (the explicit-substitutions version of) Felleisen’s
calculus of dynamic delimited continuations corresponds to his extension of the CEK machine [42].
Elsewhere, we present the abstract machine [7] and the evaluator [31] corresponding to static delim-
ited continuations and an evaluator [11] corresponding to dynamic delimited continuations. We are
now in position to compare them pointwise:

• From a calculus point of view, it seems to us that one is better off with layered contexts be-
cause it is immediately obvious whether a notion of reduction is compatible with them (see
Section 6.1.3); a context containing marks is less easy to treat. Otherwise, the difference between
static and dynamic delimited continuations is tiny (see Section 6.2.2), and located in the rule
(BetaC).

• From a machine point of view, separating between the current delimited context and the other
ones is also simpler, as it avoids linear searches, copies, and concatenations (in this respect,
efficient implementations, e.g., with an Algol-style display, in effect separate between the current
delimited context and the other ones).

20

• From the point of view of CPS, the abstract machine for dynamic delimited continuations is not
in defunctionalized formwhereas the abstract machine for static delimited continuations is (and
corresponds to a evaluator in CPS). Conversely, defunctionalizing a CPS evaluator provides
design guidelines, whereas without CPS, one is on one’s own, and locally plausible choices may
have unforeseen global consequences which are then taken as the norm. Two cases in point:

1. in Lisp, it was locally plausible to push both formal and actual parameters at function-call
time, and to pop them at return time, but this led to dynamic scope since variable lookup
then follows the dynamic link; and

2. here, it was locally plausible to concatenate a control-stack segment to the current control
stack (“From this, we learn that an empty context adds no information.” [46, p. 58]), but
this led to dynamic delimited continuations since capturing a segment of a concatenated
context then gives access to beyond the concatenation point.

Granted, a degree of dynamism makes it possible to write compact programs (e.g., a composi-
tional breadth-first traversal without a data-queue accumulator and in direct style [12]), but it is
very difficult to reason about them and they are not necessarily more efficient.

• From the point of view of expressiveness, for example, in Lisp, one can simulate the static scope
of Scheme by making each lambda-abstraction a “funarg” and in Scheme, one can simulate the
dynamic scope of Lisp by threading an environment of fluid variables in a state-monad fashion.
Similarly, static delimited continuations can be simulated using dynamic ones by delimiting the
extent of each captured continuation [10], and dynamic delimited continuations can be simu-
lated using static ones by threading a trail of contexts in a state-monad fashion [11, 39, 59, 80].
As to which should be used by default, the question then reduces to which behavior is the norm
and which should be simulated if it is needed.

In summary, the calculi, the abstract machines, and the evaluators all differ. In one approach,
continuations are dynamically composed by concatenating their representations [46] and in the other,
continuations are statically composed through a meta-continuation. These differences result from dis-
tinct designs: Felleisen and his colleagues started from a calculus and wanted to go “beyond continu-
ations” [45], and therefore beyond CPS, whereas Danvy and Filinski were aiming at a CPS account of
delimited control, one that has turned out to be not without practical, semantical, and logical content.

7 Stack inspection

This section addresses Fournet and Gordon’s λsec-calculus, which formalizes security enforcement by
stack inspection [48]. We first present a calculus of closures built on top of the λsec-calculus, and we
construct the corresponding environment-based machine. This machine is a storeless version of the
fg machine presented by Clements and Felleisen [16, Figure 1]. (We consider the issue of store-based
machines in Section 8.) This machine is not properly tail-recursive, and so Clements and Felleisen
presented another machine—the cm machine—which does implement stack inspection in a properly
tail-recursive manner [16, Figure 2]. The cm machine builds on Clinger’s formalization of proper
tail-recursion (see Section 8) and it is therefore store-based; we considered its storeless version here,
and we present the corresponding calculus of closures. We show how the tail-optimization of the cm
machine is reflected in the calculus. Finally, we turn to the unzipped version of the cm machine [4]
and we present the corresponding state-based calculus of closures.

21

7.1 The λρ̂sec-calculus

7.1.1 The language of λρ̂sec

(terms) t ::= i | λt | t t | grantR in t | testR then t else t | R[t] | fail

(closures) c ::= t[s] | c c | grantR in c | testR then c else c | R[c]

(values) v ::= (λt)[s] | fail

(substitutions) s ::= ∅ | v · s

(reduction contexts) C ::= [] | C[[] c] | C[v []] | C[grantR in []] | C[R[[]]]

(permissions) R ⊆ P

The set of terms consists of λ-terms and four constructs for handling different levels of security speci-
fied in a set P: grantR in t grants the permissions R to t; testR then t0 else t1 proceeds to evaluate t0

if permissions R are available, and otherwise t1; a frame R[t] restricts the permissions of t to R; and
finally, fail aborts the computation.

7.1.2 Notion of context-sensitive reduction

Given the predicate OKsec(R,C) checking whether the permissions R are available within the context
C,

OKsec(∅,C) OKsec(R, [])

OKsec(R,C)

OKsec(R,C[[] c])

OKsec(R,C)

OKsec(R,C[v []])

R ⊂ R ′ OKsec(R,C)

OKsec(R,C[R ′[[]]])

OKsec(R \ R ′,C)

OKsec(R,C[grantR ′ in []])

the notion of reduction is given by the following set of rules:

(Var) 〈i[v1 · · · vj], C〉 →sec 〈vi, C〉 if i ≤ j

(Beta) 〈((λt)[s]) v, C〉 →sec 〈t[v · s], C〉

(Prop) 〈(t0 t1)[s], C〉 →sec 〈(t0[s]) (t1[s]), C〉

(PropG) 〈(grantR in t)[s], C〉 →sec 〈grantR in t[s], C〉

(PropF) 〈(R[t])[s], C〉 →sec 〈R[t[s]], C〉

(PropT) 〈(testR then t0 else t1)[s], C〉 →sec 〈testR then t0[s] else t1[s], C〉

(Frame) 〈R[v], C〉 →sec 〈v, C〉

(Grant) 〈grantR in v, C〉 →sec 〈v, C〉

(Test1) 〈testR then c1 else c2, C〉 →sec 〈c1, C〉 if OKsec(R,C) holds

(Test2) 〈testR then c1 else c2, C〉 →sec 〈c2, C〉 otherwise

(Fail) 〈fail[s], C〉 →sec 〈fail, []〉

The only context-sensitive rules are (Test1) and (Test2), which perform a reduction step after inspect-
ing the entire context C, and (Fail)which aborts the computation.

22

7.1.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of closures me-
chanically yields the following environment-based machine:

〈i, s, C〉 ⇒sec 〈C, v〉 if s(i) = v

〈λt, s, C〉 ⇒sec 〈C, (λt, s)〉

〈t0 t1, s, C〉 ⇒sec 〈t0, s, C[[] (t1, s)]〉

〈grantR in t, s, C〉 ⇒sec 〈t, s, C[grantR in []]〉

〈testR then t0 else t1, s, C〉 ⇒sec 〈t0, s, C〉 if OKsec(R,C) holds

〈testR then t0 else t1, s, C〉 ⇒sec 〈t1, s, C〉 otherwise

〈fail, s, C〉 ⇒sec fail

〈R[t], s, C〉 ⇒sec 〈t, s, C[R[[]]]〉

〈[], v〉 ⇒sec v

〈C[[] (t, s)], v〉 ⇒sec 〈t, s, C[v []]〉

〈C[(λt, s) []], v〉 ⇒sec 〈t, v · s, C〉

〈C[grantR in []], v〉 ⇒sec 〈C, v〉

〈C[R[[]]], v〉 ⇒sec 〈C, v〉

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, []〉. It halts with value v

if it reaches a configuration 〈[], v〉. It is a storeless version of Clements and Felleisen’s fg machine [16,
Figure 1], and is in defunctionalized form.

7.1.4 Formal correspondence

Proposition 8. For any term t in the λρ̂sec-calculus,

t[∅] →∗
sec v if and only if 〈t, ∅, []〉 ⇒∗

sec v.

The λρ̂sec-calculus therefore directly corresponds to the storeless version of the fg machine.

7.2 Properly tail-recursive stack inspection

On the ground that the fg machine is not properly tail-recursive, Clements and Felleisen presented a
new, properly tail-recursive, machine—the cmmachine [16, Figure 2]—thereby debunking the folklore
that stack inspection is incompatible with proper tail recursion. Below, we consider the storeless
version of the cm machine and we present the underlying calculus of closures.

7.2.1 The storeless cm machine

The cm machine operates on a λsec-term, an environment, and an evaluation context enriched with
updatable permission tables (written m below):

(stack frames) C ::= m[] | C[[](c,m)] | C[(v,m)[]]

A permission table is a partial function with a finite domain from a set of permissions P to the set
{⊥ = not granted,⊤ = granted}. A permission table with the empty domain is written ε.
Given the predicate OKcmsec(R,C),

OKcmsec(∅,C)

R ∩m−1(⊥) = ∅

OKcmsec(R,m[])

23

R ∩m−1(⊥) = ∅ OKcmsec(R \m−1(⊤),C)

OKcmsec(R,C[[](c,m)])

R ∩m−1(⊥) = ∅ OKcmsec(R \m−1(⊤),C)

OKcmsec(R,C[(v,m)[]])

the transitions of the storeless cm machine read as follows:

〈i, s, C〉 ⇒cm
sec 〈C, v〉 if s(i) = v

〈λt, s, C〉 ⇒cm
sec 〈C, (λt, s)〉

〈t0 t1, s, C〉 ⇒cm
sec 〈t0, s, C[[]((t1, s), ε)]〉

〈grantR in t, s, C〉 ⇒cm
sec 〈t, s, C[R 7→ ⊤]〉

〈testR then t0 else t1, s, C〉 ⇒cm
sec 〈t0, s, C〉 if OKcmsec(R,C) holds

〈testR then t0 else t1, s, C〉 ⇒cm
sec 〈t1, s, C〉 otherwise

〈fail, s, C〉 ⇒cm
sec fail

〈R[t], s, C〉 ⇒cm
sec 〈t, s, C[R 7→ ⊥]〉

〈m[], v〉 ⇒cm
sec v

〈C[[]((t, s),m)], v〉 ⇒cm
sec 〈t, s, C[(v, ε)[]]〉

〈C[((λt, s),m)[]], v〉 ⇒cm
sec 〈t, v · s, C〉

where R = P \ R and C[R 7→ v] is a modification of the permission table in the context C obtained by
granting or restricting the permissions R, depending on v. This machine evaluates a closed term t by
starting in the configuration 〈t, ∅, []〉. It halts with value v if it reaches a configuration 〈m[], v〉. It is
not in defunctionalized form because of the modification of the permission tables in the contexts.
The following proposition states the equivalence of the fg machine and the cm machine with re-

spect to the values they compute:

Proposition 9. For any term t in the λρ̂sec-calculus,

〈t, ∅, []〉 ⇒∗
sec v if and only if 〈t, ∅, []〉 (⇒cm

sec)
∗
v.

Moreover, it can be shown that each step of the fg machine is simulated by at most one step of the
cm machine [16]. From the standpoint of the calculus, this simulation is reflected by the fact that the
reduction semantics implemented by the cm machine has fewer reductions than λρ̂sec.

7.2.2 The underlying calculus λρ̂cmsec

The calculus corresponding to the storeless cm machine is very close to the λρ̂sec-calculus. The gram-
mars of terms, closures and substitutions are the same, but the reduction contexts (which correspond
to the stack frames in the machine) contain permission tables. Consequently, the functions plug and
decompose are defined in a non-standard way:

plug (c,m[]) = build (m, c)

plug (c0,C[[](c1,m)]) = plug (build (m, c0 c1),C)

plug (c,C[(v,m)[]]) = plug (build (m, v c),C)

where the auxiliary function build conservatively constructs a closure based on the permission table
of the reduction context:

buildG (m, c) =

{
c if m−1(⊤) = ∅
grantm−1(⊤) in c otherwise

buildF (m, c) =

{
c if m−1(⊥) = ∅

m−1(⊥)[c] otherwise

build (m, c) = buildF (m, buildG (m, c))

24

Any closure that is not already a value or a potential redex, can be further decomposed as follows:

decompose (c0 c1,C) = decompose (c0,C[[](c1, ε)])

decompose (grantR in c,C) = decompose (c,C[R 7→ ⊤])

decompose (R[c],C) = decompose (c,C[R 7→ ⊥])

decompose (v,C[[](c,m)]) = decompose (c,C[(v, ε)[]])

The notion of reduction includes most rules of the λρ̂sec-calculus, except for (Frame) and (Grant).
From a calculus standpoint, Clements and Felleisen therefore obtained proper tail recursion by

changing the computational model (witness the change from OKsec to OKcmsec) and by simplifying the
reduction rules and modifying the compatibility rules.

7.3 State-based properly tail-recursive stack inspection

On the observation that the stack of the cmmachine can be unzipped into the usual control stack of the
CEKmachine and a state-like list of permission tables, Ager et al. have presented an unzipped version
of the cm machine (characterizing properly tail-recursive stack inspection as a monad, in passing) [4].
We first present this machine, and then the corresponding calculus of closures.

7.3.1 The unzipped storeless cm machine

The unzipped cm machine operates on a λsec-term, an environment, and an ordinary evaluation con-
text. In addition, the machine has a read-write security register m holding the current permission
table and a read-only security register ms holding a list of outer permission tables. Given the predi-
cate OKucmsec (R,m,ms),

OKucmsec (∅,m,ms)

R ∩m−1(⊥) = ∅

OKucmsec (R,m, •)

R ∩m−1(⊥) = ∅ OKucmsec (R \m−1(⊤),m ′,ms)

OKucmsec (R,m,m ′ ·ms)

the transitions of the unzipped storeless cm machine read as follows:

〈i, s, m,ms, C〉 ⇒ucm
sec 〈C, v, ms〉 if s(i) = v

〈λt, s, m,ms, C〉 ⇒ucm
sec 〈C, (λt, s), ms〉

〈t0 t1, s, m,ms, C〉 ⇒ucm
sec 〈t0, s, ε,m ·ms, C[[] (t1, s)]〉

〈grantR in t, s, m,ms, C〉 ⇒ucm
sec 〈t, s, m[R 7→⊤],ms, C〉

〈testR then t0 else t1, s, m,ms, C〉 ⇒ucm
sec 〈t0, s, m,ms, C〉 if OKucmsec (R,m,ms) holds

〈testR then t0 else t1, s, m,ms, C〉 ⇒ucm
sec 〈t1, s, m,ms, C〉 otherwise

〈R[t], s, m,ms, C〉 ⇒ucm
sec 〈t, s, m[R 7→⊥],ms, C〉

〈fail, s, m,ms, C〉 ⇒ucm
sec fail

〈[], v, •〉 ⇒ucm
sec v

〈C[[] (t, s)], v, ms〉 ⇒ucm
sec 〈t, s, ε,ms, C[v []]〉

〈C[(λt, s) []], v, m ·ms〉 ⇒ucm
sec 〈t, v · s, m,ms, C〉

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, ε, •, []〉. It halts with
value v if it reaches a configuration 〈[], v, •〉. It is in defunctionalized form.
The following proposition states the equivalence of the cmmachine and the unzipped cmmachine:

Proposition 10. For any term t in the λρ̂sec-calculus,

〈t, ∅, []〉 (⇒cm
sec)

∗
v if and only if 〈t, ∅, ε, •, []〉 (⇒ucm

sec)∗ v.

Moreover, it can be shown that each step of the cm machine is simulated by one step of the unzipped
cm machine.

25

7.3.2 The language of λρ̂ucmsec

(terms) t ::= i | λt | t t | grantR in t | testR then t else t | R[t] | fail

(closures) c ::= t[s]

(values) v ::= (λt)[s] | fail

(substitutions) s ::= ∅ | v · s

(reduction contexts) C ::= [] | C[[] c] | C[v []]

(annotated closures) c̃ ::= c[m,ms] | c c̃ | c̃ c | fail

(annotated values) ṽ ::= v[m,ms] | fail

7.3.3 Notion of context-sensitive reduction

The notion of reduction is specified by the rules below. Compared to the rules of Section 7.1.2, the
current permission table and the list of outer permission tables are propagated locally to each closure
being evaluated. When a value is consumed, the current permission table is discarded.
The (Prop) reduction rule illustrates the propagation to a subclosure to be evaluated:

〈(t0 t1)[s][m,ms], C〉 →ucm
sec 〈(t0[s][ε,m ·ms]) (t1[s]), C〉

So do half of the other reduction rules:

(Var) 〈i[c1 · · · cj][m,ms], C〉 →ucm
sec 〈ci[m,ms], C〉 if i ≤ j

(Test1) 〈(testR then t0 else t1)[s][m,ms], C〉 →ucm
sec 〈t0[s][m,ms], C〉 if OKucmsec (R,m,ms) holds

(Test2) 〈(testR then t0 else t1)[s][m,ms], C〉 →ucm
sec 〈t1[s][m,ms], C〉 otherwise

(Fail) 〈fail[s][m,ms], C〉 →ucm
sec 〈fail, []〉

A new reduction rule, however, is now necessary to go from one evaluated subclosure to a subclo-
sure to evaluate:

(Switch) 〈(v[m,ms]) c, C〉 →ucm
sec 〈v (c[ε,ms]), C〉

The (Beta) rule doubles up with discarding the permission table of the actual parameter:

(Beta) 〈((λt)[s]) (v[m,m ′ ·ms]), C〉 →ucm
sec 〈t[v · s][m ′,ms], C〉

Finally, the (Frame) and (Grant) rules embody the state counterpart of Clements and Felleisen’s
design to enable proper tail recursion:

(Frame) 〈R[t][s][m,ms], C〉 →ucm
sec 〈t[s][m[R 7→⊥],ms], C〉

(Grant) 〈(grantR in t)[s][m,ms], C〉 →ucm
sec 〈t[s][m[R 7→⊤],ms], C〉

7.3.4 Formal correspondence

Proposition 11. For any term t in the λsec-calculus,

t[∅](→ucm
sec)∗v if and only if 〈t, ∅, ε, •, []〉 (⇒ucm

sec)∗ v.

7.4 Conclusion

We have presented three corresponding calculi of closures and machines for stack inspection, show-
ing first how the storeless fg machine reflects the λρ̂sec-calculus; second, how the λρ̂cmsec-calculus reflects
the storeless cm machine; and third, how the λρ̂ucmsec -calculus reflects the unzipped storeless cm ma-
chine. In doing so, we have provided a calculus account of machine design and optimization for stack
inspection.

26

8 A calculus for proper tail-recursion

At PLDI’98 [19], Clinger presented a properly tail-recursive semantics for Scheme in the form of a
store-based abstract machine. This machine models the memory-allocation behavior of function calls
in Scheme, and Clinger used it to specify in which sense an implementation should not run out of
memory when processing a tail-recursive program (such as a program in CPS).
We first present a similar machine for the λ-calculus with left-to-right call-by-value evaluation

and assignments. This machine is in the range of refocusing, transition compression, and closure
unfolding, and so we next present the corresponding store-based calculus, λρ̂ptr.

8.1 A simplified version of Clinger’s abstract machine

Our simplified version of Clinger’s abstract machine is an eval/apply machine with an environment
and a store:

〈x, s, C, σ〉 ⇒ptr 〈C, v, σ〉 if s(x) = ℓ and σ(ℓ) = v

〈λx.t, s, C, σ〉 ⇒ptr 〈C, (λx.t, s), σ〉

〈t0 t1, s, C, σ〉 ⇒ptr 〈t0, s, C[[] (t1, s)], σ〉

〈x := t, s, C, σ〉 ⇒ptr 〈t, s, C[upd(ℓ, [])], σ〉 if s(x) = ℓ

〈[], v, σ〉 ⇒ptr (v, σ)

〈C[[] (t, s)], v, σ〉 ⇒ptr 〈t, s, C[v []], σ〉

〈C[(λx.t, s) []], v, σ〉 ⇒ptr 〈t, (x, ℓ) · s, C, σ[ℓ 7→ v]〉 if ℓ does not occur within s,C, v, σ

〈C[upd(ℓ, [])], v, σ〉 ⇒ptr 〈C, v ′, σ[ℓ 7→ v]〉 if σ(ℓ) = v ′

Locations ℓ range over an unspecified set of locations. A store σ is a finite mapping from locations to
value closures. Denotable values are locations. This machine evaluates a closed term t by starting in
the configuration 〈t, ∅, [], •〉. It halts with value v and store σ if it reaches a configuration 〈[], v, σ〉.
It is in defunctionalized form.
Clinger’s machine also has a garbage-collection rule [19, Figure 5 and Section 3], but for simplicity

we ignore it here.

8.2 The language of λρ̂ptr

The abstract syntax of the language is as follows:

(terms) t ::= x | λx.t | t t | x := t

(closures) c ::= t[s] | c c

(values) v ::= (λx.t)[s]

(substitutions) s ::= ∅ | (x, ℓ) · s

(red. contexts) C ::= [] | C[[] c] | C[v []] | C[upd(ℓ, [])]

(store) σ ::= • | σ[ℓ 7→ v]

(store closures) c̃ ::= c[σ]

(store values) ṽ ::= v[σ]

(store contexts) C̃ ::= C[σ]

8.3 Notion of context-sensitive reduction

In the rules below, (Var) dereferences the store; (Beta) allocates a fresh location, and extends both
the substitution and the store with it; (Prop) is context-insensitive and therefore essentially as in the
λρ̂-calculus; and (Upd) updates the store.

27

(Var) 〈xi[(x1, ℓ1) · · · (xj, ℓj)], C[σ]〉 →ptr 〈σ(ℓi), C[σ]〉 if i ≤ j

(Beta) 〈((λx.t)[s]) v, C[σ]〉 →ptr 〈t[(x, ℓ) · s], C[σ[ℓ 7→ v]]〉 if ℓ does not occur within s,C, v, σ

(Prop) 〈(t0 t1)[s], C[σ]〉 →ptr 〈(t0[s]) (t1[s]), C[σ]〉

Refocusing, compressing the intermediate transitions, and unfolding the data type of closures me-
chanically yields the abstract machine of Section 8.1.

8.4 Formal correspondence

Proposition 12. For any term t in the λρ̂ptr-calculus,

t[∅][•] →∗
ptr v[σ] if and only if 〈t, ∅, [], •〉 ⇒∗

ptr (v, σ).

The λρ̂ptr-calculus therefore directly corresponds to the simplified version of Clinger’s properly tail-
recursive machine.
In Section 7, we showed storeless variants of two machines for stack inspection (the fg and the

cm machines). The original versions of these machines use a store in the Clinger fashion [16], and
we can exhibit their underlying calculi with an explicit representation of the store, as straightforward
extensions of the storeless calculi. For conciseness, we do not include them here.

9 A lazy calculus of closures

The store-based account of proper tail-recursion from Section 8 suggests the following lazy calculus
of closures, λρ̂l.

9.1 The language of λρ̂l

The abstract syntax of the language is as follows:

(terms) t ::= i | λt | t t

(closures) c ::= t[s] | c ℓ | upd(ℓ, c)

(values) v ::= (λt)[s]

(substitutions) s ::= ∅ | ℓ · s

(reduction contexts) C ::= [] | C[[] ℓ] | C[upd(ℓ, [])]

(store) σ ::= • | σ[ℓ 7→ v]

(store closures) c̃ ::= c[σ]

(store values) ṽ ::= v[σ]

(store contexts) C̃ ::= C[σ]

9.2 Notion of context-sensitive reduction

The notion of reduction is specified by the five rules shown below.

(Var1) 〈i[ℓ1 · · · ℓj], C[σ]〉 →l 〈v, C[σ]〉 if σ(ℓi) = v

(Var2) 〈i[ℓ1 · · · ℓj], C[σ]〉 →l 〈upd(ℓi, c), C[σ]〉 if σ(ℓi) = c

(Beta) 〈((λt)[s]) ℓ, C[σ]〉 →l 〈t[ℓ · s], C[σ]〉

(App) 〈(t0 t1)[s], C[σ]〉 →l 〈(t0[s]) ℓ, C[σ[ℓ 7→ t1[s]]]〉 where ℓ does not occur in s,C, σ

(Upd) 〈upd(ℓ, v), C[σ]〉 →l 〈v, C[σ[ℓ 7→ v]]〉

28

Variables denote locations, and have two reduction rules, depending on whether the store holds a
value or not at that location. In the former case—handled by (Var1)—the result is this value, the
current context, and the current store. In the latter case—handled by (Var2)—a special closure upd(ℓ, c)
is created, indicating that c is a shared computation. When this computation completes and yields a
value, the store at location ℓ should be updated with this value, which is achieved by (Upd). Since
every argument to an application can potentially be shared, (App) conservatively allocates a new
location in the store for such shared closures. (Beta) extends the substitution with this location.

9.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of closures me-
chanically yields the following store-based machine:3

〈i, s, C, σ〉 ⇒l 〈C, (λt ′, s ′), σ〉 if s(i) = ℓ and σ(ℓ) = (λt ′, s ′)

〈i, s, C, σ〉 ⇒l 〈t
′, s ′, C[upd(ℓ, [])], σ〉 if s(i) = ℓ and σ(ℓ) = (t ′, s ′)

〈λt, s, C, σ〉 ⇒l 〈C, (λt, s), σ〉

〈t0 t1, s, C, σ〉 ⇒l 〈t0, s, C[[] ℓ], σ[ℓ 7→ (t1, s)]〉 if ℓ does not occur in s,C, σ

〈[], v, σ〉 ⇒l (v, σ)

〈C[[] ℓ], (λt, s), σ〉 ⇒l 〈t, ℓ · s, C, σ〉

〈C[upd(ℓ, [])], v, σ〉 ⇒l 〈C, v, σ[ℓ 7→ v]〉

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, [], •〉. It halts with value
v and store σ if it reaches a configuration 〈[], v, σ〉. It is in defunctionalized form, and coincides with
the lazy abstract machine derived by Ager et al. out of a call-by-need interpreter for the λ-calculus [3].

9.4 Formal correspondence

Proposition 13. For any term t in the λρ̂l-calculus,

t[∅][•] →∗
l v[σ] if and only if 〈t, ∅, [], •〉 ⇒∗

l (v, σ).

The λρ̂l-calculus therefore directly corresponds to call-by-need evaluation [89].
In λρ̂l, sharing is made possible through a global heap where actual parameters are stored. On

the other hand, a number of other calculi modeling call by need extend the set of terms with a local
let-like construct, either by statically translating the source language into an intermediate language
with explicit indications of sharing (as in Launchbury and Sestoft’s approaches [64, 78]), or by pro-
viding dynamic reduction rules to the same effect (as in Ariola et al.’s calculus [5]). A sequence of let
constructs binding variables to shared computations is a local version of a global heap where shared
computations are bound to locations; extra reductions are then needed to propagate all the let con-
structs to the top level.
Another specificity of λρ̂l is that allocation occurs early, i.e., a new cell is allocated in the store

every time an application is evaluated. Allocation, however, occurs late in Ariola et al.’s semantics,
i.e., a new binding is created only when the operator of the application is known to be a λ-abstraction.
Delaying allocation is useful in the presence of strict functions, which we do not consider here.
We can construct a local version of the λρ̂l-calculus with either of the store propagated inside

closures or of late allocation. From there, one can mechanically derive the corresponding abstract
machines.

3When a shared closure is to be evaluated, the current context is extended with what is known as an ‘update marker’ in
the Three Instruction Machine [40]. The update marker is denoted C[upd(ℓ, [])] here.

29

10 Conclusion

We have presented a series of calculi and abstract machines accounting for a variety of computational
effects, making it possible to directly reason about a computation in the calculus and in the corre-
sponding abstract machine (horizontally in the diagram below) and to directly account for actual and
explicit substitutions both in the world of calculi and in the world of abstract machines (vertically
in the diagram below, where σ maps a closure into the corresponding λ-term and an environment-
machine configuration into a configuration in the correspondingmachine with actual substitutions [8,
Section 2.5]):

λ-calculus oo
syntactic

correspondence
// machine with
actual substitutions

λρ̂-calculus oo
syntactic

correspondence
//

σ

OO

environment-based
machine

σ

OO

The correspondence between each calculus and each abstract machine is simple and each can be me-
chanically built from the other. All of the calculi are new. Many of the abstract machines are known
and have been independently designed and proved correct.
The work reported here leads us to drawing the following conclusions.

Curien’s calculus of closures: Once extended to account for one-step reduction, Curien’s calculus of
closures directly corresponds to the notions of evaluation (i.e., weak-head normalization) accounted
for by environment-based machines, even in the presence of computational effects (state and control).

Refocusing: Refocusing has a pragmatic origin: fusing a plug function and a decomposition func-
tion in a reduction-based evaluation function to improve its efficiency [36]. In combination with com-
pressing intermediate transitions and unfolding closures, it proves consistently useful to construct
reduction-free evaluation functions in the form of abstract machines, even in the presence of compu-
tational effects.

Defunctionalization: Defunctionalization has a practical origin: representing a higher-order func-
tion as a data type and a dispatch function [74]. It proves consistently useful, witness the next item
and also the fact that except for the abstract machines for λρ̂F and the cm machine, all the abstract
machines in this article are in defunctionalized form.

Reduction contexts and evaluation contexts: There are three objective reasons—one extensional and
two intensional—why contexts are useful as well as, in some sense, unavoidable:

• reduction contexts are in one-to-one correspondence with the compatibility rules of a calculus;

• reduction contexts are the data type of the defunctionalized continuation of a one-step reduction
function (as used in a reduction-based (weak-head) normalization function); and

• evaluation contexts are the data type of the defunctionalized continuation of an evaluation func-
tion (as used in a reduction-free (weak-head) normalization function).

If nothing else, each of these three reasons has practical value as a guideline forwriting the grammar of
reduction / evaluation contexts (which is known to be tricky in practice). But more significantly [27],
reduction contexts and evaluation contexts coincide, which means that as a data type, they mediate
between one-step reduction and evaluation, given an appropriate dispatch function:

30

contextdecompose ′
aux

& plug

yyrrrrrrrrrrrrrr

refocusaux

%%KKKKKKKKKKKKK

state-transition
functions

eval/apply
abstract machine

one-step reduction
function
in CPS

defunctionalization

OO�
�

�

�

evaluation
function
in CPS

defunctionalization

OO�
�

�

�

Indeed, as initiated by Reynolds [29,74], defunctionalizing a continuation-passing evaluator yields an
abstract machine [2–4,7], and as already pointed out above, a vast number of abstract machines are in
defunctionalized form [9, 11, 28].
Together, the syntactic correspondence between calculi and abstract machines (the left part of the

diagram just above) and the functional correspondence between abstract machines and evaluators (the
right part of the diagram) therefore connect apparently distinct approaches to the same computational
situations. We already illustrated this connection in Section 6 with delimited continuations; let us
briefly illustrate it further with the simpler example of call/cc:

Call/cc was introduced in Scheme [17] as a Church encoding of Reynolds’s escape op-
erator [74]. A typed version of it is available in Standard ML of New Jersey [53] and
Griffin has identified its logical content [50]. It is endowed with a variety of specifica-
tions: a CPS transformation [32], a CPS interpreter [54, 74], a denotational semantics [58],
a computational monad [90], a big-step operational semantics [53], the CEK machine [44],
calculi in the form of reduction semantics [43], and a number of implementation tech-
niques [18, 25, 56]—not to mention its call-by-name variant in the archival version of Kriv-
ine’s machine [61].

Question: How do we know that all the artifacts in this semantic jungle define the same
call/cc?

The elements of answer we contribute here are that the syntactic correspondence links calculi and
abstract machines, and the functional correspondence links abstract machines and evaluators. So by
construction, all these specifications are inter-derivable and therefore they are consistent.

Acknowledgments

We are grateful to Julia Lawall, Johan Munk, and Kristian Støvring for commenting a preliminary ver-
sion of this article. The second author would also like to thank the Romantik restaurant in Bornholm
for its quiet hospitality in July 2005. Finally, thanks are due to the anonymous reviewers and to our
editor, Don Sannella.
This work is partially supported by the Danish Natural Science Research Council, Grant no. 21-

03-0545 and by the ESPRIT Working Group APPSEM II (http://www.appsem.org). We dedicate it with
respect and affection to John Reynolds for his 70th birthday. MayMary and him live long and continue
to prosper.

References

[1] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375–416, 1991.

31

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corre-
spondence between evaluators and abstract machines. In Dale Miller, editor, Proceedings of the
Fifth ACM-SIGPLAN International Conference on Principles and Practice of Declarative Programming
(PPDP’03), pages 8–19, Uppsala, Sweden, August 2003. ACM Press.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between call-
by-need evaluators and lazy abstract machines. Information Processing Letters, 90(5):223–232, 2004.
Extended version available as the technical report BRICS RS-04-3.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between
monadic evaluators and abstract machines for languages with computational effects. Theoret-
ical Computer Science, 342(1):149–172, 2005. Extended version available as the technical report
BRICS RS-04-28.

[5] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The call-
by-need lambda calculus. In Peter Lee, editor, Proceedings of the Twenty-Second Annual ACM Sym-
posium on Principles of Programming Languages, pages 233–246, San Francisco, California, January
1995. ACM Press.

[6] Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control operators. In Jos C. M.
Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Lan-
guages and Programming, 30th International Colloquium (ICALP 2003), number 2719 in Lecture
Notes in Computer Science, pages 871–885, Eindhoven, The Netherlands, July 2003. Springer.

[7] Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation for
delimited continuations in the CPS hierarchy. Logical Methods in Computer Science, 1(2:5):1–39,
November 2005. A preliminary version was presented at the Fourth ACM SIGPLANWorkshop
on Continuations (CW’04).

[8] Małgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines.
ACMTransactions on Computational Logic, 2006. To appear. Available as the technical report BRICS
RS-06-3.

[9] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by defunctionalization. In
Maurice Bruynooghe, editor, Logic Based Program Synthesis and Transformation, 13th International
Symposium, LOPSTR 2003, number 3018 in Lecture Notes in Computer Science, pages 143–159,
Uppsala, Sweden, August 2003. Springer-Verlag.

[10] Dariusz Biernacki and Olivier Danvy. A simple proof of a folklore theorem about delimited
control. Journal of Functional Programming, 16(3):269–280, 2006.

[11] Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing style
for dynamic delimited continuations. Technical Report BRICS RS-06-15, DAIMI, Department of
Computer Science, University of Aarhus, Aarhus, Denmark, October 2006. Revised version of
BRICS RS-05-16.

[12] Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the static and dynamic extents of
delimited continuations. Science of Computer Programming, 60:274–297, 2006.

[13] Robert (Corky) Cartwright, editor. Proceedings of the 1988 ACM Conference on Lisp and Functional
Programming, Snowbird, Utah, July 1988. ACM Press.

[14] Eugene Charniak, Christopher Riesbeck, and Drew McDermott. Artificial Intelligence Program-
ming. Lawrence Earlbaum Associates, 1980.

32

[15] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, 1941.

[16] John Clements and Matthias Felleisen. A tail-recursive semantics for stack inspection. ACM
Transactions on Programming Languages and Systems, 26(6):1029–1052, 2004.

[17] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for a higher-level semantic
algebra. In John Reynolds and Maurice Nivat, editors, Algebraic Methods in Semantics, pages 237–
250. Cambridge University Press, 1985.

[18] William Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementation strategies for first-class
continuations. Higher-Order and Symbolic Computation, 12(1):7–45, 1999.

[19] William D. Clinger. Proper tail recursion and space efficiency. In Keith D. Cooper, editor, Pro-
ceedings of the ACM SIGPLAN’98 Conference on Programming Languages Design and Implementation,
pages 174–185, Montréal, Canada, June 1998. ACM Press.

[20] Pierre Crégut. An abstract machine for lambda-terms normalization. In Wand [92], pages 333–
340.

[21] Pierre Crégut. Strongly reducing variants of the Krivine abstract machine. In Danvy [30]. To
appear. Journal version of [20].

[22] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and Functional Programming,
volume 1 of Research Notes in Theoretical Computer Science. Pitman, 1986.

[23] Pierre-Louis Curien. An abstract framework for environment machines. Theoretical Computer
Science, 82:389–402, 1991.

[24] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of weak and
strong calculi of explicit substitutions. Journal of the ACM, 43(2):362–397, 1996.

[25] Olivier Danvy. Formalizing implementation strategies for first-class continuations. In Gert
Smolka, editor, Proceedings of the Ninth European Symposium on Programming, number 1782 in Lec-
ture Notes in Computer Science, pages 88–103, Berlin, Germany, March 2000. Springer-Verlag.

[26] Olivier Danvy. From reduction-based to reduction-free normalization. In Sergio Antoy and
Yoshihito Toyama, editors, Proceedings of the Fourth International Workshop on Reduction Strategies
in Rewriting and Programming (WRS’04), volume 124(2) of Electronic Notes in Theoretical Computer
Science, pages 79–100, Aachen, Germany, May 2004. Elsevier Science. Invited talk.

[27] Olivier Danvy. On evaluation contexts, continuations, and the rest of the computation. In Hayo
Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN Workshop on Continuations (CW’04),
Technical report CSR-04-1, Department of Computer Science, Queen Mary’s College, pages 13–
23, Venice, Italy, January 2004. Invited talk.

[28] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens Grelck, Frank
Huch, Greg J. Michaelson, and Phil Trinder, editors, Implementation and Application of Functional
Languages, 16th International Workshop, IFL’04, number 3474 in Lecture Notes in Computer Sci-
ence, pages 52–71, Lübeck, Germany, September 2004. Springer-Verlag. Recipient of the 2004
Peter Landin prize. Extended version available as the technical report BRICS RS-03-33.

[29] Olivier Danvy. Defunctionalized interpreters for higher-order programming languages. In Pre-
liminary proceedings of the 21st Conference on Mathematical Foundations of Programming Semantics,
Birmingham, UK, May 2005. John Reynolds session.

33

[30] Olivier Danvy, editor. Special Issue on the Krivine Abstract Machine, Higher-Order and Symbolic
Computation. Springer, 2007. In preparation.

[31] Olivier Danvy and Andrzej Filinski. Abstracting control. In Wand [92], pages 151–160.

[32] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[33] Olivier Danvy and Karoline Malmkjær. Intensions and extensions in a reflective tower. In
Cartwright [13], pages 327–341.

[34] Olivier Danvy and Kevin Millikin. A rational deconstruction of Landin’s J operator. In Andrew
Butterfield, Clemens Grelck, and FrankHuch, editors, Implementation and Application of Functional
Languages, 17th International Workshop, IFL’05, number 4015 in Lecture Notes in Computer Sci-
ence, pages 55–73, Dublin, Ireland, September 2005. Springer-Verlag. Extended version available
as the technical report BRICS RS-06-4 (February 2006).

[35] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald Søndergaard, ed-
itor, Proceedings of the Third International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press.
Extended version available as the technical report BRICS RS-01-23.

[36] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research Report BRICS
RS-04-26, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark,
November 2004. A preliminary version appears in the informal proceedings of the Second In-
ternational Workshop on Rule-Based Programming (RULE 2001), Electronic Notes in Theoretical
Computer Science, Vol. 59.4.

[37] Olivier Danvy and Zhe Yang. An operational investigation of the CPS hierarchy. In S. Doaitse
Swierstra, editor, Proceedings of the Eighth European Symposium on Programming, number 1576 in
Lecture Notes in Computer Science, pages 224–242, Amsterdam, The Netherlands, March 1999.
Springer-Verlag.

[38] Philippe de Groote. An environment machine for the lambda-mu-calculus. Mathematical Struc-
tures in Computer Science, 8:637–669, 1998.

[39] R. Kent Dybvig, Simon Peyton-Jones, and Amr Sabry. A monadic framework for subcontinua-
tions. To appear in the Journal of Functional Programming. Available at <http://www.cs.indiana.
edu/~sabry/research.html>,May 2006.

[40] Jon Fairbairn and StuartWray. TIM: a simple, lazy abstract machine to execute supercombinators.
In Gilles Kahn, editor, Functional Programming Languages and Computer Architecture, number 274
in Lecture Notes in Computer Science, pages 34–45, Portland, Oregon, September 1987. Springer-
Verlag.

[41] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control and State in Imper-
ative Higher-Order Programming Languages. PhD thesis, Computer Science Department, Indiana
University, Bloomington, Indiana, August 1987.

[42] Matthias Felleisen. The theory and practice of first-class prompts. In Jeanne Ferrante and Peter
Mager, editors, Proceedings of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 180–190, San Diego, California, January 1988. ACM Press.

[43] Matthias Felleisen andMatthew Flatt. Programming languages and lambda calculi. Unpublished
lecture notes. <http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html>, 1989-2003.

34

[44] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine, and the λ-
calculus. In Martin Wirsing, editor, Formal Description of Programming Concepts III, pages 193–217.
Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986.

[45] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond continuations.
Technical Report 216, Computer Science Department, Indiana University, Bloomington, Indiana,
February 1987.

[46] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Abstract continua-
tions: A mathematical semantics for handling full functional jumps. In Cartwright [13], pages
52–62.

[47] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Principles of Programming Languages, pages 175–188, San Anto-
nio, Texas, January 1999. ACM Press.

[48] Cédric Fournet and AndrewD. Gordon. Stack inspection: Theory and variants. ACMTransactions
on Programming Languages and Systems, 25(3):360–399, May 2003.

[49] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In Peter Lee, editor,
Proceedings of the 1999 ACM SIGPLAN International Conference on Functional Programming, pages
18–27, Paris, France, September 1999. ACM Press.

[50] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak, editor, Proceedings of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages 47–58, San
Francisco, California, January 1990. ACM Press.

[51] Carl Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control in
ML-like languages. In Simon Peyton Jones, editor, Proceedings of the Seventh ACM Conference on
Functional Programming and Computer Architecture, pages 12–23, La Jolla, California, June 1995.
ACM Press.

[52] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems within the
lambda-sigma calculus. Journal of Functional Programming, 8(2):131–172, 1998.

[53] Robert Harper, Bruce F. Duba, and David MacQueen. Typing first-class continuations in ML.
Journal of Functional Programming, 3(4):465–484, October 1993.

[54] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and coroutines.
In Guy L. Steele Jr., editor, Conference Record of the 1984 ACM Symposium on Lisp and Functional
Programming, pages 293–298, Austin, Texas, August 1984. ACM Press.

[55] Carl Hewitt. Control structure as patterns of passing messages. In Patrick Henry Winston and
Richard Henry Brown, editors,Artificial Intelligence: AnMIT Perspective, volume 2, pages 434–465.
The MIT Press, 1979.

[56] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the presence of first-
class continuations. In Bernard Lang, editor, Proceedings of the ACM SIGPLAN’90 Conference on
Programming Languages Design and Implementation, SIGPLANNotices, Vol. 25, No 6, pages 66–77,
White Plains, New York, June 1990. ACM Press.

[57] Yukiyoshi Kameyama. Axioms for delimited continuations in the CPS hierarchy. In Jerzy
Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, 18th International Workshop,
CSL 2004, 13th Annual Conference of the EACSL, Proceedings, volume 3210 of Lecture Notes in Com-
puter Science, pages 442–457, Karpacz, Poland, September 2004. Springer.

35

[58] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5 report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105, 1998.

[59] Oleg Kiselyov. How to remove a dynamic prompt: Static and dynamic delimited continuation
operators are equally expressible. Technical Report 611, Computer Science Department, Indiana
University, Bloomington, Indiana, March 2005.

[60] Jean-Louis Krivine. Un interprète du λ-calcul. Brouillon. Available online at <http://www.pps.
jussieu.fr/~krivine/>, 1985.

[61] Jean-Louis Krivine. A call-by-name lambda-calculus machine. In Danvy [30]. To appear. Avail-
able online at <http://www.pps.jussieu.fr/~krivine/>.

[62] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–320,
1964.

[63] Peter J. Landin. A generalization of jumps and labels. Research report, UNIVAC Systems Pro-
gramming Research, 1965. Reprinted in Higher-Order and Symbolic Computation 11(2):125–143,
1998, with a foreword [88].

[64] John Launchbury. A natural semantics for lazy evaluation. In Susan L. Graham, editor, Pro-
ceedings of the Twentieth Annual ACM Symposium on Principles of Programming Languages, pages
144–154, Charleston, South Carolina, January 1993. ACM Press.

[65] Xavier Leroy. The Zinc experiment: an economical implementation of the ML language. Rapport
Technique 117, INRIA Rocquencourt, Le Chesnay, France, February 1990.

[66] Pierre Lescanne. From λσ to λv a journey through calculi of explicit substitutions. In Hans-J.
Boehm, editor, Proceedings of the Twenty-First Annual ACMSymposium on Principles of Programming
Languages, pages 60–69, Portland, Oregon, January 1994. ACM Press.

[67] Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter vs. eval/apply
for higher-order languages. In Kathleen Fisher, editor, Proceedings of the 2004 ACM SIGPLAN
International Conference on Functional Programming (ICFP’04), SIGPLAN Notices, Vol. 39, No. 9,
pages 4–15, Snowbird, Utah, September 2004. ACM Press.

[68] John McCarthy. Recursive functions of symbolic expressions and their computation by machine,
part I. Communications of the ACM, 3(4):184–195, 1960.

[69] Peter D. Mosses. A foreword to ‘Fundamental concepts in programming languages’. Higher-
Order and Symbolic Computation, 13(1/2):7–9, 2000.

[70] Michel Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In
Andrei Voronkov, editor, Proceedings of the International Conference on Logic Programming and Au-
tomated Reasoning, number 624 in Lecture Notes in Artificial Intelligence, pages 190–201, St. Pe-
tersburg, Russia, July 1992. Springer-Verlag.

[71] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science,
1:125–159, 1975.

[72] François Pottier, Christian Skalka, and Scott Smith. A systematic approach to static access control.
ACM Transactions on Programming Languages and Systems, 27(2), 2005.

[73] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation, 6(3/4):233–
247, 1993.

36

[74] John C. Reynolds. Definitional interpreters for higher-order programming languages. Higher-
Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted from the proceedings of the 25th
ACM National Conference (1972), with a foreword [75].

[75] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Computation,
11(4):355–361, 1998.

[76] Kristoffer H. Rose. Explicit substitution – tutorial & survey. BRICS Lecture Series LS-96-3, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark, September 1996.

[77] Erik Sandewall. An early use of continuations and partial evaluation for compiling rules written
in FOPC. Higher-Order and Symbolic Computation, 12(1):105–113, 1999.

[78] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming, 7(3):231–264,
May 1997.

[79] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell, editors, Proceedings of
the 2004 ACM SIGPLANWorkshop on Scheme and Functional Programming, Technical report TR600,
Computer Science Department, Indiana University, Snowbird, Utah, September 2004.

[80] Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and Symbolic
Computation, 2007. Journal version of [79]. To appear.

[81] Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp and Symbolic
Computation, 3(1):67–99, January 1990.

[82] Brian C. Smith. Reflection and semantics in Lisp. In Ken Kennedy, editor, Proceedings of the
Eleventh Annual ACM Symposium on Principles of Programming Languages, pages 23–35, Salt Lake
City, Utah, January 1984. ACM Press.

[83] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1978. Technical
report AI-TR-474.

[84] Christopher Strachey. Fundamental concepts in programming languages. International Summer
School in Computer Programming, Copenhagen, Denmark, August 1967. Reprinted in Higher-
Order and Symbolic Computation 13(1/2):11–49, 2000, with a foreword [69].

[85] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathematical semantics
for handling full jumps. Technical Monograph PRG-11, Oxford University Computing Labo-
ratory, Programming Research Group, Oxford, England, 1974. Reprinted in Higher-Order and
Symbolic Computation 13(1/2):135–152, 2000, with a foreword [91].

[86] Gerald J. Sussman and Guy L. Steele Jr. Scheme: An interpreter for extended lambda calculus.
AI Memo 349, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, December 1975. Reprinted in Higher-Order and Symbolic Computation
11(4):405–439, 1998, with a foreword [87].

[87] Gerald J. Sussman and Guy L. Steele Jr. The first report on Scheme revisited. Higher-Order and
Symbolic Computation, 11(4):399–404, 1998.

[88] Hayo Thielecke. An introduction to Landin’s “A generalization of jumps and labels”. Higher-
Order and Symbolic Computation, 11(2):117–124, 1998.

[89] Jean Vuillemin. Correct and optimal implementations of recursion in a simple programming
language. Journal of Computer and System Sciences, 9(3):332–354, 1974.

37

[90] PhilipWadler. The essence of functional programming (invited talk). InAndrewW.Appel, editor,
Proceedings of the Nineteenth Annual ACMSymposium on Principles of Programming Languages, pages
1–14, Albuquerque, NewMexico, January 1992. ACM Press.

[91] Christopher P. Wadsworth. Continuations revisited. Higher-Order and Symbolic Computation,
13(1/2):131–133, 2000.

[92] Mitchell Wand, editor. Proceedings of the 1990 ACM Conference on Lisp and Functional Programming,
Nice, France, June 1990. ACM Press.

[93] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A non-reflective de-
scription of the reflective tower. Lisp and Symbolic Computation, 1(1):11–38, May 1988. A prelimi-
nary version was presented at the 1986 ACM Conference on Lisp and Functional Programming
(LFP 1986).

38

