
WRS 2007

Formalizing Constructions of Abstract
Machines for Functional Languages in Coq

Ma lgorzata Biernacka1

LRI, Univ Paris-Sud, CNRS, Orsay F-91405
INRIA Futurs, ProVal, Parc Orsay Université, F-91893

Dariusz Biernacki2

INRIA Futurs, ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

Abstract

This note reports on preliminary work on formalizing and mechanizing derivations of abstract machines from
reduction semantics of functional languages in Coq, based on the method of refocusing due to Danvy and
Nielsen. The ultimate goal is to develop a general framework for representing programming languages and
their various semantic specifications inside Coq, and to automatize derivations between these specifications
while ensuring their correctness.
In this note, we describe two case studies of derivations of abstract machines from reduction semantics (i.e.,
machines realizing the reduction strategies given by the corresponding reduction semantics): we consider
the standard call-by-value lambda calculus, for which the derived machine is the substitution-based CK
machine of Felleisen and Friedman, and the call-by-name variant of the calculus of closures which leads
to the environment-based Krivine machine. These correspondences have been discovered and reported in
previous work by the first author and Danvy in the setting of functional programs and their transformations,
whereas here we adopt a relational approach and we formalize the derivation steps and prove them correct
within Coq’s type theory. We also discuss some technical issues of our formalization and we discuss a
possible construction of the general framework for refocusing in Coq.

Keywords: abstract machine, reduction semantics, refocusing, Coq

1 Introduction

Typically, a programming language is given several different semantic specifications,
each designed for a particular purpose and each preferred by either the language
designer, implementor or programmer. In order for all these different specifications
to define the same behaviour, we need to provide proofs of their equivalence. With
some practice, this task can be performed by hand and indeed, it usually is done –
whenever the need arises, in an ad hoc manner.

1 Email: mbiernac@lri.fr
2 Email: dabi@lri.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:mbiernac@lri.fr
mailto:dabi@lri.fr


Biernacka & Biernacki

We argue that it need not be so, and in many cases we could benefit from
considering systematic and to some point automatic derivation methods that would
allow one to arrive from one semantic description taken as standard, to another
one that is more convenient in a given application, while the correctness of the
outcome is guaranteed by the derivation method. This work not only saves one the
tedious task of proving similar kinds of theorems whenever one introduces even a
mild variation into a language, but it also may help connect the same computational
features as they occur in different contexts.

There has been some work aiming at connecting various forms of operational
semantics of functional languages. In particular, Danvy et al. have discovered
the functional correspondence between higher-order evaluators and abstract ma-
chines [1,2,3] when these semantic descriptions are implemented as ML-programs:
one can then interderive them by means of standard program transformation tech-
niques (CPS transformation, defunctionalization, closure conversion). In another
line of work, connections between reduction semantics and abstract machines have
been studied, and it has been discovered how the refocusing method provides a
way to systematically derive the latter from the former [5,6,9]. This work studies
the correspondence not only for the (standard) lambda calculus but also for a wide
class of its extensions with a non-standard notion of reduction, thus accomodating
such non-local computational tools and effect as, e.g., control operators, assignment,
state, lazy evaluation, etc [6]. In particular, it has been applied to calculi of closures
in order to materialize the slogan that calculi of explicit substitutions correspond
to environment machines, and to context-sensitive reduction semantics that give
rise to store-based machines. In addition, the systematic method shows how an ab-
stract machine realizes a particular reduction strategy specified by the underlying
reduction semantics. As with the functional correspondence, implementations of
semantic descriptions in a functional programming language have been considered
and the correctness of the derived machines relies on the correctness of standard
program transformation techniques.

Since we argue for the generality and the uniformity of these correspondences, it
is natural to try to automate them in an appropriate tool. In the present work, we
report on an implementation of two case studies and we give some ideas on how a
proof assistant can be used to aid in the tasks outlined above. Developing a general
framework for expressing arbitrary languages and semantic descriptions is left as
future work.

In this note, we look at the refocusing method from a different point of view
– we recast the development in the language of Coq [7] and we then give formal
proofs of correctness of all refocusing steps, applied to two prototypical applicative
programming languages: in order to show the plain version of the method, we
apply it to the standard call-by-value lambda calculus leading to the CK abstract
machine [11], and to illustrate one of its extensions, the second case study focuses
on the call-by-name version of the extended Curien’s calculus of closures [8] as
introduced in Biernacka and Danvy [5]. We suggest a logical characterization of
what it means for an abstract machine to realize a particular reduction strategy,
and we identify the general properties of each of the intermediate derivation steps
and we hope to be able to use them in a general framework. In this work, we

2



Biernacka & Biernacki

consider only abstract machines, i.e., transition systems operating on the source
code, as opposed to virtual machines, operating on compiled code. 3

The previous articles on refocusing and the present one look at computation
in the lambda calculus from the rewriting point of view. However, we must warn
the reader that in this particular context, where the focus is on evaluation rather
than general normalization, it is often convenient (and by now also standard) to use
some term-rewriting concepts in a slightly different way, and to deviate from some
traditional definitions. However, all the necessary definitions are introduced.
Prerequisites: We assume basic familiarity with the Coq proof assistant.

2 Refocusing in reduction semantics

The starting point of refocusing is a specification of a reduction semantics. Let us
briefly recall its ingredients.

2.1 Reduction semantics

Reduction semantics is a form of small-step operational semantics based on term
rewriting. In our approach, we assume it is given by the syntactic categories of
terms, values (non-reducible terms taken as correct results of evaluation), redexes
(or, more precisely: potential redexes possibly including “smallest” stuck terms),
evaluation contexts and two functions: contract – performing a basic computation
step (i.e., rewriting a redex) and plug – giving meaning to the evaluation contexts
by assigning a term to each pair of a term and a context. (If we look at contexts
as “terms with a hole”, then the plug function simply fills the hole with a given
term.) Evaluation contexts together with the plug function determine the reduction
strategy: the next redex to reduce in a given term is found by decomposing the term
into a redex and a context. The decomposition is either a pair of a value and the
empty context (if the decomposed term is already a value) or a pair of a redex
and a context such that plugging the redex in the context gives the original term.
We furthermore assume that a value cannot be decomposed into a redex and an
evaluation context.

The (naive) process of evaluation then consists in repeatedly decomposing a
given term into a redex and an evaluation context (if it is not already a value),
contracting the redex (if it is not a stuck redex) and plugging the contractum into
the context. In general, evaluation may be nonterminating or stuck.

For the refocusing method to apply, we need to ensure the unique-decomposition
property of the reduction semantics; in effect, we only allow sequential computation.

We say that a term t decomposes into another term t0 and an evaluation context
c, if plug (c, t0) = t, where = stands for syntactic equality. We use the notation
using an explicit call to function plug rather than the usual notation c[t0] whenever
we want to emphasize the fact that we mean the actual implementation of this
operation by appropriately defined functions (here, in Coq). We further say that a
decomposition (t, c) is trivial if c is the empty context or if t is a value. Hence, it is

3 The distinction has been introduced by Ager et al. [1].

3



Biernacka & Biernacki

convenient to define potential redexes as non-value terms whose all decompositions
are trivial.

The unique decomposition property can be formulated as follows:

Definition 2.1 We say that the reduction semantics has the unique-decomposition
property if for each term t, t is either a value or there exists a unique redex r and
a unique context c such that plug (c, r) = t (i.e., for all redexes r, r′ and evaluation
contexts c, c′, if plug (c, r) = t and plug (c′, r′) = t, then r = r′ and c = c′.

Providing these ingredients is sufficient to precisely define a reduction semantics
for a language, even though we leave the question of decomposing a term unspeci-
fied. Let us now consider this question in more detail. Clearly, when we want to
implement the naive evaluation procedure according to a given reduction semantics,
we need to write a decomposing function which, for a given non-value term, will
return a pair of a redex and a context. Furthermore, we assume that for values, the
decomposing function returns this value and the empty context and thus the func-
tion is total. We say that any function decompose from terms to decompositions
is correct with respect to a given reduction semantics if and only if it is the right
inverse of the plug function, i.e., if plug ◦ decompose = id. Now, the consequence
of the unique decomposition is the fact that any correct decomposing function will
return the same decomposition for a given term. Hence the implementation of the
evaluation process remains correct regardless of the particular implementation of
the decomposing function, as long as this function is correct in the above sense.

In this work, however, we adopt a converse approach, i.e., rather than proving
the unique decomposition directly (since this task can be quite involved [13]), we
provide an equivalent condition using a decomposition function with an additional
property that can be proved relatively easily if the decomposition function is defined
recursively over terms and contexts.

Lemma 2.2 (Unique decomposition) Assume we have total functions plug and
decompose. If the decomposition function is correct with respect to the plug function,
i.e., if plug ◦ decompose = id, and moreover, if decompose(plug (c, r)) = (r, c)
for any redex r and any context c, then the reduction semantics has the unique
decomposition property.

The lemma states that it is enough to write a decomposition function and prove
that it satisfies the two conditions in order to verify the unique decomposition
property of the reduction semantics, and in fact in our implementation this ap-
proach turned out to be more convenient, since for applying refocusing we need to
write a decomposition function anyway. (The correctness condition is needed to
ensure existence of a decomposition, and the second condition is necessary for prov-
ing uniqueness.) There are several natural ways of implementing the decomposing
function: either naively by recursive descent over terms, or derived from the plug
function, roughly by inverting its defining clauses.

2.2 Refocusing

Refocusing is a derivation method used to obtain abstract machines from specifica-
tions of reduction semantics. By an abstract machine we mean a transition system

4



Biernacka & Biernacki

simulating evaluation of terms, with an explicit representation of control stacks,
stores, etc., as found in real-life implementations, but still at a sufficiently abstract
level to facilitate reasoning about execution without drowning in implementation
details. The virtue of refocusing is to show how certain features of a higher-level
specification of a language become concrete in the corresponding abstract machine,
and in which sense an abstract machine realizes a particular evaluation strategy for
a given language.

Originally, refocusing has been presented as an algorithm for constructing an
efficient evaluation function, avoiding reconstructing intermediate terms in the
decompose-contract-plug loop, as described in the previous section [10]. Only sub-
sequently, it has been observed that, in effect, refocusing yields abstract machines.
Moreover, it has been extended to account for calculi of explicit substitutions that
yield environment-based machines, and to context-sensitive reduction semantics,
leading to abstract machines with global store [5]. In the latter work, the method
has been implemented, presented and studied in the setting of functional program-
ming languages, and the correctness of the derivation steps have been established
as a consequence of the correctness of the applied program transformations.

In this work, we shift to a more abstract view: we represent all the intermediate
results (i.e., various, extensionally equivalent, functions computing the value of a
term according to the same strategy, but becoming closer to a transition system) as
relations (inductive predicates in Coq), and we provide uniform induction principles
for proving correctness of the derivation steps that can be made into Coq tactics.
Let us now discuss some implementation features.

2.3 The Coq proof assistant

Almost all the ingredients of reduction semantics as described in Section 2.1 can be
represented in Coq in an intuitive way. The only problem arises when representing
evaluation— it cannot be written as a function, since it is possibly nonterminating.
Therefore, we choose to represent all the functions (except for plug) as relations, and
in fact, this representation is quite natural and it gives rise to simple and uniform
correctness proofs of intermediate transition systems: the Coq-generated induction
principles are used to prove the simulations by induction on derivations (which
corresponds to proofs by cases in the functional specification of these transition
systems).

Below we present the main features of our implementation, common to both
languages that we consider, and therefore suggesting a solution to be applied in a
general framework. 4

• We represent terms, values and redexes as different sets (datatypes) and we pro-
vide injection functions for values and redexes into terms, together with their
injectivity proofs (the functions value to term and redex to term provide co-
ercions from the set of values and from the set of redexes, respectively, to the set
of terms).

4 In the remainder of the article, we include fragments of Coq code, but at times we diverge from the Coq
syntax for the sake of readability and accessibility by readers not familiar with Coq. The complete Coq
development can be found at http://www.lri.fr/~mbiernac/refocusing.

5



Biernacka & Biernacki

Parameters term value redex : Set.
Parameter value to term : value→ term.
Parameter redex to term : redex→ term.
Axiom value to term injective :
∀ v, v′. value to term v = value to term v′ → v = v′.

Axiom redex to term injective :
∀ r, r′. redex to term r = redex to term r′ → r = r′.

• The reduction strategy is given by the grammar of reduction contexts and the
plug function:

Parameter context : Set.
Parameter plug : term→ context→ term.

• The notion of a potential redex allows us to prove the totality of decomposition,
i.e., for every non-value term there exists a decomposition of that term into a
potential redex and a context:

Axiom decomposition :
∀ t : term. (∃ v : value. t = v) ∨ (∃ r : redex, c : context. t = plug (r, c)).

• Having proven the decomposition theorem, we can write a total decomposi-
tion function. The particular definition, obtained by inverting the plugging
function is naturally defined by two mutually recursive functions: one de-
scending over the structure of the currently decomposed term, and an aux-
iliary function descending over the surrounding evaluation context when a
value is encountered. This algorithm cannot be easily represented in Coq
as a function, and so we choose to represent it as a relation. (It is pos-
sible to define this function in Coq, using the Function command with an
appropriate measure function that takes into account both the term and the
surrounding evaluation context. Such solution, however, does not seem to
be worth the effort, since in effect it is defined using a well-founded rela-
tion that coincides with ours, and the computational overhead is significant.)

Parameter decomp : Set.
Parameter decompose : term→ context→ decomp→ Prop.

Parameter decompose ctx : context→ value→ decomp→ Prop.

• To complete the definition of reduction semantics, we need to ensure the unique
decomposition property. As mentioned in Section 2.1, we choose to do it by
proving the following condition on the function decompose, which implies the
condition required in Lemma 2.2:

Axiom decompose deterministic : ∀ c, c′ : context, t : term,d : decomp.
decompose (plug (t, c)) c′ d↔ decompose t (c ◦ c′) d.

where c ◦ c′ denotes the standard concatenation of contexts.
• All the intermediate functions are represented as relations and we prove that

each step is correct in the sense that the evaluation relations defined on the
basis of each of them are correct. Proofs of correctness are done by induction
on derivations using the induction principles generated by the Scheme command
(mutual induction in cases where there are mutually recursive relations).

6



Biernacka & Biernacki

3 From a reduction semantics to an abstract machine
for the lambda calculus

In this section we detail the implementations of the derivation of abstract machines
for two languages: the standard call-by-value λ-calculus, leading to the substitution-
based CK machine, and the call-by-name extended calculus of closures, leading to
the environment-based Krivine machine.

3.1 The call-by-value lambda-calculus

We consider the call-by-value λ-calculus with names drawn from a countable set
var name. 5

x : var name

varx : term
x : var name t : term

lam (x, t) : term
t0 : term t1 : term
app (t0, t1) : term

3.1.1 A reduction semantics
A value is either a variable or a lambda abstraction, and a potential redex is an
application of a value to a value (i.e., by the definition of Section 2.1, a non-value
term with only trivial decompositions).

x : var name

v varx : value
x : var name t : term
v lam (x, t) : value

v0 : value v1 : value
beta (v0, v1) : redex

In the presence of ill-formed (stuck) terms, contract is a partial function, un-
defined for an application of a variable to a value.
contract (beta (v0, v1)) = match v0 with

| varx ⇒ None
| lam (x, t) ⇒ Some (subst (t, x, v1))
end

where subst : term → var name → term → term is a function performing the
standard capture-avoiding substitution.

The following two definitions encode the call-by-value, left-to-right reduction
strategy: first we give the structure of evaluation contexts, and below we give them
a meaning by defining the plug function.

mt : context
v : value c : context
ap l (v, t) : context

t : term c : context
ap r (t, c) : context

plug (t, c) = match cwith
| mt ⇒ t

| ap l (v, c′) ⇒ plug (app (v, t), c′)
| ap r (t′, c′) ⇒ plug (app (t, t′), c′)
end

Evaluation contexts c are represented “inside out” (this interpretation is defined
by the function plug) which makes them suitable for performing evaluation by
an abstract machine, where contexts become stacks: pushing a term on the stack

5 In the sequel, we use inference rules to represent inductive datatypes and relations in Coq, keeping the
original constructor names.

7



Biernacka & Biernacki

corresponds to the construction of the context, and popping a term from the stack
corresponds to the destruction of the context.

A decomposition is either a pair of a redex and a context, or a value in the
empty context, representing a single value:

v : value
d val v : decomposition

r : redex c : context
d red (r, c) : decomposition

Evaluation is then implemented as a relation representing the decompose-contract-
plug loop, where the decomposing function is represented as a relation as shown
below.

decctx (c, v, d)
dec (v, c, d)

(val ctx)
dec (t0, ap r (t1, c), d)
dec (app (t0, t1), c, d)

(app ctx)

decctx (mt, v, d val v)
(mt dec)

dec (t, ap l (v, c), d)
decctx (ap r (t, c), v, d)

(ap r dec)

decctx (ap l (v0, c), v1, d red (beta (v0, v1), c))
(ap l dec)

dec (t, mt, d)
decmt (t, d)

(d intro)
iter (d val v, v)

(i val)

contract (r) = Some t decmt (plug (t, c), d) iter (d, v)
iter (d red (r, c), v)

(i red)

decmt (t, d) iter (d, v)
eval (t, v)

(e intro)

It is straightforward to prove that decmt, iter and eval all define functions.
decmt is a total function, returning a decomposition for all terms, but iter and
eval are not total, since they are not defined for stuck terms. (If needed, they could
be made total by introducing an additional constructor handling stuck terms in the
relation iter.)

3.1.2 A pre-abstract machine
If the decomposing function satisfies the following property:

∀ t, c, d. decmt (plug (t, c), d) ↔ dec (t, c, d)

then in the relations of Section 3.1.1 we can replace the calls to decmt by calls to
dec, and we obtain the following definitions of iter0 and eval0:

iter0 (d val v, v)
(i val0)

contract (r) = Some t dec (t, c, d) iter0 (d, v)
iter0 (d red (r, c), v)

(i red0)

dec (t, mt, d) iter0 (d, v)
eval0 (t, v)

(e intro0)

The two relations iter and iter0 are equivalent, and we prove it by induction on
derivations.

8



Biernacka & Biernacki

The resulting definition is called a pre-abstract machine because it already opti-
mizes the decompose-contract-plug loop by avoiding the reconstruction of interme-
diate terms, and directly proceeding to decomposing the contractum in the given
evaluation context.

3.1.3 A staged abstract machine
Next, we observe that whenever we reach a decomposition, it will immediately be
consumed by iter0, therefore we can distribute the calls to iter0 in the definition
of decctx. This way, the new relations dec1 and decctx1 implement compati-
bility rules of the semantics (traversing terms and contexts in search of a redex)
and iter1 implements contraction and immediately performs decomposition on the
contractum.

decctx1 (c, v, v′)
dec1 (v, c, v′)

(val ctx1)
dec1 (t0, ap r (t1, c), v)
dec1 (app (t0, t1), c, v)

(app ctx1)

iter1 (d val v, v′)
decctx1 (mt, v, v′)

(mt dec1)
dec1 (t, ap l (v, c), v′)

decctx1 (ap r (t, c), v, v′)
(ap r dec1)

iter1 (d red (beta (v0, v1), c), v)
decctx1 (ap l (v0, c), v1, v)

(ap l dec1)

iter1 (d val v, v)
(i val1)

contract (r) = Some t dec1 (t, c, v)
iter1 (d red (r, c), v)

(i red1)

dec1 (mt, t, v)
eval1 (t, v)

(e intro1)

Theorem 3.1 (eval01) ∀ t, v. eval0 (t, v) ↔ eval1 (t, v).

The proof of equivalence is done by induction on derivations and relies on the
totality of dec and on the following auxiliary properties, capturing the nature of
the transition from the pre-abstract machine to the staged abstract machine.

(i) ∀ t, c, d. dec (t, c, d) ⇒ ∀ v. iter1 (d, v) ⇒ dec1 (t, c, v)

(ii) ∀ c, v, d. decctx0 (c, v, d) ⇒ ∀ v′. iter1 (d, v′) ⇒ decctx1 (c, v, v′)

(iii) ∀ t, c, v. dec1 (t, c, v) ⇒ ∀ d. dec0 (t, c, d) ⇒ iter0 (d, v)

(iv) ∀ c, v, v′. decctx1 (c, v, v′) ⇒ ∀ d. decctx0 (c, v, d) ⇒ iter0 (d, v′)

3.1.4 An eval/apply abstract machine
The next step consists in inlining the iterating function and obtaining a proper
abstract machine, i.e., a transition system without a trampoline function trigger-
ing the loop. This stage makes us “forget” the sites where we found redexes and
performed reductions, and that is why it is not always trivial to unwind abstract
machines of this form to read the underlying reduction semantics [4,11,12]. The
eval/apply abstract machine consists of two kinds of transitions: one that analyzes
terms and one that analyzes reduction contexts. 6

6 In the eval/apply model the function in a function call is evaluated and applied to its arguments.

9



Biernacka & Biernacki

decctx2 (c, v, v′)
dec2 (v, c, v′)

(val ctx2)
dec2 (t0, ap r (t1, c), v)
dec2 (app (t0, t1), c, v)

(app ctx2)

decctx2 (mt, v, v)
(mt dec2)

dec2 (t, ap l (v, c), v′)
decctx2 (ap r (t, c), v, v′)

(ap r dec2)

contract (beta (v0, v1)) = Some t dec2 (t, c, v)
decctx2 (ap l (v0, c), v1, v)

(ap l dec2)

dec2 (t, mt, v)
eval2 (t, v)

(e intro2)

Again, the equivalence of the two evaluation relations is proved in each di-
rection by induction on derivations of the corresponding decomposing func-
tion. Moreover, for the left-to-right direction we need the auxiliary property:

∀ d, v. iter1 (d, v) → match dwith
| d val v′ ⇒ decctx2 (mt, v′, v)
| d red (r, c) ⇒ dec2 (r, c, v)
end

3.1.5 The CK abstract machine
The definition from Section 3.1.4 is a relational presentation of an abstract machine.
Another, more traditional presentation of such a transition system is shown below:
we arrive at it simply transposing each inference rule described in dec2 and decctx2
into a new relation between the premise and the conclusion of each rule, giving rise
to two kinds of configurations corresponding to these relations. We also add the ini-
tial and final configurations (and their corresponding transitions), corresponding to
loading the machine with a term to evaluate, and recovering the value, respectively.
(These transitions are read off the eval2 relation.)

t : term
c init t : configuration

t : term c : context
c eval (t, c) : configuration

c : context v : value
c apply (c, v) : configuration

v : value
c final v : configuration

c init t � c eval (t, mt)
c eval (v, c) � c apply (c, v)

c eval (app (t0, t1), c) � c eval (t0, ap r (t1, c))
c apply (mt, v) � c final v

c apply (ap l (v0, c), v1) � c eval (t, c) if contract (beta (v0, v1)) = Some t

c apply (ap r (t, c), v) � c eval (t, ap l (v, c))

c init t �∗ c final v

eval3 (t, v)
e intro3

The transitive closure of transitions is defined in a standard way and is rep-
resented by an inductive predicate transitive closure : configuration →
configuration→ Prop.

10



Biernacka & Biernacki

The equivalences are proved as before with an auxiliary property:

∀C0, C1. C0 �∗ C1 → matchC0, C1 with
| c eval (t, c), c final v ⇒ dec2 (t, c, v)
| c apply (c, v′), c final v ⇒ decctx2 (c, v′, v)
| , ⇒ True
end

The resulting abstract machine coincides with Felleisen and Friedman’s cannonical
substitution-based abstract machine for evaluating λ-terms under call-by-value [11].

3.2 The call-by-name lambda calculus with explicit substitutions

In this section we discuss the call-by-name λ-calculus with de Bruijn indices and
with closures (a weak version of explicit substitutions). Due to lack of space, we
only outline the most important differences with respect to the previous section.

3.2.1 A reduction semantics
Let us start with the specification of the language and its reduction semantics.
The terms are defined similarly as for the previous case (see p. 7), but with de
Bruijn indices to represent variables, and we introduce a new syntactic category of
closures, representing terms with delayed substitutions. From now on, all reduction
takes place at the level of closures, and not at the level of terms.

t : term s : list closure
pair (t, s) : closure

cl0, cl1 : closure
comp (cl0, cl1) : closure

A value is a closure representing a lambda abstraction paired with an arbitrary
delayed substitution (i.e., with a list of closures).

t : term s : list closure
v val (t, s) : value

v : value cl : closure
r beta (v, s) : redex

n : nat s : list closure
r get (n, s) : redex

t0, t1 : term s : list closure
r app (t0, t1, s) : redex

contract r = match r with
| r beta (v val (t, s), cl) ⇒ Some (pair (t, cl :: s))
| r get (n, s) ⇒ nth option (s, n)
| r app (t, s, cl) ⇒ Some (comp (pair (t, cl), pair (s, cl)))
end

.

We define the left-to-right call-by-name reduction strategy as follows:

mt : context
cl : closure c : context
ap r (cl, c) : context

plug (cl, c) = match cwith
| mt ⇒ cl

| ap r (cl′, c′) ⇒ plug (comp (cl, cl′), c′)
end

The decomposition relation is performed as follows:

11



Biernacka & Biernacki

decctx (c, v, d)
dec (v, c, d)

(val ctx)
dec (cl0, ap r (cl1, c), d)
dec (comp (cl0, cl1), c, d)

(comp ctx)

dec (pair (n, s), c, d red (r get (n, s), c))
(var ctx)

dec (pair (app (t0, t1), s), c, d red (r app (t0, t1, s), c))
(app ctx)

decctx (mt, v, d val v)
(mt dec)

decctx (ap r (cl, c), v1, d red (r beta (v, cl), c))
(ap r dec)

dec ((t, mt), mt, d)
decmt (t, d)

(d intro)

Next, we define the decompose-contract-plug loop just as in the case of the call-
by-value λ-calculus described in Section 3.1 except that the role of terms is now
played by closures.

All the derivation steps up to the eval/apply machine are performed analogously
to the development in Section 3.1.

3.2.2 A push/enter abstract machine
However, in the case of the calculus of closures our goal is to show how we can
arrive at the Krivine machine, the canonical abstract machine for the call-by-name
evaluation in the λ-calculus, using environments. First of all, the Krivine machine is
a push/enter machine which means that it has only one kind of configurations. 7 We
obtain a push/enter machine from an eval/apply machine by inlining the definition
of decctx2 in the definition of dec2, and thus obtaining the following specification:

dec3 (v, mt, d val v)
(val ctx mt3)

dec3 (cl0, ap r (cl1, c), d)
dec3 (comp (cl0, cl1), c, d)

(comp ctx3)

dec3 (pair (t, cl :: s), c, v)
dec3 (pair (lam t, s), ap r (cl, c), v)

(val ctx ap3)

contract ((r get (n, s))) = Some cl dec3 (cl, c, v)
dec3 (pair (n, s), c, v)

(var ctx3)

dec3 (comp (pair (t0, s), pair (t1, s)), c, v)
dec3 (pair (app (t0, t1), s), c, v)

(app ctx3)

dec3 (pair (t, nil), mt, v)
eval3 (t, v)

(e intro3)

The correctness of this step is stated in the expected way and proved
by induction on the derivation decompose2 with the auxiliary property:

7 In the push/enter model the function in a function call is entered and it finds its arguments pushed on
the stack.

12



Biernacka & Biernacki

∀ c, v, v′. decctx2 (c, v, v′) → match cwith
| mt ⇒ dec3 (v, mt, v′)
| ap r (cl, c) ⇒ dec3 (r beta (v, s), c, v′)
end

3.2.3 An environment abstract machine
The final two steps are performed to get from a machine operating on closures to
a machine operating on terms and substitutions which become environments. To
this end, we first observe that if we start evaluating a closure which is a pair of a
term and a substitution, then we can bypass the step where the comp constructor
is used, i.e., whenever app ctx3 is used in the derivation, then the next step will
necessary be the application of comp ctx3. Therefore, we can merge the two steps
together, and in this way we obtain a relation that only operates on closures formed
with the pair constructor. Moreover, all substitutions and contexts occurring in this
new relation also contain only the restricted form of closures. This sublanguage
coincides with Curien’s calculus of closures [8]. We represent it using the datatypes
closureC, substitutionC and contextC, together with their injection functions
into the unrestricted language. The final relation, obtained by splitting components
of the restricted closure is the following:

dec5 (lam t, s, mtC, v val (t, s))
(val ctx mt5)

dec5 (t, cl :: s, c, v)
dec5 (lam t, s, apC r (cl, c), v)

(val ctx ap5)

contract ((r get (n, s))) = Some (pairC (cl, s′)) dec5 (cl, s′, c, v)
dec5 (n, s, c, v)

(var ctx5)

dec5 (t0, s, apC r (pairC (t1, s), c), v)
dec5 (app (t0, t1), s, c, v)

(app ctx5)

dec5 (t, nil, mtC, v)
eval5 (t, v)

(e intro5)

The equivalence between the two evaluation relations holds for restricted closures
only.

3.2.4 The Krivine abstract machine
Transforming the relation from Section 3.2.3 into the usual transition systems yields
the following result, the canonical Krivine machine:

t : term
c init t : configuration

t : term s : substitutionC c : contextC
c eval (t, s, c) : configuration

v : value
c final v : configuration

13



Biernacka & Biernacki

c init t � c eval (t, nil, mtC)
c eval (lam t, s, mtC) � c final (v val (t, s))

c eval (lam t, s, apC r (cl, c)) � c eval (t, cl :: s, c)
c eval (var i, s, c) � c eval (t, s′, c) if nth s i = Some (pairC (t, s′))

c eval (app (t0, t1), s, c) � c eval (t0, s, apC r (pairC (t1, s), c))

c init t �∗ c final v

eval6 (t, v)
e intro6

4 Towards a generic framework

The refocusing method allows one to split the process of writing an abstract machine
into smaller, simpler stages and intuitive proofs of their equivalence, as outlined
in previous sections. These intermediate proofs can be automated: we can write
Coq tactics for proving the equivalence of the pre-abstract machine with the staged
abstract machine, etc., as long as these machines are specified in the way described in
Section 3.1. Furthermore, if the user can provide a decomposition function together
with the proof of the Property 2.1 for this function, we can automate the proof of
unique decomposition for the specified reduction semantics. It seems plausible to
make the development modular, with the use of Coq module types for describing
signatures of reduction semantics and the intermediate machines.

In particular, we can imagine the following signature of a reduction semantics:

Parameters term value redex context : Set.
Parameter plug : context→ term→ term.

Then we can define an eval/apply abstract machine realizing the reduction strategy
specified by this semantics as a transition system, i.e., the transitive closure of a
transition function:
Parameter configuration : Set.
Parameter transition : configuration→ configuration→ Prop.

Parameter transitive closure : configuration→ configuration→ Prop.

and such that the following properties hold:

Axiom search redex :
∀ t, c, c′, r. plug (t, c) = plug (r, c′) → c eval (t, c) �∗ c eval (r, c′).

Axiom search value :
∀ t, c, v. plug (t, c) = plug (v, mt) → c eval (t, c) �∗ c final v.

Axiom decompose redex :
∀ r, t, c. contract (r) = Some t → c eval (r, c) �∗ c eval (t, c).
These properties characterize the correspondence between a reduction semantics

and an abstract machine extensionally. If we can prove that these properties hold
(regardless of the particular implementation of the decomposing function, then we
ensure that the abstract machine–represented by transitive closure–realizes the re-
duction strategy of the given reduction semantics. This issue has been studied also
by Hardin et al. [12] who considered the converse direction and identified the reduc-
tion strategies “wired” in several virtual machines for the λ-calculus, by establishing

14



Biernacka & Biernacki

a bisimulation between the machines and the underlying reduction semantics (of
λ-calculi with explicit substitutions), and thus justifying each machine transition
with respect to the underlying reduction semantics. It would also be interesting
to connect our extensional approach to reduction strategies with the intentional,
transition-system-based approach.

Looking at other examples of refocusing, we are able to identify tactics also for
closure unfolding (leading to environment machines) and store unfolding (leading to
store machines), and to extend the method to work for context-sensitive reduction
semantics where contraction rules take into account not only the redex but also its
surrounding context (as found, e.g., in languages with control operators).

Taking this idea further, we would like to be able to automatically generate
the abstract machine corresponding to a given reduction semantics, together with
the proof of its correctness. To this end, we need to develop a meta-language for
representing such abstract machines and manipulate them as Coq objects.

5 Conclusion

We have described a formalization in Coq of the refocusing method applied to two
prototypical programming languages: the call-by-value λ-calculus, and the call-
by-name calculus of closures. These case studies are to serve as basis for a general
framework for representing programming languages and their operational semantics
in Coq, and to automate their interderivations, while ensuring their correctness.

A generalized refocusing method has been shown to apply to languages with a
non-standard (context-sensitive) notion of reduction, e.g., languages with control
operators, state, lazy evaluation, etc., as studied by Biernacka and Danvy [6]. Such
languages are in common practical use, therefore our intended framework seems of
significant practical importance.

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between evaluators and abstract machines. In Dale Miller, editor, Proceedings of the Fifth
ACM-SIGPLAN International Conference on Principles and Practice of Declarative Programming
(PPDP’03), pages 8–19, Uppsala, Sweden, August 2003. ACM Press.

[2] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between call-by-need
evaluators and lazy abstract machines. Information Processing Letters, 90(5):223–232, 2004. Extended
version available as the research report BRICS RS-04-3.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between monadic
evaluators and abstract machines for languages with computational effects. Theoretical Computer
Science, 342(1):149–172, 2005. Extended version available as the research report BRICS RS-04-28.

[4] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation for delimited
continuations in the CPS hierarchy. Logical Methods in Computer Science, 1(2:5):1–39, November
2005. A preliminary version was presented at the Fourth ACM SIGPLAN Workshop on Continuations
(CW’04).

[5] Ma lgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines. ACM
Transactions on Computational Logic, 2006. To appear. Available as the research report BRICS RS-
06-3.

[6] Ma lgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-sensitive calculi
and abstract machines. Theoretical Computer Science, 375:76–108, 2007. Extended version available
as the research report BRICS RS-06-18.

15



Biernacka & Biernacki

[7] The Coq Development Team. The Coq Proof Assistant Reference Manual, Version 8.1, 2006.
http://coq.inria.fr.

[8] Pierre-Louis Curien. An abstract framework for environment machines. Theoretical Computer Science,
82:389–402, 1991.

[9] Olivier Danvy. From reduction-based to reduction-free normalization. Research Report BRICS RS-04-
30, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark, December 2004.
Invited talk at the 4th International Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2004), Aachen, Germany, June 2, 2004. To appear in ENTCS.

[10] Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. In Mark van den Brand and
Rakesh M. Verma, editors, Informal proceedings of the Second International Workshop on Rule-Based
Programming (RULE 2001), volume 59.4 of Electronic Notes in Theoretical Computer Science, Firenze,
Italy, September 2001.

[11] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine, and the λ-calculus.
In Martin Wirsing, editor, Formal Description of Programming Concepts III, pages 193–217. Elsevier
Science Publishers B.V. (North-Holland), Amsterdam, 1986.

[12] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems within the lambda-
sigma calculus. Journal of Functional Programming, 8(2):131–172, 1998.

[13] Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to interpreters: Automating proofs
of unique decomposition. Higher-Order and Symbolic Computation, 14(4):387–409, 2001.

16


	Introduction
	Refocusing in reduction semantics
	Reduction semantics
	Refocusing
	The Coq proof assistant

	From a reduction semantics to an abstract machine for the lambda calculus
	The call-by-value lambda-calculus
	The call-by-name lambda calculus with explicit substitutions

	Towards a generic framework
	Conclusion
	References

