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Abstract

We report on a generalization of the refocusing procedure that provides a generic method for deriving an
abstract machine from a speci�cation of a reduction semantics satisfying simple initial conditions. The
proposed generalization is applicable to a class of reduction semantics encoding hybrid strategies as well as
uniform strategies handled by the original refocusing method. The resulting machine is proved to correctly
implement the reduction strategy of the input semantics. The procedure and the correctness proofs have
been formalized in the Coq proof system.
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1 Introduction

Refocusing has been introduced by Danvy and Nielsen as a generic procedure to

derive an e�cient abstract machine implementation from a given reduction seman-

tics [5]. The method has been applied (by hand) to a number of reduction seman-

tics both to derive new machines, and to establish the connection between existing

machines and their underlying reduction semantics [2,6]. Sieczkowski et al. then

proposed an axiomatization of reduction semantics su�cient to apply the method

and formalized the entire procedure in Coq [11].

However, the refocusing procedure as described previously does not account for a

large class of hybrid rewriting strategies, notably including the normal-order strategy

for full normalization in the lambda calculus. This strategy is of particular inter-

est due to its use in type checking algorithms for dependently typed programming

languages and logic systems, such as Coq [8].

The problem with applying refocusing to normal order and other similar strate-

gies has been observed by Danvy and Johannsen [4], and by García-Pérez and

Nogueira [7], who o�er di�erent, partial solutions. The former attribute the problem

to backward-overlapping reduction rules in an outermost strategy and propose to

apply a correction in the form of �backtracking� in the decomposition procedure.

The latter notice that refocusing in this case becomes context-dependent, and they

identify a shape invariant of the context stack they then exploit to transform the
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machine to an e�cient form. Both of these, however, are ad-hoc solutions and do

not shed light on how to proceed in a general case.

In this work we propose a generic refocusing procedure that handles any rewrit-

ing strategy satisfying certain natural conditions and that is a generalization of

Sieczkowski et al.'s formalization. The work is still in progress and in this paper we

present its main contributions. The most signi�cant one is a Coq formalization of

generalized refocusing that is applicable to hybrid strategies such as normal order by

utilizing a novel approach to representing evaluation contexts. We also use a variant

of a bisimulation to closely relate abstract machines and reduction semantics.

Our implementation of refocusing is available at the repository https://github.

com/klara-zielinska/refocusing2. It is powerful enough to generate e�cient and

realistic abstract machines. The repository contains several examples, including a

novel derivation of a machine with an environment for full β-normalization from

a language with explicit substitutions. This work also enables us to verify the

correctness of other existing abstract machines.

The rest of this paper is structured as follows. In Section 2 we sketch the idea

of the original refocusing procedure that is applicable to uniform strategies. In

Section 3 we present our contribution: a generalization of reduction contexts rep-

resentation, of reduction semantics and of the refocusing method to handle hybrid

strategies, and we illustrate it with the normal-order strategy in the lambda calculus.

In Section 4 we discuss the correctness of the generated machine and in Section 5

we describe the implementation.

2 Preliminaries

2.1 Reduction semantics

A reduction semantics is a kind of small-step operational semantics with an explicit

representation of reduction contexts. Usually, it is de�ned by a set of reduction

contexts C given by a grammar of contexts, and a binary, local rewriting relation

⇀, also called contraction, over terms of the considered language. A computation

step in such semantics, also called a reduction, is de�ned as rewriting in a reduction

context, i.e., we can perform a reduction C[t1]→ C[t2] i� t1 ⇀ t2 and C ∈ C, where
C[t1] is a decomposition of the program into a context C and a redex t1.

Reduction contexts can be seen as defunctionalized continuations of one-step

reduction functions and thus as a representation of �the rest of the reduction� in

a reduction sequence. They coincide with evaluation contexts that in turn can be

obtained by defunctionalizing continuations of an interpreter in the CPS form, as

demonstrated by Danvy et al. [1,3]. This way one obtains the common �inside-

out� representation of contexts. The meaning of this representation is given by a

recompose function that recursively de�nes the result of inserting a term in the hole

of a context. In the implementation, it is often convenient to treat reduction contexts

as stacks of elementary contexts (context frames) where we can de�ne recompose as

a left fold using an atomic recomposition function for context frames.

In a uniform strategy, such as call-by-name or call-by-value evaluation in the

lambda calculus, reduction contexts can be adequately represented using one syn-
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E ::= [ ]E | λx.E | F t | a E
F ::= [ ]F | F t | a E

where

t ::= λx. t | x | t t,
a ::= x | a v, v ::= a | λx. v
Figure 1. A grammar of reduction contexts for
the normal-order strategy, where the starting
symbol E is underlined

(λf x. f ((λf x. x) f x)) (λx. g x)
[ ]−→

λx. (λx. g x) ((λf x. x) (λx. g x) x)
λx.[ ]−−−→

λx. g ((λf x. x) (λx. g x) x)
λx. g ([ ] x)−−−−−−→

λx. g ((λx. x) x)
λx. g [ ]−−−−→ λx. g x

Figure 2. An example reduction in the normal-order
strategy with reduction contexts indicated above the
arrows

tactic category (in other words, they can be de�ned by a grammar with one non-

terminal context symbol) and they can be freely composed.

In this paper we are especially interested in a reduction semantics implementing

the normal-order strategy in the lambda calculus. This strategy normalizes a term

to its β-normal form (if it exists) by �rst evaluating it to its weak head normal form

with the call-by-name strategy (i.e., leftmost outermost β-reduction), and only then

reducing subterms of the resulting weak-head normal form with the same strategy.

The grammar of reduction contexts for this semantics is the one given in Figure 1

in a variant with labeled holes (labels will be explained in Section 3.2). In this case

the set C of reduction contexts is the language generated from the symbol E, and

the contraction is just β-reduction, i.e., (λx.t1) t2 ⇀ t1[t2/x] (capture-avoiding).

2.2 Refocusing

Given a speci�cation of a reduction semantics, a naive implementation of evaluation

in this semantics consists in repeating the following steps: 1) decompose a given

term into a context and a redex, 2) contract the redex, 3) recompose a new term by

plugging the result of the contraction in the context.

Refocusing is a mechanical procedure that optimizes this naive implementation

by avoiding the reconstruction of the intermediate terms in a reduction sequence.

It builds on the following property of reduction semantics: if we plug a term in a

context (i.e., reconstruct) and then decompose, we obtain the same decomposition

as when we continue decomposing directly from where we are. Unfortunately, this

property no longer holds if we try to apply refocusing as is to hybrid strategies.

The original refocusing procedure, like in [11], can be obtained from the pro-

posed here generalized one by restricting the sets K of context kinds (that will be

introduced later) to singletons and optimizing out dependencies on elements of K.

2.3 Abstract machines

In our setting abstract machines are abstract rewriting systems (T ,→), where T is

a set of con�gurations (states), → is a computable function, and initial and �nal

states are explicitly speci�ed. They can be thought of as models of implementation

for reduction in the source calculus. Ideally, we would like→ to be a small function,

i.e., to be computable in constant time.
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3 Refocusing for hybrid strategies

In this section we present the contribution of this work: a generalization of the

concepts presented in Section 2 that enables refocusing for hybrid strategies.

3.1 Generalized reduction contexts

Hybrid strategies can be thought of as strategies where the composition of elemen-

tary contexts may result in a context that is not a valid reduction context for the

strategy. In terms of stacks of context frames it means that not every sequence of

elementary contexts represents a valid reduction context. For example, if we put the

frame λx.[ ] on top of a stack that has the frame [ ] t on its top, the resulting stack

does not represent a valid normal-order reduction context.

More precisely�assuming that we have a de�nition of elementary contexts�

uniform strategies can be de�ned as those for which there exists a set of elementary

contexts EC such that EC∗ is the set of all reduction contexts (where EC∗ means

the smallest set containing EC and closed under composition). In this approach,

hybrid strategies can be de�ned as those that are not uniform, yet whose reduction

contexts can be de�ned by a (regular 1 ) grammar of contexts. This also implies that

the grammar requires more then one syntactic category (non-terminal symbol). 2

Note that switching the starting symbol in a grammar of contexts may, and

usually does, change the strategy (cf. Figure 1, the E symbol allows to go under

lambdas, while F prevents it). Let us call a strategy obtained by changing the

symbol a substrategy of a given reduction semantics.

Because not all elements of EC∗ are reduction contexts in hybrid strategies, the

original refocusing procedure cannot be directly applied to them. One problem is

shown in Figure 3 (for simplicity, the grammar is very abstract). In a machine

generated by the procedure a state is composed from a current evaluation context

stored as a stack (as in the �gure) and a representation of a term that is plugged in

the context. Thus, for a state containing the presented context and a redex any such

machine cannot decide in a small step if it can contract the redex, which depends on

an occurrence of b in the stack (refocusing provides no facility to scan the stack in

multiple steps). The second problem is that by looking at such a stack the machine

cannot immediately determine which substrategy it should use to proceed.

Our solution is to add context non-terminal symbols to the stack representations

of contexts, so that they remember not only contexts themselves, but also their

derivations in the grammar. An example of such a representation for a normal-order

context is given in Figure 4. To make such an approach valid, we additionally require

(1) that in each production k → π from a grammar of contexts π is a hole or it does

not contain a hole; (2) that reduction contexts are given by deterministic grammars

of contexts, i.e., for each context C and context non-terminal k, there must exist at

most one nonterminal k′ such that we can generate C [k′] from k (generate in the

1 We are not aware of a proper formalization of grammars of contexts, but they coincide with grammars on
words, thus they can be divided into similar classes. Nevertheless, we have never seen grammars of contexts
that do not coincide with regular grammars on words.
2 The notion of hybrid strategies has been �rst used by Sestoft [10] informally, and recently studied by
García-Pérez and Nogueira [7] who further distinguish between strategies �hybrid in style� and �hybrid in
nature�. It seems that our de�nition generalizes the latter.
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E ::= a E | b F
F ::= [ ] | a F | b F

. . .

a [ ]

a [ ] � top

Figure 3. A malicious grammar of contexts (E is the
starting symbol) and a stack representation of some
context with many as around the hole, i.e., . . . aaaa[ ]

E, (x y) [ ]

F , λz. [ ]

E, [ ] z � top

Figure 4. The representation of the context
(x y) (λz. [ ]F z) from the grammar in Fig. 1 (the
uppermost E is the starting symbol and the last two
elements: F , [ ]F are omitted)

sense of generating from a grammar).

This approach allows to check if we can reduce in a given context, or if we

can extend it with another context frame (e.g., the context in Figure 4 cannot be

extended with λz. [ ]) in constant time. Note that storing only the last non-terminal

in a derivation is not su�cient, as after popping a frame we cannot determine this

symbol for the resulting context without scanning it (cf. Figure 3 with a context

that contains two b symbols).

3.2 Generalized reduction semantics

In the generalized case a reduction semantics is de�ned similarly to the standard one,

but instead of a single set of reduction contexts and a single contraction function

we have a family {Ck}k∈K of sets of reduction contexts and a family {⇀k}k∈K of

contractions. Let us call the elements of the set K context kinds. In this setting we

can perform a reduction C[t1]→ C[t2] i� t1 ⇀k t2 and C ∈ Ck for some kind k. This

approach allows us to de�ne di�erent contractions for di�erent reduction contexts.

To de�ne a family {Ck}k∈K we can give a grammar of contexts independently

for each k, but this is not appropriate for our refocusing procedure. An alternative

is to give one grammar for the family with holes indexed by K, so that a context is

a member of Ck if it is generated by the grammar and if it contains the hole [ ]k.

3.3 Generalized refocusing

Now we brie�y describe the preconditions needed by our refocusing procedure.

As input to our refocusing procedure we require a generalized reduction seman-

tics where {Ck}k∈K is given by a normalized grammar of reduction contexts, i.e., a

grammar where (1) K is the set of all context non-terminals, (2) for each k ∈ K
there is a production k → [ ]k, and (3) it satis�es the two conditions from Section

3.1. (In Figure 1 we introduce holes with indexes. These indexes are introduced to

satisfy the above conditions and make our procedure applicable.) We believe that

generalized reduction semantics with ordinary (regular) grammars of contexts can

be always normalized to such form, however, we have not proved it formally.

For each kind k ∈ K, we also need to specify a set of values Vk denoting terms

that are irreducible in [ ]k and represent proper results of computation; and a set

of potential redexes Rk that can occur in [ ]k. The latter set includes both proper

redexes that can be contracted by ⇀k as well as stuck terms (i.e., k-irreducible

non-value terms). A potential redex r ∈ Rk can be decomposed only to values,

i.e., if r = C[t] and C is a non-empty reduction context w.r.t. k-substrategy with
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a hole [ ]l, then t ∈ Vl. We set this requirement because our refocusing procedure

needs that there is at most one redex in a term that can be reduced.

Another requirement is that the contractions in the semantics must be at least

partial computable functions from potential redexes to terms. However, to generate

an abstract machine satisfying the de�nition from Section 2 these functions must be

small, otherwise the machine will operate in big steps.

To apply our refocusing procedure we also need to give a well-founded linear

order in which the generated machine ought to search for a redex in a term. This

is done by setting a family of orders on elementary contexts indexed by kinds and

terms such that elementary contexts are comparable, i.e., ec1 ≤k,t ec2 or ec1 ≥k,t ec2
i� k → ec1[k1] and k → ec2[k2] are productions in the grammar of contexts, and

ec1, ec2 are pre�xes of t, i.e., t = ec1[t1] = ec2[t2]. The order determines that if

ec1 <k,t ec2 and t = ec1[t1] = ec2[t2], then searching t w.r.t. the k-substrategy

should check the subterm t2 before going to t1. The introduced orders are called a

DFS evaluation strategy in our refocusing as they describe a depth-�rst search order

of evaluation that turns back from a term only if it has checked all possible subterms

and it has found that the term is a value. This is captured by another condition,

i.e., if ec1 <k,t ec2, then t = ec2[t2] and t2 ∈ Vk.
The operations of taking the greatest element and the predecessor for each of

these orders have to be computable partial functions. We also need a computable

operation that determines if a term is a potential redex or a value after scanning all

subterms. If we want to generate a machine that operates in small steps all these

functions need to be small. In our refocusing all these operations are given at once in

terms of elementary decompositions, which will be described in the example below.

As an example of an input for the refocusing, consider the normal-order strategy

in the lambda calculus. The reduction semantics is de�ned as follows: the grammar

of contexts is de�ned in Figure 1, the contraction function is de�ned as (λx.t1) t2 ⇀k

t1[t2/x] for k = E,F , the values VE are β-normal forms and VF are neutral terms

(cf. Figure 1) plus all lambda abstractions. The elementary decompositions are

given by functions ⇓ and ⇑ (in the relational form):

[t1 t2]k ⇓ [t1]F t2

[x]k ⇓ Valuek (x)

[λx.t]E ⇓ λx. [t]E
[λx.t]F ⇓ ValueF (λx.t)

[[a] t]k ⇑ a [t]E
[a [v]]k ⇑ Valuek (a v)

[λx.[v]]E ⇑ ValueE (λx.v)

[[λx.t1] t2]k ⇑ Redexk ((λx.t1) t2)

Each of the functions either returns a new decomposition, or recognizes the processed

term as a redex or as a value of the appropriate kind. The function [t]k ⇓ de�nes

how to proceed when a term t is considered in a context with a hole [ ]k for the �rst

time. If it returns ec[t′]l, then ec is the greatest element in ≤k,t, otherwise there is no
further decomposition and it is determined if t is a value or a potential redex. The

l symbol is the kind of the hole of the current context extended by ec. For example,

[t1 t2]k ⇓ [t1]F t2 prescribes that when we encounter an application t1 t2, we have

to decompose t1 according to the F -strategy with the current contexts extended

by [ ] t2. Then [ec[v]]k ⇑ de�nes how to proceed when a term ec[v] is reconsidered

in a context with a hole [ ]k after �nding out that v is a value of an appropriate
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kind (this kind is determined by k and ec, because the grammars of contexts are

deterministic). If ⇑ returns ec′[t]l, then ec
′ is a predecessor of ec w.r.t. ≤k,ec[v].

The machine obtained by the generalized refocusing has the following form. Each

con�guration is a tuple 〈t, C, k〉e or 〈C, v〉a (historically e stands for �eval� and a for

�apply�), where t is a term, k is the kind of the hole in the current context, C is the

stack representing the rest of the context (cf. Figure 4), and v is a value from Vk. The
symbol k has no computational meaning in 〈 〉a con�gurations, thus it is omitted,

yet it can be inferred from C because grammars of contexts are deterministic. The

initial con�gurations are of the form 〈t, ε, kinit〉e and the �nal con�gurations are of

the form 〈ε, v〉a, where kinit is the starting symbol in the grammar of contexts. The

transitions are as follows:

〈t, C, k〉e → 〈C, t〉a if [t]k ⇓ V aluek(t),
〈t, C, k〉e →

〈
t′, C, k

〉
e

if [t]k ⇓ Redexk(t) ∧ t ⇀k t
′,

〈t, C, k〉e →
〈
t′, (k, ec) :: C, k′

〉
e

if [t]k ⇓ ec
[
t′
]
k′
,

〈(k, ec) :: C, v〉a → 〈C, ec[v]〉a if [ec[v]]k ⇑ V aluek(ec[v]),
〈(k, ec) :: C, v〉a → 〈t, k, C〉e if [ec[v]]k ⇑ Redexk(ec[v]) ∧ ec[v]⇀k t,

〈(k, ec) :: C, v〉a →
〈
t,
(
k, ec′

)
:: C, k′

〉
e

if [ec[v]]k ⇑ ec
′ [t]k′ .

Note that the machine depends only on ⇓ and ⇑, but the introduced requirements

are needed to guarantee that such a machine realizes the input reduction semantics.

The transitions of the machine generated for the normal-order reduction seman-

tics described above are as follows:

〈x, C, k〉e → 〈C, x〉a
〈t1 t2, C, k〉e → 〈t2, (k, [ ] t2) :: C, F 〉e
〈λx.t, C, E〉e → 〈t, (E, λx.[ ]) :: C, E〉e
〈λx.t, C, F 〉e → 〈C, λx.t〉a

〈(k, [ ] t2) :: C, λx.t1〉a → 〈t1[t2/x], C, k〉e
〈(k, [ ] t) :: C, a〉a → 〈t, (k, a [ ]) :: C, E〉e
〈(k, a [ ]) :: C, v〉a → 〈C, a v〉a
〈(E, λx.[ ]) :: C, v〉a → 〈C, λx.v〉a

where k ∈ {E,F}. This example is shown in the �le refocusing_examples/lam_no.v.

4 Correctness of the generated machine

The refocusing procedure generates an abstract machine that provides not only

extensionally equivalent semantics, but one that can be proved to exactly implement

the reduction semantics given as input, possibly in smaller steps.

This idea is captured in the following de�nition of tracing. In the implementation

each generated machine is proved to trace the input reduction semantics.

De�nition 4.1 An abstract rewriting system 〈T ,→〉 traces another system 〈S,⇒〉
if there exists a surjection JK : T → S such that

(i) if t1 → t2, then Jt1K = Jt2K or Jt1K⇒ Jt2K,

(ii) if s1 ⇒ s2, then for each t0 such that Jt0K = s1 there exists a sequence t0 →
. . .→ tn+1, where Jt0K = . . . = JtnK and Jtn+1K = s2, and

(iii) there are no in�nite sequences t0 → t1 → . . ., where JtnK ; Jtn+1K for all n

(i.e., there are no silent loops).

The de�nition is similar to the one used by Hardin et al. to extract reduction
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strategies in a calculus of closures from virtual machines [9]. Our de�nition is more

general in that it is adequate for non-deterministic systems.

5 Implementation

Our work is implemented as a library in Coq 8.5. A comprehensive instruction on

how to use the library is provided in the repository in the instruction folder. A

brief instruction is provided in the section Quick start of the instruction �le.

One signi�cant note is that grammars of contexts are implemented in the form of

deterministic total automatons on elementary contexts. This enforces introducing

sink (dead) non-terminals. An alternative that we consider is to make the type of

elementary contexts dependent on two kinds, where the �rst describes the left-hand

side of a production, and the second when plugged in the elementary contexts forms

the right-hand side. This should remove the need for sinks.
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