
MFPS 2009

A context-based approach
to proving termination of evaluation

Ma lgorzata Biernacka 1

Institute of Computer Science
University of Wroc law

Wroc law, Poland

Dariusz Biernacki 2

Institute of Computer Science
University of Wroc law

Wroc law, Poland

Abstract

We show a context-based approach to proving termination of evaluation in reduction semantics (i.e., a form
of operational semantics with explicit representation of reduction contexts), using Tait-style reducibility
predicates defined on both terms and contexts. We consider the simply typed lambda calculus as well as
its extension with abortive control operators for first-class continuations under the call-by-value and the
call-by-name evaluation strategies. For each of the proofs we present its computational content that takes
the form of an evaluator in continuation-passing style and is an instance of normalization by evaluation.

Keywords: reduction semantics, evaluation context, weak head normalization, control operators,
normalization by evaluation

1 Introduction

In the term-rewriting setting, a typical presentation of the lambda calculus as a
prototypical programming language relies on the grammar of terms and a reduction
relation defined on these terms. Felleisen et al. have introduced the notion of
reduction/evaluation contexts that proved useful in expressing various reduction
strategies concisely [15,16,17] even though the notion of a (general) context as a
term with a hole has been already used before [2]. Felleisen’s contexts represent
“the surrounding term” of the current subterm, or “the rest of the computation”,
and they directly correspond to continuations: the latter can be seen as functional
representations of contexts [11]. Not only are contexts useful for defining reduction

1 Email: mabi@ii.uni.wroc.pl
2 Email: dabi@ii.uni.wroc.pl

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:mabi@ii.uni.wroc.pl
mailto:dabi@ii.uni.wroc.pl

Biernacka and Biernacki

semantics of a language, but they have been shown to facilitate efficient proofs of
type soundness, by Felleisen and Wright [23]. In this article we present yet another
application of contexts: we give novel proofs of termination of evaluation in the
simply typed lambda calculus under the call-by-value and call-by-name reduction
strategies where reduction contexts play a major role (Section 2).

The benefits of using contexts can be seen perhaps most prominently in lan-
guages with control operators, i.e., syntactic constructs that manipulate “the rest
of the computation” [15]. In evidence, we extend the simply typed lambda cal-
culus with common abortive control operators: callcc, abort and Felleisen’s C and
we use the same approach as for the pure lambda calculus to prove termination
for the extended language, using its standard context-based reduction semantics
(Section 3).

The method of proof we apply in this work – using a context-based variant of
Tait-style reducibility predicates – is a modification of the method considered in a
previous work of Biernacka et al. that used “direct-style” reducibility predicates
[9]. In effect, we obtain direct, simple proofs of termination that take advantage
of the context-based formulation of the reduction semantics. In contrast, many of
the existing proofs of normalization properties for typed lambda calculi with control
operators are indirect and they use a translation to another language already known
to be normalizable [1,18,?]. This line of work on proof-theoretic properties of typed
control operators was originated by Griffin who gave a type assignment to Felleisen’s
C operator, abort and callcc, and he also indirectly proved termination of evaluation
for his language using a translation to the simply typed lambda calculus akin to
Plotkin’s colon translation [18].

On the other hand, the method of proving normalization using Tait-style re-
ducibility predicates has been applied to the pure lambda calculus, both for strong
normalization [5], and for weak head normalization under call by name (essentially
due to Martin-Löf) and call by value (due to Hoffmann) [9]. An extension to con-
trol operators has been considered by Parigot who modified Girard’s reducibility
candidates to prove strong normalization for his second-order λµ-calculus corre-
sponding to classical natural deduction [21]. Berger and Schwichtenberg identified
the computational content of their constructive proof of strong normalization that
uses the reducibility method to be an instance of normalization by evaluation, and
subsequently this observation has been applied also to proofs of weak head normal-
ization by Coquand and Dybjer and by Biernacka et al. [9,10]. Some of the proofs
have been formalized in proof assistants and normalizers have been extracted from
them in the form of functional programs [4,6]. Not surprisingly, the computational
content of our proofs are instances of normalization by evaluation; the extracted
programs are evaluators in continuation-passing style, whose continuations arise by
extraction from a context reducibility predicate.

2 The simply typed lambda calculus

In this section we present two proofs of weak head normalization of closed programs
in the simply typed lambda calculus under call by value and call by name, using
a variant of reducibility predicates à la Tait. Contrary to previous work, we use

2

Biernacka and Biernacki

a different formulation of logical predicates: instead of a type-indexed family of
reducibility predicates on terms, we define two such families: one for terms and one
for evaluation contexts. This formulation relies on the fact that we define programs
as pairs consisting of a term and an evaluation context, and evaluation contexts
are part of the syntax of the language. The specificity of this approach is that the
definition of evaluation contexts is different for each evaluation strategy considered
(obviously), but the proof itself seems to be even easier to carry out than the proof
using the standard reducibility predicates. Finally, an – expected – consequence
of this approach is that the computational content of the proof (i.e., the extracted
program) is an evaluator in continuation-passing style. Moreover, the CPS evaluator
can be otherwise obtained by CPS-translating the extracted evaluator from the
standard proof (in both, call-by-value and call-by-name strategies).

2.1 Terms: syntax and typing

We introduce terms and reduction contexts as two separate syntactic categories,
where the syntax of terms is standard:

terms t ::= x | λ x.t | t t

and the syntax of reduction contexts depends on the strategy we choose for reduction
(in fact, the grammar of reduction contexts defines the reduction strategy). Because
of that, we postpone the actual definitions of reduction contexts for call by value
and call by name to Section 2.2 and Section 2.3, respectively.

We define the set of free and bound variables in a term in the usual way, and
we distinguish closed terms, i.e., terms with no free variables. As is also standard,
we identify terms differing only in the names of their bound variables.

Next, we define a typing relation for terms, again in the standard way. Types
are either base types, or arrow types:

types A ::= b | A→ A

and the typing relation on terms is given by the following inference system:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λ x.t : A→ B

Γ ` t0 : A→ B Γ ` t1 : A

Γ ` t0 t1 : B

2.2 The call-by-value reduction strategy

2.2.1 Contexts
Given the grammar and the typing of terms from Section 2.1, we now define call-
by-value reduction contexts as follows:

CBV contexts E ::= · | v E | E t

values v ::= λ x.t

where values (v) form a subcategory of terms and are used to designate normal
forms in the language.

Contexts are part of the syntax and not just a metarepresentation of “terms
with a hole”. They are represented inside-out, i.e.: · represents the empty context,
v E represents the “term with a hole” E [v []] (in an informal notation), and E t

3

Biernacka and Biernacki

represents the “term with the hole” E [[] t]. The meaning of contexts we are
defining is standard, but we do not use them in the same way as it is usually done.
In particular, we do not identify a term in the context with the term it represents
according to the informal description above. We will clarify the role of contexts
shortly.

We say a reduction context is closed, if its constituant terms are all closed, i.e..:

• the empty context is closed
• if t is a closed term and E is a closed context, then E t is a closed context
• if v is a closed value and E is a closed context, then v E is a closed context.

In order to formalize the meaning of contexts, we can define by structural re-
cursion a function plug mapping a term and a context to the term such a pair
represents:

plug (t, ·) = t

plug (t, v E) = plug (v t,E)

plug (t0,E t1) = plug (t0 t1,E)

We write the result of plugging the term t in the context E in the usual way:
E [t].

Given the grammar of terms, contexts and values, we now define a program
in the call-by-value language as the pair of a term and a call-by-value reduction
context. Informally, such a program represents the term obtained by plugging the
given term into the given context.

programs p ::= 〈t, E〉

This definition differs from the usual definition of a program as arbitrary closed
term in that we explicitly state the “boundary” of a program (or, top level): note
that we do not have a way to compose reduction contexts, so we cannot obtain a
“bigger” program by plugging one program into another reduction context. While
it does not matter for the pure lambda calculus, it will play a significant role later
on, when we extend the language with abortive control operators (cf. Section 3).

Of course, according to this definition, various pairs (term, context) can repre-
sent the same program, or “plugged term”, if we apply the function plug to the pair.
From the point of view of computation, all such pairs will be regarded as various
representations of the same program. Therefore, from now on, we will consider
programs as abstraction classes of the equivalence relation between well-typed pairs
(term, context) defined as follows:

〈t0,E0〉 ∼ 〈t1,E1〉 := E0 [t0] = E1 [t1]

For example, the program 〈(λ x.r) s, ·〉 can be equally represented by another
program 〈λ x.r, (· s)〉 or by 〈s, ((λ x.r) ·)〉. All these representations correspond to
different decompositions of the same term.

Since we want to consider only well-typed programs (in the sense of the plugged
terms they represent), we introduce a typing relation not only on terms but also on
reduction contexts. The crucial issue in typing contexts is the type of the “hole”, i.e.,

4

Biernacka and Biernacki

the type of the term that will be plugged in the context – we only allow programs
where the type of the term and the type of the context hole are the same.
Types of contexts are defined using the following syntax:

context types C ::= cont A

and the typing relation on contexts is defined by the following inference system:

Γ ` · : cont A

Γ ` t : A Γ ` E : cont B

Γ ` E t : cont (A→ B)
Γ ` v : A→ B Γ ` E : B

Γ ` v E : cont A

It is not difficult to see that the plug function ensures and preserves well-
typedness of terms in the way formalized by the following lemma.

Lemma 2.1 The following hold:

(i) If Γ ` t : A and Γ ` E : cont A, then there exists a type B such that
Γ ` E [t] : B.

(ii) If Γ ` E [t] : B, then Γ ` t : A and Γ ` E : cont A for some type A.

Proof. The proof is done by induction on the structure of E. 2

It may not be immediately clear from this presentation what the type of a
program is, when we only have a pair of a term and a context. As a consequence of
Lemma 2.1, all programs belonging to the same abstraction class can be assigned
the same type: the type of the plugged term. Therefore we define the type of the
program 〈t, E〉 to be the type of the term E[t]; the following rule for typing programs
is well defined:

Γ ` E [t] : A

Γ ` 〈t, E〉 : A

The type cont A could be interpreted as in Griffin’s work [18], i.e., as ¬A (A→ ⊥),
if we included ⊥ in the grammar of types (interpreted as formulas through the
Curry-Howard isomorphism [19]). However, according to the above rule, ⊥ would
play no role in typing programs.

Finally, we observe that the class of well-typed programs defines exactly the
set of simply typed lambda terms: by Lemma 2.1 each program corresponds to a
well-typed lambda term and each well-typed lambda term can be represented by a
well-typed program, if we pair it with the empty context.

2.2.2 Reduction
The grammar of contexts defined in the previous subsection determines that the
language there defined will be given a call-by-value reduction strategy. We define a
one-step reduction relation on (abstraction classes of) programs as follows:

〈(λ x.r) v,E〉 →v 〈r{v/x},E〉

where v is a value and the notation r{v/x} stands for the usual metaoperation of
substitution of a term v for variable x in r. Terms of the form (λ x.r) v are the
familiar call-by-value β-redexes.

Thanks to the unique-decomposition property, the relation →v is deterministic
and it is a function on abstraction classes. We state the unique decomposition

5

Biernacka and Biernacki

property without proof, as it is standard for this language.

Property 1 (Unique decomposition (CBV)) For all terms t, t is either a
value, or it decomposes uniquely into a CBV reduction context E and a redex r,
i.e., t = E [r].

Next, we define the evaluation relation as the reflexive-transitive closure of one-
step reduction (→∗

v). The result of the evaluation is a value; here—values are
programs of the form pv := 〈v, ·〉.

It is easy to see that there is an exact correspondence between reductions of
programs in this sense and reductions of terms in the usual sense, according to the
following lemma.

Lemma 2.2 For each program p := 〈t, E〉, p reduces to another program p′ :=
〈t′,E′〉 if and only if the simply typed lambda term E [t] reduces in the standard
CBV reduction strategy to the term E′ [t′].

The reduction relation preserves the type of the program, because of the subject
reduction property for simply typed lambda terms: the type of a β-redex is preserved
after the reduction.

Corollary 2.3 (Progress and Preservation) For each program p, p either is a
value or it reduces uniquely to another program p′ such that if Γ ` p : A, then
Γ ` p′ : A.

2.2.3 Termination
In general, all simply typed lambda terms normalize into normal forms. Evaluation
is a weak form of normalization that does not enter inside lambda abstraction, and
its normal forms are traditionally called values. In this section we show a new proof
of termination for call-by-value evaluation, using logical predicates in the style of
Tait but based on contexts as well as on terms rather than on terms only.

In this section, for simplicity, we only consider closed programs, although the
method generalizes to all open well-typed terms.

We first introduce two mutually inductive logical predicates: RA is defined on
closed values of type A, and Ccont A is defined on closed contexts of type cont A as
follows:

Rb (v) := True

RA→B (v0) := ∀v1.RA (v1)→ ∀E. Ccont B (E)→ N (〈v0 v1,E〉)

Ccont A (E) := ∀v.RA (v)→ N (〈v,E〉)

where
N (p) := ∃pv. p→∗

v pv.

In the standard approach, the reducibility predicate on well-typed terms ex-
presses the property that whenever a reducible term is applied to another reducible
term of the right type, the resulting term has also this property. Moreover, if a
term is reducible, then it entails that it normalizes (in the weak sense considered
here). The proof of termination consists in showing that all well-typed terms are
reducible, from which it follows that all well-typed terms normalize.

6

Biernacka and Biernacki

Here, we prove normalization using a modified version of the reducibility pred-
icate, noted RA. First of all, in the call-by-value case, we only need to define this
property on well-typed values (we could extend it to all well-typed terms, but it is
not necessary for the proof). A reducible value is such that, when applied to another
reducible value and plugged into a reducible context, it normalizes (as a program).
Simultaneously, we define a reducibility predicate on well-typed reduction contexts,
Ccont A, saying that a reducible context plugged with a reducible value normalizes
(as a program). The typing properties ensure that the programs resulting from
these pluggings are well typed, but we do not need to know their type in order to
prove the normalization theorem. What is more, for the pure lambda calculus we
do not really need to define Rb, because there are no values of base type in this
language; this predicate simply is not used anywhere. However, we state the full
definition to show the possibility of extending the language and to show similarity
with the standard definition considered in previous work.

Theorem 2.4 (Termination of CBV evaluation) Let x1 :B1, . . . , xn :Bn ` t :
A. Next, let ~vi be a sequence of closed well-typed value terms such that ` vi : Bi

and RBi (vi) for 1 ≤ i ≤ n. Then for all closed well-typed reduction contexts E
such that ` E : cont A and Ccont A (E), the program 〈t{~vi/~xi},E〉 normalizes, i.e.,
N (〈t{~vi/~xi},E〉) holds. (Notation t{~vi/~xi} stands for simultaneous substitution of
each value term vi for the free variable xi in t).

Proof. The proof is done by induction on the structure of t.

Case x. By assumption x is one of the variables xi and t{~vi/~xi} = vi. Hence,
by assumption RA (vi) and for any E such that Ccont A (E) holds, unfolding the
definition of Ccont A entails that N (〈vi,E〉) holds.

Case λ x.r. Because λ x.r is well typed, its type A must be an arrow type; let
A = A′ → A′′. Taking r′ = r{~vi/~xi}, we have (λ x.r){~vi/~xi} = λ x.r′. We
will show that RA (λ x.r′) holds, and from this fact it follows that the required
N (〈(λ x.r){~vi/~xi},E〉) holds as in the previous case. In order to proveRA(λ x.r′),
let us assume that v is a value of type A′ and such that RA′ (v) holds. Next,
let E be a well-typed context of type A′′ and such that Ccont A′′ (E) holds. We
have to prove that N (〈(λ x.r′)v,E〉) holds. By the reduction rule, 〈(λ x.r′) v,E〉
reduces in one step to program 〈r{~vi/~xi, v/x},E〉. By induction hypothesis,
N (〈r{~vi/~xi, v/x},E〉) holds and hence also N (〈(λ x.r′) v,E〉) holds.

Case t0 t1. Since t0 t1 is well typed, then x1 : B1, . . . , xn : Bn ` t0 : C → A

and x1 : B1, . . . , xn : Bn ` t1 : C for some type C. Taking t′0 = t0{~vi/~xi} and
t′1 = t1{~vi/~xi}, we have (t0 t1){~vi/~xi} = t′0 t′1. By definition, the program 〈t′0 t′1,E〉
is the same as the program represented by 〈t′0,E t′1〉. Since t0 is a subterm of t0 t1,
we can apply the induction hypothesis to deduce N (〈t′0,E t′1〉) provided that E t′1
is well typed and that Ccont (C→A) (E t′1) holds. The former is easy to see, and
for the latter let us unfold the definition of Ccont (C→A). Let v be a value of type
C → A and such that RC→A (v) holds. We need to show that N (〈v,E t′1〉) holds.
Here again we can use another representative of the class of programs equal to
〈v,E t′1〉, such as 〈t′1, v E〉. Now we can apply the induction hypothesis again,
this time for t1, provided that v E is well typed and Ccont C (v E) holds. And

7

Biernacka and Biernacki

again, the former property is easy to see, and for the latter we again unfold the
definition of Ccont C : let v′ be a value of type C and such that RC (v′) holds. We
now need to show that N (〈v′, v E〉) holds. But this is equivalent to showing that
N (〈v v′,E〉) holds, and this property follows from the fact that RC→A (v) holds
by an earlier assumption.

2

It is straightforward to see that the empty context satisfies property Ccont A for
any type A. From Theorem 2.4 it follows that if we take a closed well-typed term
t and put it in the empty context, then the resulting program evaluates to a value.
Hence, all closed well-typed terms evaluate to a value in the standard sense.

2.2.4 Extracted evaluator
The specification of the normalization problem and the proof of Theorem 2.4 can
be formalized in a number of ways and its computational content can be extracted
in the form of a lambda term that can be interpreted as an evaluator for the ob-
ject language. Several such formalizations for normalization problems have been
done: partial formalizations in minimal intuitionistic logic, using Kreisel’s modified
realizability interpretation to extract a program (e.g., Berger formalized the proof
of strong normalization for simply typed lambda terms [5,3] and obtained an NbE
normalization algorithm; Biernacka et al. formalized the proof of weak head nor-
malization for the same language with different reduction strategies and obtained
a call-by-value and a call-by-name evaluator, again instances of NbE [9]). While
the cited formalizations are conceptually simple, minimal logic is not expressive
enough to encode the problem entirely, therefore a number of other formalizations
have been done in more complex formal systems, with the support of automated
tools, such as interactive proof assistants Coq or Isabelle/HOL (e.g., the problem
considered by Berger and Schwichtenberg has been formalized by Letouzey et al. [4]
and the weak head normalization problem has been formalized in Coq as well [6]).
The Coq proof assistant comes with an extraction mechanism, yielding code in
OCaml or Haskell programming languages. Of course, whether we consider partial
formalization in minimal logic, or full formalization in the Coq’s underlying Calcu-
lus of Constructions, the structure of the proof remains the same; consequently, the
programs obtained by extraction “do the same” in both cases. What is more, the
structure of the programs is similar; the differences may occur at the level of syntax
of the metalanguage used to write these programs and at the level of efficiency (in
most cases, programs obtained by extraction can be further optimized by hand,
especially those obtained by automatic tools [20]).

In this work, our interest lies not in completely formalizing the problem–it can
easily be done along the lines of the work cited above–but in showing another way
of proving normalization using a context-based approach. Therefore we conduct
the development on an informal level and we present the “skeleton” of the program
that can be extracted from the proof of Theorem 2.4. The basic idea of program ex-
traction relies on the Curry-Howard correspondence between proofs and programs:
roughly, we can view the proof of Theorem 2.4 as a lambda term (the proof is
constructive). In this proof term, some parts represent logical inferences and some
parts can be seen as computations (here, these computations serve to build the

8

Biernacka and Biernacki

normal form of a given term). Erasing the logical parts, we obtain a lambda term
that only contains computationally relevant parts of the original proof, and it is
this term that we call the “extracted” program – in our case, an evaluator, i.e., a
program computing weak head normal forms of lambda terms. This is essentially
what the modified realizability interpretation does to a proof term to extract its
computational content [3,9].

If we apply this method to the proof of Theorem 2.4, we obtain a program that
normalizes simply-typed lambda terms into values according to the call-by-value
strategy. This program is in continuation-passing style and its structure is the
following:

eval~x xi = λ~v~uκ.κ vi ui

eval~x λ x.t = λ~v~uκ.κ ((λ x.t){~v/~x}) (λ vuκ.eval~xx t (~vv) (~uu) κ)

eval~x t0 t1 = λ~v~uκ.eval~x t0 ~v~u (λ vu.eval~x t1 ~v~u (λ v′u′.u v′u′ κ))

The evaluator is parameterized by the vector of free variables occurring in a term
(~x) and it uses two environments: one (~v) containing values to be substituted for free
variables in terms, and one (~u) containing functions (the computational content of
the relation RA). The substitutions are only made in the final step of computation
when we have to return a value as a closed term. But whenever a lambda abstraction
in the object language is applied to a value – instead of substitution, we apply the
suitable function from the second environment. Therefore, this evaluator is an
instance of normalization by evaluation – normalization (reduction) in the source
language is done by evaluation at the metalevel.

Continuations (κ) in the evaluator arise as the computational content of the
relation Ccont A. The syntactic contexts we used in the proof can be optimized
away (i.e., simply erased) since they do not play any role in the evaluator. This
optimization is not arbitrary – it is provably correct and it corresponds to Berger’s
optimization to eliminate unused object variables, based on distinguishing between
computationally relevant and irrelevant variables [3].

The function eval is the computational content of the proof of Theorem 2.4. In
order to normalize a closed term t, we apply the theorem with the empty sequence
of terms and with the empty context to obtain the proof of N (〈t, ·〉). Thus the
program extracted from the proof of the fact Ccont A (·) is the initial continuation
with which we activate the eval function. It is easy to observe that this initial
continuation is the function λ vu.v.

The complete evaluator therefore can be written as follows:

norm t = evalε t εεκinit

where κinit = λ vu.v and ε denotes the empty sequence.
According to the normalization-by-evaluation nomenclature, the eval function

“reflects” object-level terms at the metalevel and the application to the initial con-
tinuation is the “reification” of metaobjects at the object level.

9

Biernacka and Biernacki

2.3 The call-by-name reduction strategy

The development for the call-by-name reduction strategy is done along the same
lines as the one for call by value, modulo necessary adjustments. In this subsection,
we only give a brief account of call by name, pinpointing the main differences with
the previous subsection.

2.3.1 Syntax and typing
The terms are the same as in call by value, but reduction contexts have to be defined
differently:

CBN contexts E ::= · | E t

In call by name, we do not have the context v E and so the plug function has
fewer cases.The typing relation for the CBN contexts is a subset of the inference
rule for the CBV contexts.

The notion of program and its typing are defined as in the CBV case, using the
equivalence relation on pairs of terms and CBN contexts. All the typing properties
stated in Section 2.2.1 hold for call by name as well.

2.3.2 Reduction and termination
The one-step reduction relation for the call-by-name strategy differs in that a
lambda abstraction can be applied to an arbitrary term instead of to a value:

〈(λ x.r) t, E〉 →n 〈r{t/x},E〉

All the above adjustments are standard. Next we need to define the logical
relations needed for the proof of termination for the call-by-name case.

Rb (t) := N (〈t, ·〉)

RA→B (t0) := N (〈t0, ·〉) ∧ ∀t1.QA (t1)→ QB (t0 t1)

QA (t) := ∀E. Ccont A (E)→ N (〈t, E〉)

Ccont A (E) := ∀t.RA (t)→ N (〈t, E〉)

N (p) := ∃pv. p→∗
n pv

Here, we also define two main logical predicates: RA on closed terms of type
A (and not on closed values as in call by value) and Ccont A on closed contexts of
type cont A. Another difference is that we explicitly require terms satisfying RA to
normalize when put in the empty context (in the call-by-value case, this part was
redundant because values are already normalized). The auxiliary predicate QA is
defined on closed terms of type A and it expresses the property that a term plugged
in any context satisfying Ccont A normalizes (as a program).

We are now ready to state the main theorem of this section.

Theorem 2.5 (Termination of CBN evaluation) Let x1 : B1, . . . , xn : Bn `
t : A. Next, let ~ti be a sequence of closed well-typed terms such that ` ti : Bi

and QBi (ti) for 1 ≤ i ≤ n. Then for all closed well-typed reduction contexts E

10

Biernacka and Biernacki

such that ` E : cont A and Ccont A (E), the program 〈t{~ti/~xi},E〉 normalizes, i.e.,
N (〈t{~ti/~xi},E〉) holds.

Proof. The proof is done by induction on the structure of t.

Case x. By assumption x is one of the variables xi and t{~vi/~xi} = vi. Hence,
by assumption QA (ti) and for any E such that Ccont A (E) holds, unfolding the
definition of QA (ti) entails that N (〈ti,E〉) holds.

Case λ x.r. Because λ x.r is well typed, its type A must be an arrow type; let
A = A′ → A′′. Taking r′ = r{~ti/~xi}, we have (λ x.r){~ti/~xi} = λ x.r′. We will
show that RA (λ x.r′) holds, and from this fact, by unfolding the definition of
Ccont A (E), it follows that the required N (〈(λ x.r){~ti/~xi},E〉) holds. In order to
prove RA (λ x.r′), we observe that N (〈λ x.r′, ·〉), so let us assume that s is a
well-typed term of type A′ and such that QA′ (s) holds. Next, let E be a well-
typed context of type A′′ and such that Ccont A′′ (E) holds. We have to prove that
N (〈(λ x.r′) s,E〉). By the reduction rule, 〈(λ x.r′) s,E〉 reduces in one step to
program 〈r{~ti/~xi, s/x},E〉. By induction hypothesis, N (〈r{~ti/~xi, s/x},E〉) holds
and hence also N (〈(λ x.r′) s,E〉) holds.

Case t0 t1. Since t0 t1 is well typed, then x1 : B1, . . . , xn : Bn ` t0 : C → A

and x1 : B1, . . . , xn : Bn ` t1 : C for some type C. Taking t′0 = t0{~ti/~xi} and
t′1 = t1{~ti/~xi}, we have (t0 t1){~ti/~xi} = t′0 t′1. By definition, the program 〈t′0 t′1,E〉
is the same as the program represented by 〈t′0,E t′1〉. Since t0 is a subterm of t0 t1,
we can apply the induction hypothesis to deduce N (〈t′0,E t′1〉) provided that E t′1
is well typed and that Ccont (C→A) (E t′1) holds. The former is easy to see, and
for the latter let us unfold the definition of Ccont (C→A). Let s be a term of type
C → A and such that RC→A (s) holds. We need to show that N (〈s,E t′1〉).
Here again we can use another representative of the class of programs equal to
〈s,E t′1〉, such as 〈st′1,E〉. From the definition of RC→A (s), it is sufficient to show
that QC (t′1). By induction hypothesis on t1, we obtain that N (〈t′1,E′〉) for any
context E′ such that Ccont C (E′), which proves that QC (t′1).

2

2.3.3 Extracted evaluator
The program we obtain by extraction from the proof of Theorem 2.5 is as follows:

eval~x xi = λ~t~uκ.ui κ

eval~x λ x.t = λ~t~uκ.κ 〈((λ x.t){~t/~x}), (λ suκ.eval~xx t (~ts) (~uu) κ)〉
eval~x t0 t1 = λ~t~uκ.eval~x t0 ~t~u (λ u.(snd u) (t1{~t/~x}) (λ κ.eval~x t1 ~t~u κ))

As in call by value, the evaluator is in continuation-passing style and it threads
two environments: ~t with unevaluated closed terms to be substituted in the final
value, and ~u with delayed computations waiting to be activated with a continuation
(κ). Unlike the call-by-value case, the initial continuation depends on the type
of its argument: if it is of base type, then the initial continuation simply returns
its argument (although it can never happen here since we do not have values of
base type); if it is of an arrow type, then the initial continuation returns the first
component of the pair it gets as argument.

11

Biernacka and Biernacki

The complete evaluator for call by name can be written as follows:

norm t = evalε t εεκinit

where κinit = λ v.v if ` t : b and κinit = λ v.fst v if ` t : A → B for some types
A,B.

2.4 Comparison with the standard approach

In a previous work by Biernacka et al. the authors have formalized the problem
of weak head normalization for the simply typed lambda calculus using “standard”
logical predicates á la Tait [9]. By extraction using modified realizability, they
have obtained two evaluators for the two reduction strategies. Not surprisingly, the
evaluators obtained in the present work are closely related to those “direct-style”
evaluators. In the call-by-name case, the evaluator we obtained here is exactly the
CPS-translated call-by-name evaluator from the cited work. In the call-by-value
case, the evaluator is also in CPS but it is not directly a CPS-translated version of
the “direct-style” CBV evaluator, because here we used slightly optimized logical
predicates: we defined them on values only and therefore we did not need to include
the condition that they normalize in the empty context (as in the call-by-name case)
in the definition of the predicate, because it is trivially satisfied for values. If we had
defined the logical predicates on terms, we would have obtained an evaluator that
would be exactly the CPS-translated version of the direct-style CBV evaluator, but
it would contain redundancies.

3 Abortive control operators

In this section, we extend the simply typed lambda calculus with abortive control
operators for first-class continuations and we prove termination of evaluation in the
extended language under the call-by-value and call-by-name reduction strategies.

3.1 The call-by-value reduction strategy

3.1.1 Terms and contexts: syntax and typing
The language we consider is the simply typed lambda calculus extended with the
binder version of the operator callcc (Kk.t), introduced by Reynolds [22], and by
a construct to apply a captured continuation (k ←↩ t) akin to the operator throw
known from the Standard ML of New Jersey [13]. In order to account for the
reduction semantics of callcc, we also include in the syntax applications of a captured
context to a term (E←↩ t), an expression that may arise in the process of evaluation
of programs containing callcc. The extended grammar of terms therefore reads as
follows:

terms t ::= x | λ x.t | t t | Kk.t | k ←↩ t | E←↩ t

The context variables (or, continuation variables) k are drawn from a separate
set than the object variables x, i.e., a continuation variable can only be used in the
binder Kk.t or in a context application expression k ←↩ t.

12

Biernacka and Biernacki

In addition to the standard call-by-value reduction contexts, the language con-
tains contexts of the form E′ E representing “the term with the hole” E [E′ ←↩ []],
whereas functions remain the only values:

CBV contexts E ::= · | v E | E t | E′ E

values v ::= λ x.t

The plugging function is defined as before, with the new context handled as
follows:

plug (t, E′ E) = plug (E′ ←↩ t,E).

The grammar of types of terms and contexts remains unchanged. However, in
the presence of continuation variables (k) the typing judgements use an additional
typing context ∆ that associates continuation variables with their types. Terms are
assigned types according to the following inference rules:

Γ, x : A;∆ ` x : A

Γ, x : A;∆ ` t : B

Γ;∆ ` λ x.t : A→ B

Γ;∆ ` t0 : A→ B Γ;∆ ` t1 : A

Γ;∆ ` t0 t1 : B

Γ;∆, k : cont A ` t : A

Γ;∆ ` Kk.t : A

Γ;∆, k : cont A ` t : A

Γ;∆, k : cont A ` k ←↩ t : B

Γ;∆ ` E : cont A Γ;∆ ` t : A

Γ;∆ ` E←↩ t : B

We can see that these rules agree with the standard typing for first-class continu-
ations [13,23]. In particular, if we interpret the type contA as ¬A, the rule for callcc
gives rise to the weak Peirce’s law through the Curry-Howard correspondence [1].

We also need to define the set of rules for typing contexts:

Γ;∆ ` · : cont A

Γ;∆ ` v : A→ B Γ;∆ ` E : cont B

Γ;∆ ` v E : cont A

Γ;∆ ` t : A Γ;∆ ` E : cont B

Γ;∆ ` E t : cont (A→ B)
Γ;∆ ` E′ : cont A Γ;∆ ` E : cont B

Γ;∆ ` E′ E : cont A

As for the simply typed lambda calculus, we define programs as pairs consisting
of a term and a reduction context and we equate such pairs if they represent the
same plugged term. We say a term, a context or a program is closed if it does not
contain free neither object variables nor continuation variables.

Finally, the rule for typing a complete program refers to the type of the term
represented by the program:

Γ;∆ ` E [t] : A

Γ;∆ ` 〈t, E〉 : A

3.1.2 Reduction
The one-step reduction relation of our language is given by the following rules:

〈(λ x.t) v,E〉 →v 〈t{v/x},E〉

〈Kk.t,E〉 →v 〈t{E/k},E〉

〈E′ ←↩ v, E〉 →v 〈v,E′〉

13

Biernacka and Biernacki

Besides the usual βv rule modelling function applications, we have the rule for
capturing the current continuation (represented as a reduction context) and the
rule for applying a previously captured context. Terms of the form (λ x.t) v, Kk.t

and E′ ←↩ v are redexes. Note, however, that the two new reductions are context
sensitive, because – unlike in β-reduction – the reduction step alters not only redexes
themselves, but also the surrounding context [8]. This is the reason why we need
to be able to clearly state the boundary of the entire program.

Although our main goal here is to prove termination of evaluation of well-typed
programs, for completeness we discuss some of the typing properties of the pre-
sented type system. We base our presentation on Wright and Felleisen’s work who
considered type soundness of a polymorphic functional language with callcc and
abort [23].

Because of the typing and reduction rules for context application, in general our
language enjoys only weak type soundness, i.e., well-typed programs reduce to well-
typed programs, but the type may not be preserved. The reason for the violation of
the subject reduction property is the abortive character of the expression E←↩ v in
the reduction rule 〈E′ ←↩ v, E〉 →v 〈v,E′〉. In general, the answer types of E and E′

do not have to be the same. Nevertheless, since the language satisfies the unique-
decomposition property and weak type soundness (the proofs of both properties are
routine), we can state the following proposition:

Proposition 3.1 (Progress) For each program p, p either is a value or it reduces
uniquely to another program p′ such that if Γ;∆ ` p : A, then Γ;∆ ` p′ : B for
some type B.

Though it is impossible to prove a stronger type soundness property in the
general case, we can obtain such a property if we consider pure programs. We say
that a program p is pure, if it contains no subterms of the form E ←↩ t. Such
programs capture and subsequently apply contexts only of one unique answer type.
However, in the course of computation, contexts get captured and are substituted
for continuation variables, which leads to impure programs, so we cannot hope for a
standard subject reduction property, but rather we should aim at a property stating
that the types of a pure program and of its final value are the same. Similarly, we
define pure contexts as contexts not containing terms of the form E←↩ t.

Let us start with defining an annotated type system, where the annotation on
the turnstyle specifies the type of the entire program.

Γ, x : A;∆ `B x : A

Γ, x : A;∆ `C t : B

Γ;∆ `C λ x.t : A→ B

Γ;∆ `C t0 : A→ B Γ;∆ `C t1 : A

Γ;∆ `C t0 t1 : B

Γ;∆, k : cont A `B t : A

Γ;∆ `B Kk.t : A

Γ;∆ `C E : cont A Γ;∆ `C t : A

Γ;∆ `C E←↩ t : B

Γ;∆, k : cont A `C t : A

Γ;∆, k : cont A `C k ←↩ t : B

14

Biernacka and Biernacki

The contexts are typed as follows:

Γ;∆ `A · : cont A

Γ;∆ `C v : A→ B Γ;∆ `C E : cont B

Γ;∆ `C v E : cont A

Γ;∆ `C t : A Γ;∆ `C E : cont B

Γ;∆ `C E t : cont (A→ B)
Γ;∆ `C E′ : cont A Γ;∆ `C E : cont B

Γ;∆ `C E′ E : cont A

The type annotation is introduced by the rule for typing programs:
Γ;∆ `A E [t] : A

Γ;∆ `A 〈t, E〉
Since all the contexts occurring in a program as terms must have the same answer

type (given by the annotation), the subject reduction property for the annotated
type systems can be proved in the standard way [23]:

Proposition 3.2 If Γ;∆ `A p and p→v p′, then Γ;∆ `A p′.

Next, we state a few lemmas that establish the relationship between the unanno-
tated and annotated type systems. First, proved by rule induction is the following
lemma:

Lemma 3.3 (i) If t is pure and Γ;∆ ` t : A, then Γ;∆ `C t : A for any type
C.

(ii) If E is pure and Γ;∆ ` E : contA, then Γ;∆ `C E : contA for some type C.

As a direct corollary from Lemma 3.3 we obtain:

Lemma 3.4 If p is pure and Γ;∆ ` p : A, then Γ;∆ `A p.

Conversely, we can erase type annotations from typing judgements for terms and
contexts:

Lemma 3.5 (i) If Γ;∆ `C t : A then Γ;∆ ` t : A.

(ii) If Γ;∆ `C E : cont A, then Γ;∆ ` E : cont A.

As a corollary, we can remove the type annotations from typing judgements for
programs:

Lemma 3.6 If Γ;∆ `A p, then Γ;∆ ` p : A.

Combining Lemmas 3.4 and 3.6 and Proposition 3.2, we obtain strong type
soundness for the unannotated type system [23]:

Proposition 3.7 (Preservation) If p is pure, Γ;∆ ` p : A and p →∗
v pv, then

Γ;∆ ` pv : A.

3.1.3 Termination
Our goal in this section is to prove termination of call-by-value evaluation of pure
terms. The logical predicates for the language with callcc are exactly the same as for
the simply typed lambda calculus and then we can state the termination theorem,
analogous to that of Section 2.2.3.

15

Biernacka and Biernacki

In the statement of the theorem we have to keep track not only of the terms that
are to be substituted for free object variables, but also of contexts to be substituted
for free continuation variables.

Theorem 3.8 (Termination of CBV evaluation) Let x1 : B1, . . . , xn : Bn; k1 :
cont C1, . . . , km : cont Cm ` t : A and t be a pure term. Next, let ~vi be a sequence
of closed well-typed value terms such that ` vi : Bi and RBi (vi) for 1 ≤ i ≤ n,
and let ~Ei be a sequence of closed well-typed contexts such that ` Ei : cont Ci and
Ccont Ci (Ei) for 1 ≤ i ≤ m. Then for all closed well-typed reduction contexts E such
that ` E : cont A and Ccont A (E), the program 〈t{~vi/~xi}{ ~Ei/~ki},E〉 normalizes,
i.e., N (〈t{~vi/~xi}{ ~Ei/~ki},E〉) holds.

Proof. The proof proceeds exactly as in Section 2.2.3, by induction on the structure
of terms. We will show only the two cases for the two new syntactic constructs.

Case Kk.t. Because Kk.t is well typed, k is of type cont A and t is of type A.
Taking t′ = t{~vi/~xi}{ ~Ei/~ki}, we have (Kk.t){~vi/~xi}{ ~Ei/~ki} = Kk.t′. We have to
show that N (〈Kk.t′,E〉) holds. But this program reduces in one step to program
〈t′{E/k},E〉. In turn, this program normalizes by induction hypothesis, because
t is a subterm of Kk.t and we know by assumption that E is well typed and that
Ccont A (E), so we can use it for substitution in t in the induction step.

Case ki ←↩ t. By assumption, ki is of type cont Ci and (ki ←↩ t){~vi/~xi}{ ~Ei/~ki} =
Ei ←↩ t{~vi/~xi}{ ~Ei/~ki}. Let t′ = t{~vi/~xi}{ ~Ei/~ki}. We have to show that N (〈Ei ←↩

t′,E〉) holds. But the program 〈Ei ←↩ t′,E〉 can be represented also as 〈t′,Ei ←↩ E〉.
We can now apply the induction hypothesis for t provided that the context Ei ←↩ E
is well typed and that Ccont (Ci→A) (Ei ←↩ E) holds. The former is easy to see, and
for the latter we unfold the definition of Ccont (Ci→A). Let v be a value of type
Ci → A and such that RCi→A (v) holds. We need to show that N (〈v,Ei ←↩ E〉)
holds. The program 〈v,Ei ←↩ E〉 can be represented by 〈v ←↩ Ei,E〉 and this
program reduces in one step to program 〈v,Ei〉. But we know that N (〈v,Ei〉) by
the assumption that Ccont Ci (E′) which concludes the proof in this case.

2

3.1.4 Extracted evaluator
The computational content of the proof of Theorem 3.8 can be written as follows:

eval~x,~k xi = λ~v~u~E~κEκ.κ vi ui

eval~x,~k λ x.t = λ~v~u~E~κEκ.κ (λ x.t′) (λ vuκ.eval~xx,~k t (~vv) (~uu)~E~κ Eκ)

eval~x,~k t0 t1 = λ~v~u~E~κEκ.eval~x,~k t0 ~v~u~E~κ(E t′1)

(λ vu.eval~x,~k t1 ~v~u~E~κ(v E) (λ v1u1.u v1u1 κ))

eval~x,~k Kk.t = λ~v~u~E~κEκ.eval~x,~kk t ~v~u(~EE)(~κκ)Eκ

eval~x,~k ki ←↩ t = λ~v~u~E~κEκ.eval~x,~k t ~v~u~E~κ(Ei ←↩ E)(λ vu.κi vu)

where λ x.t′ = (λ x.t){~v/~x}{~E/~k} and t′1 = t1{~v/~x}{~E/~k}.
The extracted function eval is parameterized by a vector of free object variables

and by a vector of free continuation variables. It uses two additional environments:
one for keeping track of contexts to be substituted in the final value (~Ei) and one

16

Biernacka and Biernacki

for storing continuations associated with these contexts – these continuations are
waiting to be activated by a throw construct.

The complete evaluator can be written as follows:

norm t = evalε,ε t εεεε · κinit

where κinit = λ vu.v.

3.2 The call-by-name reduction strategy

In the call-by-name reduction strategy, the reduction contexts and values coincide
with those in the call-by-name language without control operators considered in
Section 2.3. The types of terms and contexts as well as the typing rules for terms
are identical with the call-by-value case of Section 3.1, whereas the typing rules for
contexts take into account the environment ∆, but are otherwise the same as those
for the standard call-by-name contexts. The reduction rules ensure that arguments
to functions and continuations are not evaluated:

〈(λ x.r) t, E〉 →n 〈r{t/x},E〉

〈Kk.t,E〉 →n 〈t{E/k},E〉

〈E′ ←↩ t,E〉 →n 〈t, E′〉

Analogously to the call-by-value case, it can be shown that the pure language
with the call-by-name reduction strategy satisfies both the weak and strong type
soundness properties. Moreover, using the logical predicates defined for the simply
typed call-by-name lambda calculus in Section 2.3.2, we prove termination of call-
by-name evaluation for the language augmented with callcc.

Theorem 3.9 (Termination of CBN evaluation) Let x1 : B1, . . . , xn : Bn; k1 :
cont C1, . . . , km : cont Cm ` t : A and t be a pure term. Next, let ~ti be a sequence
of closed well-typed value terms such that ` vi : Bi and QBi (ti) for 1 ≤ i ≤ n,
and let ~Ei be a sequence of closed well-typed contexts such that ` Ei : cont Ci and
Ccont Ci (Ei) for 1 ≤ i ≤ m. Then for all closed well-typed reduction contexts E such
that ` E : contA and Ccont A (E), the program 〈t{~ti/~xi}{ ~Ei/~ki},E〉 normalizes, i.e.,
N (〈t{~ti/~xi}{ ~Ei/~ki},E〉) holds.

The proof proceeds in the expected way, and the evaluator we extract from it is
analogous of that in Section 3.1.4, except it uses the call-by-name strategy:

eval~x,~k xi = λ~t~u~E~κEκ.ui E κ

eval~x,~k λ x.t = λ~t~u~E~κEκ.κ 〈(λ x.t′), (λ suκ.eval~xx,~k t (~ts) (~uu)~E~κ Eκ)〉
eval~x,~k t0 t1 = λ~t~u~E~κEκ.eval~x,~k t0 ~t~u~E~κ(E t′1)

(λ u.(snd u) t′1 (λ Eκ.eval~x,~k t1 ~t~u~E~κ Eκ))

eval~x,~k Kk.t = λ~t~u~E~κEκ.eval~x,~kk t ~t~u(~EE)(~κκ)Eκ

eval~x,~k ki ←↩ t = λ~t~u~E~κEκ.eval~x,~k t ~t~u~E~κEiκi

where λ x.t′ = (λ x.t){~v/~x}{~E/~k} and t′1 = t1{~v/~x}{~E/~k}.

17

Biernacka and Biernacki

3.3 Other control operators

Besides the well known abortive control operator callcc, several others have been
considered in the literature on continuations. One of them is abort (A) [23], which
can be defined in our setting by the following reduction and typing rules:

〈A t, E〉 →v 〈t, ·〉
Γ;∆ ` t : B

Γ;∆ ` A t : A

Another control operator widely studied in the literature is Felleisen’s general-
ization of callcc – the control operator C [15], for the uniformity of the presentation
accompanied here by the throw construct (whose dynamic and static semantics are
as in the case of callcc). The reduction semantics of C and its type assignment are
defined by the rules:

〈Ck.t,E〉 →v 〈t{E/k}, ·〉 Γ;∆, k : cont A ` t : B

Γ;∆ ` Ck.t : A

It is a matter of some minor adjustments in the proofs of termination for the
language with callcc under call by value or call by name, in order to obtain the
same result for abort and C. For example, in the call-by-value setting the extracted
evaluator contains the following clauses defining normalization of the A and C ex-
pressions:

eval~x,~k At = λ~v~u~E~κEκ.eval~x,~k t ~v~u~E~κ · kinit

eval~x,~k Ck.t = λ~v~u~E~κEκ.eval~x,~kk t ~v~u(~EE)(~κκ) · kinit

It is easy to see that the presented typing rules for A and C are too liberal
to ensure type preservation by reduction (because of the completely unconstrained
type B). So even though the evaluation in the simply typed language with A
and/or C always terminates, the type of the program may change in the course of
computation. If we wanted to ensure type preservation under the given reduction
rules (which are standard), we could use a more restrictive type systems that is an
extension of the annotated type system of Section 3.1.2 with the rules:

Γ;∆ `B t : B

Γ;∆ `B A t : A

Γ;∆, k : cont A `B t : B

Γ;∆ `B Ck.t : A

4 Conclusion and future work

We have shown an approach to proving termination of evaluation in reduction se-
mantics using context-based reducibility predicates à la Tait. In particular, we have
presented short and direct proofs of termination of evaluation for the simply typed
lambda calculus extended with control operators callcc, abort and Felleisen’s C for
the call-by-value and the call-by-name reduction strategies. We have also presented
the evaluators extracted from each of the proofs. These evaluators are instances of
normalization by evaluation. Moreover, they are in continuation-passing style and
the continuations arise as the computational content of the reducibility predicates
for evaluation contexts.

There seems to be at least two possible directions for future work concerning
the proof method developed in this paper. First, it should be possible to extend
our results to delimited-control operators [7,12,14]. Second, it would be interesting

18

Biernacka and Biernacki

to extend our proof method to languages with polymorphic type assignment [23].

References

[1] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A proof-theoretic foundation of abortive continuations.
Higher-Order and Symbolic Computation, 20(4):403–429, 2007.

[2] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic
and the Foundation of Mathematics. North-Holland, revised edition, 1984.

[3] Ulrich Berger. Program extraction from normalization proofs. In Marc Bezem and Jan Friso Groote,
editors, Typed Lambda Calculi and Applications, number 664 in Lecture Notes in Computer Science,
pages 91–106, Utrecht, The Netherlands, March 1993. Springer-Verlag.

[4] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Program extraction
from normalization proofs. Studia Logica, 82(1):25–49, 2006.

[5] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed λ-calculus.
In Gilles Kahn, editor, Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 203–211, Amsterdam, The Netherlands, July 1991. IEEE Computer Society Press.

[6] Ma lgorzata Biernacka. Formalization of the proof of weak head normalization for System T and its
extracted evaluator (an instance of normalization by evaluation), 2007. Available online at http:
//www.ii.uni.wroc.pl/∼mabi/nbe/cbn-system-T-church.

[7] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation for delimited
continuations in the CPS hierarchy. Logical Methods in Computer Science, 1(2:5):1–39, November
2005. A preliminary version was presented at the Fourth ACM SIGPLAN Workshop on Continuations
(CW’04).

[8] Ma lgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-sensitive calculi
and abstract machines. Theoretical Computer Science, 375(1-3):76–108, 2007. Extended version
available as the research report BRICS RS-06-18.

[9] Ma lgorzata Biernacka, Olivier Danvy, and Kristian Støvring. Program extraction from proofs of weak
head normalization. In Martin Escardó, Achim Jung, and Michael Mislove, editors, Proceedings of
the 21st Annual Conference on Mathematical Foundations of Programming Semantics(MFPS XXI),
volume 155 of Electronic Notes in Theoretical Computer Science, pages 169–189, Birmingham, UK, May
2005. Elsevier Science Publishers. Extended version available as the research report BRICS RS-05-12.

[10] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normalization proofs.
Mathematical Structures in Computer Science, 7:75–94, 1997.

[11] Olivier Danvy. On evaluation contexts, continuations, and the rest of the computation. In Hayo
Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN Workshop on Continuations (CW’04),
Technical report CSR-04-1, Department of Computer Science, Queen Mary’s College, pages 13–23,
Venice, Italy, January 2004. Invited talk.

[12] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand, editor, Proceedings of the
1990 ACM Conference on Lisp and Functional Programming, pages 151–160, Nice, France, June 1990.
ACM Press.

[13] Bruce F. Duba, Robert Harper, and David B. MacQueen. Typing first-class continuations in ML.
In Robert (Corky) Cartwright, editor, Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Programming Languages, pages 163–173, Orlando, Florida, January 1991. ACM Press.

[14] Matthias Felleisen. The theory and practice of first-class prompts. In Jeanne Ferrante and Peter
Mager, editors, Proceedings of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 180–190, San Diego, California, January 1988. ACM Press.

[15] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine, and the λ-calculus.
In Martin Wirsing, editor, Formal Description of Programming Concepts III, pages 193–217. Elsevier
Science Publishers B.V. (North-Holland), Amsterdam, 1986.

[16] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic theory of
sequential control. Theoretical Computer Science, 52(3):205–237, 1987.

[17] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science, 103(2):235–271, 1992.

[18] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak, editor, Proceedings of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages 47–58, San
Francisco, California, January 1990. ACM Press.

19

http://www.ii.uni.wroc.pl/~mabi/nbe/cbn-system-T-church
http://www.ii.uni.wroc.pl/~mabi/nbe/cbn-system-T-church

Biernacka and Biernacki

[19] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors, To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 470–
490. Academic Press, 1980.

[20] Pierre Letouzey. A new extraction for coq. In Herman Geuvers and Freek Wiedijk, editors, Types for
Proofs and Programs, International Workshop TYPES’02, number 2646 in Lecture Notes in Computer
Science, Berg en Dal, The Netherlands, April 2002. Springer-Verlag.

[21] Michel Parigot. Proofs of strong normalisation for second order classical natural deduction. Journal of
Symbolic Logic, 62(4):1461–1479, 1997.

[22] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings
of 25th ACM National Conference, pages 717–740, Boston, Massachusetts, 1972.

[23] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and
Computation, 115:38–94, 1994.

20

	Introduction
	The simply typed lambda calculus
	Terms: syntax and typing
	The call-by-value reduction strategy
	The call-by-name reduction strategy
	Comparison with the standard approach

	Abortive control operators
	The call-by-value reduction strategy
	The call-by-name reduction strategy
	Other control operators

	Conclusion and future work
	References

