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Abstract

We present a method for mechanically obtaining certified one-pass, higher-order transformations
of lambda terms into continuation-passing style. Given a naive, non-optimizing encoding from the
source to the target language, we adapt the proof of normalization à la Tait in the target language for
a suitable axiomatization of administrative reductions; the computational content of the proof is an
optimized transformation. We illustrate the applicability of this approach with three variants of the
CPS transformation: eta-reduced call-by-value CPS, eta-expanded call-by-value CPS, and call-by-
value CPS with generalized beta-reduction. In each of these cases, the resulting program coincides
with a previously known transformation – we thus formally verify the correctness of these known
transformations. We have also obtained one-pass transformations for the call-by-name counterparts
of these transformations.

The development has been carried out in the Coq proof assistant and, by extraction from the
proofs, we have obtained OCaml programs implementing the transformations. In addition, the fac-
torization of the proof allows us to identify higher-order one-pass transformations as instances of
normalization-by-evaluation programs fused with the naive translation.

1 Introduction

Translating lambda terms – and, more generally, functional programs – into continuation-
passing style has proved to be a remarkably useful tool in both theory and practice of
programming languages, originating from seminal work of Plotkin (Plotkin, 1975). Conse-
quently, the topic has been extensively studied, and numerous variants of CPS transforma-
tions have been devised independently by various researchers and for different purposes.
The task of devising one-pass CPS transformations has proven to be complex even though
its extensional behavior can be characterized in a simple manner as the composition of
Plotkin’s non-optimizing (naive) translation (Plotkin, 1975) with subsequent normalization
in the target code, i.e., reducing all the “administrative redices” introduced by the naive
translation. The normalization phase should only reduce the administrative redices and not
the ones present in the source term. This characterization has prompted various approaches
to implement CPS translations efficiently in one pass. One approach is to use a higher-
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order, compositional transformation and it has been proposed independently by Appel
(Appel, 1992), by Danvy and Filinski (Danvy & Filinski, 1990; Danvy & Filinski, 1992),
and by Wand (Wand, 1991). Another way is to use a first-order transformation, either
context-based and non-compositional (Sabry & Felleisen, 1993), or compositional (Danvy
& Nielsen, 2003). Danvy et al. have further studied the connections between the context-
based and the higher-order approach by means of program-transformation techniques and
they showed that these transformations can indeed be systematically obtained one from
another (Danvy et al., 2007).

This work reports on a method for constructing certified higher-order, one-pass transfor-
mations and is illustrated with three variants of the CPS transformation: the call-by-value
and eta-expanded CPS, the call-by-value and eta-reduced CPS, and the call-by-value CPS
with generalized beta-reduction. We show that such transformations, often designed from
scratch and difficult to reason about, can be obtained mechanically as provably correct
programs extracted from logical proofs using the Curry-Howard paradigm and the support
of a proof assistant in a simple framework that can be adapted to other languages and
other transformations. The fact that we extract higher-order programs is due to the use
of logical relations in the proof, an approach that enables us to provide reduction-free
proofs and to identify the resulting program as a fusion of the naive translation with an
instance of normalization by evaluation in the target CPS language (Berger, 1993; Berger
et al., 2006; Dybjer & Filinski, 2000). It has been demonstrated before how programs
extracted from normalization proofs constructed using the reducibility approach can be
seen as instances of normalization by evaluation: Berger and Schwichtenberg extracted a
NbE normalizer from their proof of strong normalization for the lambda calculus (Berger
et al., 2006), and similarly, Biernacka et al. extracted NbE evaluators from proofs of weak
head normalization proofs for the lambda calculus (Biernacka et al., 2005). Furthermore, it
has been shown that a context-based variant of the reducibility approach (which hinges on
explicit representation of evaluation contexts in the semantics) gives rise to NbE evaluators
in continuation-passing style by extraction (Biernacka & Biernacki, 2009a; Biernacka &
Biernacki, 2009b). In the light of these results, the present work illustrates how given a
naive encoding and a reducibility-based proof of the normalization property for the CPS
language yields the extracted normalizer that can be seen as a fusion of Plotkin’s naive
transformation and a normalization-by-evaluation function for the CPS language.

We have carried out the development in Coq and we used its extraction mechanism to
generate certified programs realizing the transformations. We used Coq version 8.4 which
offers extraction to OCaml, Haskell and Scheme (Team, 2014; Letouzey, 2002).

Related work. Several authors have formalized CPS transformations before. In Coq, Dar-
gaye and Leroy have verified the correctness of a variant of Danvy and Nielsen’s first-order
transformation for a subset of the lambda calculus as part of a proof of correctness of a
compiler for a small functional language (Dargaye & Leroy, 2007). They put emphasis
on proving correctness and their approach is based on a big-step evaluation relation; as
a byproduct they generate OCaml code implementing the corresponding transformation.
Minamide and Okuma have formalized and verified several of the known one-pass CPS
transformations in Isabelle/HOL (Minamide & Okuma, 2003), and Tian has carried out
a similar development in Twelf (Tian, 2006). Their focus is on proving correctness and
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they do not obtain transformations from the proofs. In contrast, our approach is based on
small-step reduction, and we deliberately use the logical relations approach to proving
normalization. As a result we obtain exactly Danvy and Filinski’s higher-order one-pass
transformation by extraction. Moreover, we show how well-defined modifications of the
axioms defining the normalization in the CPS language lead to some other variants of the
transformation.

1.1 An overview of the method of proof

The starting point for our development is the syntax of the source and the target languages,
and an encoding from one to the other defined as a translation function. The translation
need not be optimized, i.e., it may contain so-called administrative redices that could be
contracted at compile time. For the target language, we specify a small-step operational
semantics that reduces only administrative redices, and we then prove that for each term
in the image of the encoding there exists a normal form with respect to the semantics.
The proof is carried out constructively, and by the Curry-Howard isomorphism its com-
putational content can be extracted as a functional program that implements an optimized
translation without administrative reductions. We illustrate the method with three variants
of call-by-value translation into CPS, and we identify the extracted programs as the known
higher-order, one-pass transformations. We also discuss how the proof method affects the
form of the resulting programs.

2 A higher-order one-pass CPS transformation

The source language for our development is the call-by-value lambda calculus with terms
defined in the usual way:

t ::= x | λx.t | t@t

where variables are drawn from a countably infinite set V. We use an explicit application
operator @ rather than juxtaposition in order to distinguish abstract-syntax constructors
from transformation-time applications (denoted by @) that will occur in the extracted
programs. We assume the usual syntactic conventions about lambda terms without recalling
them here.

Plotkin’s call-by-value CPS translation introduces a continuation, i.e., a functional rep-
resentation of “the rest of the computation” as a way to sequentialize computation and
to name the intermediate results. All calls in a CPS-translated term are tail calls. The
translation is as follows:

[[x]] = λk.k@x

[[λx.t]] = λk.k@(λx.[[t]])

[[t0@t1]] = λk.[[t0]](λw0.[[t1]](λw1.(w0@w1)@k))
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The target language of the CPS transformation is a subset of lambda terms, and it can be
characterized syntactically as follows:

(root terms) r ::= λk.e

(expressions) e ::= c@v | r@c | (v0@v1)@c

(values) v ::= λx.r | x | w

(continuations) c ::= k | λw.e

The result of CPS-transforming a lambda term is a root term, which expects a continua-
tion. A continuation is either a continuation variable, or a function that expects a value. CPS
values include (translated) source-term lambda abstractions and variables of two kinds:
source-term variables (denoted x) and fresh variables introduced by the translation (denoted
w).

The grammar of CPS terms allows us to identify and distinguish syntactically between
source-term β -redices and administrative β -redices introduced by the translation. The
former kind of redex is completely characterized as an application of a value to a value,
because source-term lambda abstractions are translated to lambda abstractions in the CPS
category of values, and any lambda abstraction in this category can only be obtained by
translating a source-term lambda abstraction. The latter kind of redex can be either an
application of a root term to a continuation (λk.e)@c, or an application of a continuation
to a value (λw.e)@v. (We could introduce annotations on lambdas to distinguish the three
kinds of lambda abstractions in the CPS grammar, but we prefer to keep things simple
and identify a lambda abstraction by looking at its bound variable). Based on the syntactic
distinction between residual and administrative redices we can write a reduction relation
on CPS terms that only reduces administrative redices, and leaves the residual ones intact.

A one-pass CPS transformation reduces administrative redices away at translation time
and produces compact CPS terms that can be defined using the following grammar:

r ::= λk.e

e ::= k@v | (v0@v1)@c

v ::= λx.r | x | w

c ::= k | λw.e

In contrast to full CPS grammar, the grammar of compact terms does not allow admin-
istrative redices as characterized above. It can be observed in the restricted grammar of
expressions (applications of continuation variables to values are allowed since they do not
form redices).

A one-pass variant of Plotkin’s CPS transformation has been devised independently by
Appel (Appel, 1992), Danvy and Filinski (Danvy & Filinski, 1990; Danvy & Filinski,
1992), and Wand (Wand, 1991). It is defined in the following way, using the two-level
lambda calculus (Nielson & Nielson, 1992):
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T (t) = λk.Tc (t ,λu.k@u) where k is fresh

Tc (x ,k) = k@x

Tc (λx.t ,k) = k@(λx.λk′.Tc (t ,λu.k′@u)) where k′ is fresh

Tc (t0@t1 ,k) = Tc (t0 ,λu0.Tc (t1 ,λu1.(u0@u1)@(λw.k@w))) where w is fresh

The translation into CPS is done by the function T and it uses an auxiliary function
Tc called with an initial continuation. In the definition, residual lambda abstractions and
applications are expressed with the constructs of the source language. An overlined lambda
denotes a continuation that will be applied at translation time, and k@. . . is such an appli-
cation; it produces an administrative redex when a continuation is substituted for k and all
such redices will be reduced away at translation time.

3 Proof of normalization in the CPS language

In this section we formalize the normalization process that leads to the elimination of
administrative redices in the intermediate CPS terms. We characterize it as a sequence of
one-step reductions and we prove that normalization always terminates using Tait’s method
based on reducibility predicates. Specifically, we prove the constructive existence of a CPS
normal form, and we obtain the actual function computing it by extraction from the proof.
Informally, we can think of a constructive proof of normalization as a function returning
for each source term a CPS normal form together with the proof that it is indeed the correct
normal form. The extraction procedure can then be seen as removing the logical parts and
returning only the computational part of the proof.

The intensional structure of the extracted normalizer depends on the method of proof:
it is possible to obtain different programs computing the same function from different
normalization proofs. Here, we identify the computational content of the normalization
proof with eta-expansion as exactly the known higher-order one-pass transformations T
shown in Section 2. We then show that dropping the eta-expansion axiom leads to a
different program that we show in Section 3.2. We discuss some of the relevant details
of the proof and their connection to the extracted programs.

3.1 Axiomatization

We now present the small-step semantics for the CPS language. The normalization proof
reported in this article matches the associated Coq formalization, while its presentation is
meant to be human-readable, so it is more abstract than Coq code.

We give an axiomatization of the small-step reduction through an inference system
presented in Figure 1. The first three axioms define the notion of reduction. The ax-
ioms (βr),(βc) define a single computation step – an administrative β -reduction, and
(ηc) defines η-expansion of continuation variables. The adoption of the η-rule allows for
uniform treatment of all continuations as functions in the proof and it leads to eta-expanded
continuation variables in the extracted program. As typical, we use the notation e[k 7→ c] to
denote the capture-free substitution of c for the continuation variable k in e, and similarly
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(λk.e)@c→β e[k 7→ c]
(βr)

(λw.e)@v→β e[w 7→ v]
(βc) k→η λw.k@w

(ηc)

e→β e′

e→exp e′
(e1)

v→val v′

k@v→exp k@v′
(e2)

v0→val v′0
(v0@v1)@c→exp (v′0@v1)@c

(e3)

v1→val v′1
(v0@v1)@c→exp (v0@v′1)@c

(e4)
c→cnt c′

(v0@v1)@c→exp (v0@v1)@c′
(e5)

c→η c′

c→cnt c′
(c1)

e→exp e′

λw.e→cnt λw.e′
(c2)

r→trm r′

λx.r→val λx.r′
(v)

e→exp e′

λk.e→trm λk.e′
(r)

Fig. 1. A small-step axiomatization of administrative normalization of CPS terms

for the substitution of values for term variables. The remaining axioms define the com-
patible closure of the notion of reduction with respect to expression, value, continuation
and term constructors. In the Coq implementation, the corresponding relations are defined
mutually inductively. The semantics is nondeterministic (the three rules (e3),(e4),(e5) can
be applied in any order), but it is easily seen to be confluent.

Next, we define normalization predicates for each of the syntactic categories as the re-
flexive-transitive closure of the corresponding one-step relation, i.e., we write→∗X for the
reflexive-transitive closure of a relation→X . Furthermore, we use the following notation:

r0 ⇓trm r1 iff r0→∗trm r1 and NF(r1)

e0 ⇓exp e1 iff e0→∗exp e1 and NF(e1)

v0 ⇓val v1 iff v0→∗val v1 and NF(v1)

c0 ⇓cnt c1 iff c0→∗cnt c1 and NF(c1)

The predicate NF(·) is true for terms, expressions, values and continuations in normal form
with respect to the defined reduction relation.

We now define reducibility predicates à la Tait in order to prove the selective normaliza-
tion of administrative redices. To this end, we treat each syntactic category as a type: values
and expressions play the role of base types, and the categories of continuations and root
terms behave like function types: when a continuation or a root term is applied to an argu-
ment, the resulting redex will be reduced (values and expressions do not generate redices
this way). The definitions of the corresponding logical relations are thus the following:

Rv(v)
df
= ∃v′.v ⇓val v′

Re(e)
df
= ∃e′.e ⇓exp e′

Rc(c)
df
= ∀v.Rv(v)→ Re(c@v)

Rr(r)
df
= ∀c.Rc(c)→ Re(r@c)

We say that a continuation is reducible (Rc) if, when it is applied to a reducible value, the
resulting expression is reducible. Similarly, a term is reducible (Rr) if, when it is applied
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to a reducible continuation, the resulting expression is reducible. Values and expressions
are reducible if they normalize.

The next step is to prove a theorem that asserts existence of CPS normal forms for all
source terms translated into CPS terms by Plotkin’s encoding [[·]].

Theorem 1. For each term t ∈ Λ, there exists a CPS term r (a term in CPS-normal form)
such that [[t]] ⇓trm r holds (i.e., [[t]] normalizes to r).

Not surprisingly, the proof follows the idea and structure of the normalization proof for
the simply typed lambda calculus using Tait’s reducibility predicates (Martin-Löf, 1975;
Girard et al., 1989). It uses two key lemmas:

Lemma 1. For each term t ∈ Λ, Rr([[t]]) holds.

Lemma 2. For each term r such that Rr(r), r ⇓trm r′ holds for some r′.

Lemma 1 states that the CPS encoding of a source term is reducible, and by Lemma 2 we
then deduce that all terms have CPS normal forms (i.e., the corresponding compact CPS
terms without administrative redices).

We have formalized the proof of Theorem 1 in the Coq proof assistant. We then applied
the Coq extraction mechanism to obtain an OCaml program that implements the underlying
normalization procedure. This extracted program coincides with the function T of Section 2
except for some Coq-specific artefacts arising in the extraction process.

The proof of Lemma 1 proceeds by induction on the structure of source terms. Whenever
we need to apply the induction hypothesis, we have to specify the appropriate reducible
continuation – for this the proof relies on Coq’s automation mechanism and Prolog-like
reasoning with generation of unification variables to be instantiated later. Moreover, we
make sure not to inspect the structure of continuations c arising during the proof, but only
use the fact that Rc(c) holds when appropriate. This fact has consequences for the extracted
program that we obtain from the proof: the computational content of Rc(c) is a proper
continuation, and if we do not inspect the structure of c then we can erase it from the
extracted program as an unused argument. Specifically, the computational content of the
predicate Rc has the following OCaml type:

type rc = val -> exp

which is the type of continuations expecting CPS values and returning CPS expressions (in
normal form). The computational contents of the remaining predicates have the following
OCaml types:

type rv = val

type re = exp

type r = (val -> exp) -> exp

These types correspond to those extracted by the Coq extraction procedure but are sim-
plified here by removing unused parts of the extracted types. The types val and exp are
extracted types of values and expressions of the CPS language, respectively.
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3.2 Eta-reduced CPS transformation

Let us now consider the role of the (ηc)-axiom in the axiomatization of Figure 1. As
mentioned before, adopting this axiom leads to eta-expanded continuation variables in
CPS, and consequently to exactly the one-pass transformer T shown in the previous section.
Alternatively, we can discard the (ηc)-axiom in order to obtain eta-reduced continuations
in CPS normal forms. At the level of proof, this variant requires inspection of the structure
of continuation arguments and it leads to the extraction of the following normalization
function:

Tη (t) = λk.Tη

k (t ,k) where k is fresh

Tη
c (x ,c) = c@x

Tη
c (λx.t ,c) = c@(λx.λk′.Tη

k (t ,k′)) where k′ is fresh

Tη
c (t0@t1 ,c) = Tη

c (t0 ,λu0.T
η
c (t1 ,λu1.(u0@u1)@(λw.c@w))) where w is fresh

Tη

k (x ,k) = k@x

Tη

k (λx.t ,k) = k@(λx.λk′.Tη

k (t ,k′)) where k′ is fresh

Tη

k (t0@t1 ,k) = Tη
c (t0 ,λu0.T

η
c (t1 ,λu1.(u0@u1)@k))

This normalizer coincides with Danvy and Filinski’s tail-conscious CPS transforma-
tion (Danvy & Filinski, 1992).

4 Context-sensitive administrative reductions

It is possible to obtain even more compact CPS terms by performing more administrative
reductions. For example, Danvy and Nielsen (Danvy & Nielsen, 2005) consider additional
administrative redices occurring in the translation of source β -redices. The source term
(λx.t)@v is translated to a call-by-value CPS term of the form ((λx.r)@v′)@c, and the
dynamic redex (λx.r)@v′ here blocks further administrative redices involving r and c. We
can remedy the situation by introducing an extra reduction rule in the CPS language that
moves the continuation c into the body of the abstraction, thus bypassing the dynamic
redex and triggering administrative reductions. Danvy and Nielsen also point out that this
reduction step corresponds to Sabry and Felleisen’s source-level reduction of the form

E[(λx.t)@t ′]→ (λx.E[t])@t ′,

where E is a nonempty reduction context and x is not free in E(Sabry & Felleisen, 1993).
This new reduction can be characterized by the following axiom that extends the rules

of Figure 1:

((λx.r)@v)@c→β (λx.r@c)@v
(βlift)

In order to account for this reduction, we need to extend the grammar of expressions and
values with new constructs so that now it reads:

e ::= . . . | v0@v1

v ::= . . . | λx.e
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Furthermore, an additional rule for compatibility is needed:

e→exp e′

λx.e→val λx.e′
(v2)

The definitions of logical relations also have to be adjusted in the treatment of values.
If a source lambda abstraction is in the operator position, it is no longer enough that it
terminates – we need to ensure that the reductions triggered by the application of (βlift)

will terminate. Therefore we need to define the reducibility property for values in such a
way as to express the following intuitive property:

Rv(v)
df
= ∃v′.v ⇓val v′∧∀v0c.(∃v′0.v0 ⇓val v′0)→ Rc(c)→ Re((v@v0)@c)

Unfortunately, this definition is not well-founded since the predicate Rc refers back to
Rv (see the previous definition).

What we can do instead is to use an indexed logical relation that takes an additional pa-
rameter tracking the depth of the lambda abstraction in an application. We can then define
the property “reducibility at level n”: a value reducible at level n guarantees termination
when applied to a terminating value and a continuation that only expects reducible values
of levels smaller than n.

The complete definition of logical relations is now the following:

Rv(0,v)
df
= ∃v′.v ⇓val v′

Rv(n+1,v) df
= ∀v′c.Rv(0,v′)→ Rc(n,c)→ Re((v@v′)@c)

Re(e)
df
= ∃e′.e ⇓exp e′

Rc(n,c)
df
= ∀v.Rv(n,v)→ Re(c@v)

Rr(n,r)
df
= ∀c.Rc(n,c)→ Re(r@c)

We have redefined the Rv predicate and taken into account the level parameter in the
definitions of Rr and Rc. The definition of Re does not change.

The statement of the normalization theorem remains the same and the proof proceeds
along similar lines as before. We need to change the formulation of auxiliary lemmas as
follows:

Lemma 3. For each term t ∈ Λ and for all n ∈N , Rr(n, [[t]]) holds.

Lemma 4. For each term r such that Rr(0,r) holds, r ⇓trm r′ holds for some r′ (CPS
normal form).

The proof of Lemma 4 does not change and the proof of Lemma 3 changes only in that
it requires that we keep track of depth in applications: intuitively, when we talk about an
operand we increase the index, and when we talk about the argument we set the index to 0.

The program extracted from the normalization theorem in this case reads as follows:
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Tlift (t) = λk.T0
c (t ,λu.k@u) where k is fresh

Tn
c (x ,k) = k@(Un (x))

T0
c (λx.t ,k) = k@(λx.λk′.T0

c (t ,λu.k′@u)) where k′ is fresh

Tn+1
c (λx.t ,k) = k@(λ t ′.λk′.(λx.Tn

c (t ,k
′))@t ′)

Tn
c (t0@t1 ,k) = Tn+1

c (t0 ,λu0.T0
c (t1 ,λu1.u0@u1@k))

U0 (v) = v

Un+1 (v) = λ t.λk.(v@t)@(λw.k@(Un (w))) where w is fresh

This program coincides with the normalizer of Danvy and Nielsen (Danvy & Nielsen,
2005).

A similar optimization can be done for the call-by-name CPS translation, where the new
reduction rule reads as follows:

((λx.r′)@r)@c→β (λx.r′@c)@r
(β n

lift)

We have obtained a call-by-name variant of the optimized translation along the same lines
as for call by value.

5 Formalization in Coq

In this section we present the main features of the Coq formalization accompanying this
article. The code is available at http://bitbucket.org/mabi/onepass and it is com-
patible with the Coq version 8.4. The repository contains Coq source files as well as files
obtained by the Coq extraction mechanism from the proofs. These extracted files have been
further annotated with comments in order to clarify the connection between the proofs and
the extracted code.

5.1 Representation and structure

The formalization uses a deep embedding of both the source and the target CPS language.
In consequence, we have to deal with variable bindings explicitly. We do this by using the
locally nameless representation of terms – where bound variables are represented by de
Bruijn indices and free variables are represented by names – and by applying the technique
known as cofinite quantification implemented in Chargueraud’s LN library (Aydemir et al.,
2008; Charguéraud, 2011). In particular, the library provides an interface for fresh variable
generation that we use extensively: whenever we talk about the body of an abstraction as a
proper term, we need to substitute a fresh name for the de Bruijn index of the bound vari-
able. We then need to prove a number of technical lemmas that are needed for the handling
of the representation of terms. Fortunately, the required lemmas have been formulated by
Chargueraud in his library for several typical languages; their proofs can be adapted to our
setting in a straightforward way, therefore the formalization overhead is not big.

http://bitbucket.org/mabi/onepass
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The naive translation from source to CPS terms is implemented as a simple recursive
function. To formalize the normalization problem in the CPS language we need to define
the axioms of Figure 1 and the logical relations needed for the proof. The axioms are
represented as mutually inductive definitions, and the logical relations are transliterated
from their mathematical definition. They are, however, defined using subset types rather
than existential formulas in order to allow for the extraction of witnesses from proofs.

The proofs of the auxiliary lemmas are done by induction, where the induction prin-
ciples needed for each proof are Coq-generated for the appropriate inductive definition.
Coq’s tactic language supports automation in the process of constructing proofs; we have
exploited this feature in order to increase modularity and facilitate adaptations of the
formalization to different axiomatizations (e.g., big-step) of the same strategy, or even for
different strategies (e.g., call-by-name).

5.2 Extracted programs

The extraction mechanism of Coq produces code in OCaml, Haskell or Scheme. The pro-
grams obtained by extraction are essentially the one-pass transformers shown in previous
sections, except that they are cluttered with logical artefacts that could be eliminated. There
are two main sources of clutter. First, the proofs in Coq use dependently typed objects
whose computational content is not well typed in a non-dependent language, therefore the
extracted code contains occurrences of unsafe coercions (in statically typed OCaml and
Haskell). This can be observed in particular in the normalization proof for generalized beta
reduction. The predicate Rv in this case is not definable inductively in Coq and is defined
instead with a recursive function on natural numbers. Consequently, its computational
content is a dependent type modeled by a special type in OCaml and the extraction process
inserts coercions (Obj.magic : ’a -> ’b) when needed.

Second, the structure of the extracted code depends both on the method of proof and
on the extraction algorithm used in Coq. The code can be further optimized by inlining
and dead code elimination. Some of these optimizations can be prescribed already at the
level of Coq formalization using special commands. Moreover, in our development the
actual implementation of the procedure generating fresh variables (assumed as an axiom
in the formalization) has to be provided in the extracted code. In OCaml, we can use a
simple gensym function to achieve that. As a result, we can further optimize the program
by removing the continuation argument from the main function because it is only used in
the proof to control freshness of variables and not to construct CPS normal forms.

The fact that the extracted programs are higher-order and use continuations arises from
the use of the logical relation Rc whose computational content is a continuation (a higher-
order function), as shown in Section 3.1. The programs operate in one pass, i.e., they do
not rely on constructing intermediate CPS terms – the images of the encoding. It is due to
the fact that the proofs do not use the intermediate CPS terms for construction of the final
result but only manipulate the reducibility predicates instead.
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6 Conclusion

We have shown how to obtain higher-order, one-pass transformations from the lambda
calculus to compact CPS terms by extracting them from proofs of the appropriate nor-
malization property in the CPS language. The normalization proofs have been constructed
by adapting the reducibility method due to Tait and defining suitable logical relations. In
our case, we have identified the extracted programs as already known transformations,
thus we have provided formal proofs of their correctness. The presented approach can also
be used to obtain new, provably correct, one-pass transformations given a non-optimizing
translation and a specification of normalizability in the target language. This method of
writing these particular higher-order programs may be easier than having to write a func-
tion from scratch, since the ingredients needed in our approach are usually known for a
given language, and it is a matter of putting together the pieces of the puzzle to mechan-
ically obtain the code, possibly using a proof assistant to help automate the development.
We also note that our programs are in each case instances of the naive translation fused
with a normalization-by-evaluation function for the CPS language.
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