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Abstract. We present a context-sensitive reduction semantics for a lamb-
da-calculus with explicit substitutions and we show that the functional
implementation of this small-step semantics mechanically corresponds to
that of the abstract machine for Core Scheme presented by Clinger at
PLDI’98, including first-class continuations. Starting from this reduction
semantics, (1) we refocus it into a small-step abstract machine; (2) we
fuse the transition function of this abstract machine with its driver loop,
obtaining a big-step abstract machine which is staged; (3) we compress
its corridor transitions, obtaining an eval/continue abstract machine; and
(4) we unfold its ground closures, which yields an abstract machine that
essentially coincides with Clinger’s machine. This lambda-calculus with
explicit substitutions therefore aptly accounts for Core Scheme, including
Clinger’s permutations and unpermutations.

1 Introduction

Motivation: Our motivation is the same as that of the second author in the com-
panion paper “Towards Compatible and Interderivable Semantic Specifications
for the Scheme Programming Language, Part I: Denotational Semantics, Natu-
ral Semantics, and Abstract Machines” [10]. We wish for semantic specifications
that are mechanically interderivable, so that their compatibility is a corollary of
the correctness of the derivations.

This work: We build on our previous work on the syntactic correspondence
between context-sensitive reduction semantics and abstract machines for a λ-
calculus with explicit substitutions [3,4]. Let us review each of these concepts in
turn:



Abstract machines: An abstract machine is a state-transition system model-
ing the execution of programs. Typical abstract machines for lambda cal-
culi treat substitution as a meta-operation and include it directly in the
transitions of the machine. This approach is often used to faithfully model
evaluation based on term rewriting. Alternatively, since Landin’s SECD ma-
chine [12, 15], substitution is explicitly implemented in abstract machines
using environments, for efficiency. The two approaches are used interchange-
ably in the literature (even for the same language), depending on the context
of use, but their equivalence is rarely treated formally.

A λ-calculus with explicit substitutions: Since Plotkin’s foundational work
on λ-calculi and abstract machines [19], it has become a tradition to directly
relate the result of abstract machines with the result of weak-head nor-
malization, regardless of whether the abstract machines treat substitution
implicitly as a meta-operation or explicitly with an environment. As an off-
shoot of his doctoral thesis [6, 7], Curien proposed a ‘calculus of closures,’
the λρ-calculus, that would, on the one hand, be faithful to the λ-calculus,
and on the other hand, reflect more accurately the computational reality of
abstract machines by delaying substitutions into environments. In so doing
he gave birth to calculi of explicit substitutions [1], which promptly became
a domain of research on their own.
In our thesis work [2,8], we revisited the λρ-calculus and proposed a minimal
extension for it, the λρ̂-calculus, that is closed under one-step reduction. We
then systematically applied Danvy and Nielsen’s refocusing technique [13]
on several reduction semantics and obtained a variety of known and new
abstract machines with environments, including the Krivine machine for call
by name and the CEK machine for call by value [3].

Context-sensitive reduction semantics: In his thesis work [14], Felleisen in-
troduced a continuation-semantics analogue of structural operational seman-
tics, reduction semantics: a small-step operational semantics with an explicit
representation of the reduction context. As Strachey and Wadsworth orig-
inally did with continuation semantics [21], he then took advantage of this
explicit representation of the rest of the reduction to make contraction rules
context sensitive, and operate not just on a potential redex,3 but also on its
context, thereby providing the first small-step semantic account of control
operators.
In our thesis work [2, 8], we considered context-sensitive contraction rules
for λρ̂-calculi. We then systematically applied the refocusing technique on
several context-sensitive reduction semantics and obtained a variety of known
and new abstract machines with environments [4].

In this article, we present a variant of the λρ̂-calculus that, through refocusing,
essentially corresponds to Clinger’s abstract machine for Core Scheme as pre-
sented at PLDI’98 [5]. Curien’s original point therefore applies and reductions in
this calculus reflect the execution of Scheme programs accurately. We therefore
put the λρ̂-calculus forward as an apt calculus for Core Scheme.
3 A potential redex either is an actual one or is stuck.
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Prerequisites and domain of discourse: Though one could of course use PLT
Redex [17], we use a pure subset of Standard ML as a metalanguage here, for
consistency with the companion paper. We otherwise expect some familiarity
with programming a reduction semantics and with Clinger’s PLDI’98 article [5].
For the rest, we have aimed for a stand-alone presentation but the reader might
wish to consult our earlier work [3,4] or first flip through the pages of the second
author’s lecture notes for warm-up examples [9].

Terminology:

Notion of contraction: To alleviate the overloading of the term ‘reduction’
(as in, e.g., “reduction semantics,” “notion of reduction,” “reduction strat-
egy,” and “reduction step”), we refer to Barendregt’s ‘notion of reduction’
as ‘notion of contraction.’ A notion of contraction is therefore the definition
of a partial contraction function mapping a potential redex to a contractum.

Eval/continue abstract machine: As pointed out in the companion paper,
an ‘eval/apply’ abstract machine [16] would be more accurately called ‘eval/-
continue’ since the apply transition function, together with the data type of
contexts, often form the defunctionalized representation of a continuation.
We therefore use this term here.

Overview: We first present the signatures of the store, the environment, and
the permutations (Section 2), and then the syntax (Section 3) and the reduc-
tion semantics (Sections 4 and 5) of a λ-calculus with explicit substitutions for
Core Scheme. The resulting evaluation function is reduction-based in that it
is defined as the iteration of a one-step reduction function that enumerates all
the intermediate closures in the reduction sequence. We make it reduction-free
by deforesting all these intermediate closures in the course of evaluation, using
Danvy and Nielsen’s refocusing technique (Section 6). We successively present
an eval/continue abstract machine over closures that embodies the chosen re-
duction strategy (Section 6.1), and then an eval/continue abstract machine over
terms and environments (Section 6.2). We then analyze this machine (Section 7)
before concluding (Section 8).

2 Domain of discourse

In the interest of brevity and abstractness, and as in the companion paper, we
only present ML signatures for the store (Section 2.1), the environment (Sec-
tion 2.2) and the permutations (Section 2.3).

2.1 Store

A store is a mapping from locations to storable values. We specify it as a poly-
morphic abstract data type with the usual algebraic operators to allocate fresh
locations and initialize them with given expressible values, dereference a given
location in a given store, and update a given store at a given location with a
given expressible value.
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signature STO = sig
type ’a sto
type loc

val empty : ’a option sto

val new : ’a option sto * ’a -> loc * ’a option sto
val news : ’a option sto * ’a list -> loc list * ’a option sto

val fetch : loc * ’a option sto -> ’a option option
val update : loc * ’a * ’a option sto -> ’a option sto option

end

structure Sto : STO = struct
(* deliberately omitted *)

end

In his definition of Core Scheme [5, Fig. 4], Clinger lumps together storable
values and expressible values [20]. In particular, he lets the undefined value be
an expressible value even though in actuality it can only be a storable value
(namely the value of a used, but not declared, variable). In point of fact, both
dereferencing and assigning such an undeclared variable is an error. We therefore
depart from Clinger’s specification by defining storable values with an optional
type: NONE denotes the undefined value and SOME v denotes the expressible value
v. This way, we do not need to account for the undefined value at every turn in
the derivation.

2.2 Environment

An environment is a mapping from identifiers to denotable values. We specify
it as a polymorphic abstract data type with the usual algebraic operators to
extend a given environment with new bindings and to look up identifiers in a
given environment, for a given type of identifiers.

type ide = string

signature ENV = sig
type ’a env

val empty : ’a env
val emptyp : ’a env -> bool

val extend : ide * ’a * ’a env -> ’a env
val extends : ide list * ’a list * ’a env -> ’a env

val lookup : ide * ’a env -> ’a option
end

structure Env : ENV = struct
(* deliberately omitted *)

end

In the definition of Scheme, the denotable values are store locations.
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2.3 Permutations

The semantics of Scheme deliberately does not specify the order in which the
subterms of an application are evaluated. This underspecification (also present
in C for assignments) is meant to encourage programmers to explicitly sequence
their side effects.

To this end, in his abstract machine, Clinger non-deterministically uses a
pair of permutation functions: one over the subterms in an application, and the
inverse one over the resulting values. We implement this non-determinism by
threading a stream of pairs of permutations and unpermutations along with the
store. We materialize this stream with the following polymorphic abstract data
type.

signature PERM = sig
type ’a perm = ’a * ’a list -> ’a * ’a list
type (’v, ’c) permgen

val init : (’v, ’c) permgen
val new : (’v, ’c) permgen -> (’v perm * ’c perm) * (’v, ’c) permgen

end

structure Perm : PERM = struct
(* deliberately omitted *)

end

3 Syntax

The following module implements the internal syntax of Core Scheme [5, Fig. 1],
for a given type of identifiers.

structure Syn = struct
datatype quotation = QBOOL of bool

| QNUMB of int
| QSYMB of ide
| QPAIR of Sto.loc * Sto.loc

(* | QVECT of ... *)
(* | ... *)

datatype term = QUOTE of quotation
| VAR of ide
| LAM of ide list * term
| APP of term * term list
| COND of term * term * term
| SET of ide * term

end

Terms include all the constructs of Core Scheme considered by Clinger: quoted
values, identifiers, lambda abstractions, applications, conditional expressions and
assignments. Primitive operators such as call/cc are declared in the initial envi-
ronment.
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structure Sem = struct
type env = Sto.loc Env.env

datatype primop = CWCC (* | ... *)

datatype clo =
CLO_GND of Syn.term * env

| CLO_QUOTE of Syn.quotation
| CLO_LAM of ide list * Syn.term * env * Sto.loc
| CLO_APP of clo * clo list * value list * value Perm.perm
| CLO_CALL of value * value list
| CLO_COND of clo * clo * clo
| CLO_SET of ide * env * clo
| CLO_UNSPECIFIED
| CLO_PRIMOP of primop * Sto.loc
| CLO_CONT of cont * Sto.loc

and cont =
HALT

| SELECT of clo * clo * cont
| ASSIGN of ide * env * cont
| PUSH of clo list * value list * value Perm.perm * cont
| CALL of value list * cont

withtype value = clo

type sto = value option Sto.sto

type perms = (value, clo) Perm.permgen

datatype answer = VALUE of value * sto * perms
| STUCK of string

local val (l_primop, s1) = Sto.new (Sto.empty, CLO_UNSPECIFIED)
val (l_cwcc, s2) = Sto.new (s1, CLO_PRIMOP (CWCC, l_primop))

in val env_init = Env.extend ("call/cc", l_cwcc, Env.empty)
val sto_init = s2

end
end

Fig. 1. Lambda-calculus with explicit substitutions for Core Scheme

4 Semantics

We consider a language of closures built on top of terms. Fig. 1 displays the
syntactic categories of closures (the data type closure) and of contexts (the
data type cont) as well as the notion of environment, value, store, permutation
generator, and answer. Let us review each of these in turn.

4.1 The environment

As described in Section 2.2, the environment maps identifiers to denotable values,
and denotable values are store locations.

4.2 Closures

As initiated by Landin [15] and continued by Curien [6, 7], a ground closure is
a term paired with a syntactic representation of its environment (this pairing is
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done with the constructor CLO_GND). In a calculus of closures, small-step evalu-
ation is defined (e.g., by a set of rewriting rules) over closures rather than over
terms. Ground closures, however, are usually not expressive enough to account
for one-step reductions, though they may suffice for big-step evaluation. Indeed,
one-step reduction can require the internal structure of a closure to be changed
in such a way that it no longer conforms to the form “(term, environment).”
The data type of closures therefore contains additional constructors to represent
intermediate results of one-step reductions for all the language constructs.

– The CLO_GND constructor is used for ground closures.
– The CLO_QUOTE constructor accounts for Scheme’s quotations.
– The CLO_LAM constructor accounts for user-defined procedures, and pairs

lambda-abstractions (list of formal parameters and body) together with the
environment of their definition.

– The CLO_APP constructor accounts for applications whose subcomponents
are not completely reduced yet. The closure and list of closures still need to
be reduced, and the list of values holds what has already been reduced. The
value permutation will be used to unpermute the complete list of values and
yield the CLO_CALL construction.

– The CLO_CALL constructor accounts for applications whose subcomponents
are completely reduced.

– The CLO_COND constructor accounts for conditional closures.
– The CLO_SET constructor accounts for assignments.
– The CLO_UNSPECIFIED constructor accounts for the unspecified value yielded,

e.g., by reducing an assignment.
– The CLO_PRIMOP constructor accounts for predefined procedures (i.e., prim-

itive operators) such as “call-with-current-continuation” (commonly abbre-
viated “call/cc”), that captures the current context.

– The CLO_CONT constructor accounts for escape procedures, i.e., first-class
continuations as yielded by call/cc. It holds a captured context (see Sec-
tion 4.5).

Note: In Scheme, procedures of course cannot be compared for mathematical
equality, but they can be compared for representational identity. So for ex-
ample, (equal? (lambda (x) x) (lambda (x) x)) evaluates to #f but
(let ([identity (lambda (x) x)]) (equal? identity identity))

evaluates to #t. For better or for worse,4 a unique location is associated to
every applicable object, be it a user-defined procedure, a predefined proce-
dure, or an escape procedure. This is the reason why the closure constructors
CLO_LAM, CLO_PRIMOP, and CLO_CONT feature a store location.

4.3 Primitive operators

The data type primop groups all the predefined procedures. Here, we only con-
sider one, call/cc.
4 Will Clinger publically refers to this particular design as a “bug” in the semantics

of Scheme.
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4.4 Values

(Expressible) values are closures that cannot be decomposed into a potential
redex and its reduction context, namely quotations, lambda-abstractions, prim-
itive operators, and first-class continuations:

(* valuep : Sem.clo -> bool *)
fun valuep (CLO_QUOTE _) = true

| valuep (CLO_LAM _) = true
| valuep (CLO_PRIMOP _) = true
| valuep (CLO_CONT _) = true
| valuep _ = false

4.5 Contexts

The data type faithfully reflects Clinger’s grammar of contexts [5, Fig. 4]:

– The HALT constructor accounts for the empty context.
– The SELECT constructor accounts for the context of the test part of a con-

ditional expression.
– The ASSIGN constructor accounts for the context of the subcomponent in an

assignment.
– The PUSH constructor accounts for the context of a subcomponent in a per-

muted application.
– The CALL constructor accounts for the context of a value in position of

function in an unpermuted application of values.

4.6 The store

As described in Section 2.1, the store maps locations to storable values, and
storable values are either NONE for the undefined value or SOME v for the ex-
pressible value v.

4.7 The permutation generator

As described in Section 2.3, we thread a stream of pairs of permutations (of
closures) and unpermutations (of values) along with the store.

4.8 Answers

Any non-diverging reduction sequence starting from a closure either leads to a
value closure or becomes stuck. The result of a non-diverging evaluation is an
answer, i.e., either an expressible value (as defined in Section 4.4) together with
a store and a permutation generator, or an error message.

4.9 The initial store

The initial store holds the values of primitive operators such as call/cc.

4.10 The initial environment

The initial environment declares primitive operators such as call/cc.
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structure Redexes = struct
datatype potred =

LOOKUP of ide * Sem.env
| UNPERMUTE of Sem.value * Sem.value list * Sem.value Perm.perm
| BETA of Sem.value * Sem.value list
| UPDATE of ide * Sem.env * Sem.value
| COND of Sem.value * Sem.clo * Sem.clo
| PROC of ide list * Syn.term * Sem.env
| PROP_APP of Syn.term * Syn.term list * Sem.env
| PROP_COND of Syn.term * Syn.term * Syn.term * Sem.env
| PROP_SET of ide * Syn.term * Sem.env

datatype contractum =
STUCK of string

| NEXT of Sem.clo * Sem.cont * Sem.sto * Sem.perms

(* ... *)
end

Fig. 2. Notion of contraction for Core Scheme (part 1/2)

5 A reduction semantics for Core Scheme

A reduction semantics is a small-step operational semantics with an explicit
representation of the reduction context. It consists of a grammar of terms (here,
the grammar of closures from Fig. 1), a notion of contraction specifying the
basic computation steps, and a reduction strategy embodied by a grammar of
reduction contexts (see Fig. 1). In this section, we present a reduction semantics
for the calculus of closures introduced in Section 4.

5.1 Potential redexes and contraction

The notion of contraction is defined with two data types—one for potential
redexes and one for the result of contraction (Figure 2)—and with a contraction
function (Figure 3). Let us review each of these potential redexes and how they
are contracted:

– LOOKUP – fetching the value of an identifier from the store (via its location
in the environment); it succeeds only if the location corresponding to the
identifier is defined in the store – otherwise reduction is stuck;

– UNPERMUTE – performing the unpermutation of a sequence of values before
applying BETA-contraction;

– BETA – either performing the usual β-reduction for n-ary functions (when
the operand is a user-defined procedure), or capturing the current context
(when the operand is call/cc), or replacing the current context by a captured
context (when the operand is an escape procedure);

– UPDATE – updating the value of an identifier in the store and returning the
“unspecified” closure;

– COND – selecting one of the branches of a conditional expression, based on
the value of its test;
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structure Redexes = struct
(* ... *)

(* contract : potred * Sem.cont * Sem.sto * Sem.perms -> contractum *)
fun contract (LOOKUP (i, r), rc, s, pg) =

(case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME sv)

=> (case sv
of (SOME v)

=> NEXT (v, rc, s, pg)
| NONE

=> STUCK "attempt to reference an undefined variable")
| NONE
=> STUCK "attempt to read an invalid location")

| NONE
=> STUCK "attempt to reference an undeclared variable")

| contract (UNPERMUTE (v, vs, pi), rc, s, pg) =
NEXT (Sem.CLO_CALL (pi (v, vs)), rc, s, pg)

| contract (BETA (Sem.CLO_LAM (is, t, r, l), vs), rc, s, pg) =
if List.length is = List.length vs
then let val (ls, s’) = Sto.news (s, vs)

in NEXT (Sem.CLO_GND (t, Env.extends (is, ls, r)), rc, s’, pg)
end

else STUCK "arity mismatch"
| contract (BETA (Sem.CLO_PRIMOP (Sem.CWCC, _), vs), rc, s, pg) =

if 1 = List.length vs
then let val (l, s’) = Sto.new (s, Sem.CLO_UNSPECIFIED)

in NEXT (Sem.CLO_CALL (hd vs, [Sem.CLO_CONT (rc, l)]), rc, s’, pg)
end

else STUCK "arity mismatch"
| contract (BETA (Sem.CLO_CONT (rc’, l), vs), rc, s, pg) =

if 1 = List.length vs
then NEXT (hd vs, rc’, s, pg)
else STUCK "arity mismatch"

| contract (BETA (_, vs), rc, s, pg) =
STUCK "attempt to apply a non-procedure"

| contract (UPDATE (i, r, v), rc, s, pg) =
(case Env.lookup (i, r)

of (SOME l)
=> (case Sto.update (l, v, s)

of (SOME s’)
=> NEXT (Sem.CLO_UNSPECIFIED, rc, s’, pg)

| NONE
=> STUCK "attempt to write an invalid location")

| NONE
=> STUCK "attempt to assign an undeclared variable")

| contract (COND (Sem.CLO_QUOTE (Syn.QBOOL false), c1, c2), rc, s, pg) =
NEXT (c2, rc, s, pg)

| contract (COND (_, c1, c2), rc, s, pg) =
NEXT (c1, rc, s, pg)

| contract (PROC (is, t, r), rc, s, pg) =
let val (l, s’) = Sto.new (s, Sem.CLO_UNSPECIFIED)
in NEXT (Sem.CLO_LAM (is, t, r, l), rc, s’, pg) end

| contract (PROP_APP (t, ts, r), rc, s, pg) =
let val ((pi, rev_pi_inv), pg’) = Perm.new pg

val (c, cs) = rev_pi_inv (Sem.CLO_GND (t, r),
map (fn t => Sem.CLO_GND (t, r)) ts)

in NEXT (Sem.CLO_APP (c, cs, nil, pi), rc, s, pg’) end
| contract (PROP_COND (t0, t1, t2, r), rc, s, pg) =

NEXT (Sem.CLO_COND (Sem.CLO_GND (t0, r),
Sem.CLO_GND (t1, r),
Sem.CLO_GND (t2, r)), rc, s, pg)

| contract (PROP_SET (i, t, r), rc, s, pg) =
NEXT (Sem.CLO_SET (i, r, Sem.CLO_GND (t, r)), rc, s, pg)

end

Fig. 3. Notion of contraction for Core Scheme (part 2/2)
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– PROC – allocating a fresh location in the store (with an unspecified value) for
a source lambda abstraction and converting this abstraction to CLO_LAM;

– PROP_APP, PROP_COND, and PROP_SET – propagating the environment into
all subterms of an application, a conditional expression, and an assignment,
respectively. Beside environment propagation, in PROP_APP all components
of the application are permuted.

While most of the contractions account directly for the reductions in the
language, the last three – the propagation contractions – are “administrative”
reductions necessary to maintain the proper syntactic structure of closures af-
ter each reduction step. In addition, PROP_APP includes a permutation of all
components of an application before they are evaluated in turn.

The notion of contraction depends not only on closures but also on the re-
duction context that can be captured by call/cc, on the store, and on the permu-
tation generator. Therefore, all three are supplied as arguments to the contract
function.

5.2 Reduction strategy

The reduction strategy is embodied in the grammar of reduction contexts defined
by the data type cont in Fig. 1.

Recomposition: The function recompose reconstructs a closure given a reduction
context and a (sub)closure. Its definition is displayed in Fig. 4.

Decomposition: The role of the decomposition function is to traverse a closure
in a context according to the given reduction strategy and to locate the first
redex to be contracted, if there is any. The decomposition function is total: it
returns the closure if this closure is a value, and otherwise it returns a potential
redex together with its reduction context. Its implementation is displayed in
Fig. 5. In particular, decompose is called at the top level and its role is to call
an auxiliary function, decompose_clo, with a closure to decompose and the

structure Recomposition = struct
(* recompose : Sem.cont * Sem.clo -> Sem.clo *)
fun recompose (Sem.HALT, c) =

c
| recompose (Sem.SELECT (c1, c2, rc), c) =

recompose (rc, Sem.CLO_COND (c, c1, c2))
| recompose (Sem.ASSIGN (i, r, rc), c) =

recompose (rc, Sem.CLO_SET (i, r, c))
| recompose (Sem.PUSH (cs, vs, p, rc), c) =

recompose (rc, Sem.CLO_APP (c, cs, vs, p))
| recompose (Sem.CALL (vs, rc), c) =

recompose (rc, Sem.CLO_CALL (c, vs))
end

Fig. 4. The recomposition function for Core Scheme
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structure Decomposition = struct
datatype decomposition = VAL of Sem.value

| DEC of Redexes.potred * Sem.cont

(* decompose_clo : Sem.clo * Sem.cont -> decomposition *)
fun decompose_clo (Sem.CLO_GND (Syn.QUOTE q, r), rc) =

decompose_cont (rc, Sem.CLO_QUOTE q)
| decompose_clo (Sem.CLO_GND (Syn.VAR i, r), rc) =

DEC (Redexes.LOOKUP (i, r), rc)
| decompose_clo (Sem.CLO_GND (Syn.LAM (is, t), r), rc) =

DEC (Redexes.PROC (is, t, r), rc)
| decompose_clo (Sem.CLO_GND (Syn.APP (t, ts), r), rc) =

DEC (Redexes.PROP_APP (t, ts, r), rc)
| decompose_clo (Sem.CLO_GND (Syn.COND (t0, t1, t2), r), rc) =

DEC (Redexes.PROP_COND (t0, t1, t2, r), rc)
| decompose_clo (Sem.CLO_GND (Syn.SET (i, t), r), rc) =

DEC (Redexes.PROP_SET (i, t, r), rc)
| decompose_clo (v as Sem.CLO_QUOTE _, rc) =

decompose_cont (rc, v)
| decompose_clo (v as Sem.CLO_LAM _, rc) =

decompose_cont (rc, v)
| decompose_clo (Sem.CLO_APP (c, cs, vs, p), rc) =

decompose_clo (c, Sem.PUSH (cs, vs, p, rc))
| decompose_clo (Sem.CLO_CALL (v, vs), rc) =

decompose_cont (Sem.CALL (vs, rc), v)
| decompose_clo (Sem.CLO_COND (c0, c1, c2), rc) =

decompose_clo (c0, Sem.SELECT (c1, c2, rc))
| decompose_clo (Sem.CLO_SET (i, r, c1), rc) =

decompose_clo (c1, Sem.ASSIGN (i, r, rc))
| decompose_clo (v as Sem.CLO_UNSPECIFIED, rc) =

decompose_cont (rc, v)
| decompose_clo (v as Sem.CLO_PRIMOP (Sem.CWCC, _), rc) =

decompose_cont (rc, v)
| decompose_clo (v as Sem.CLO_CONT _, rc) =

decompose_cont (rc, v)

(* decompose_cont : Sem.cont * Sem.value -> decomposition *)
and decompose_cont (Sem.HALT, v) =

VAL v
| decompose_cont (Sem.SELECT (c1, c2, rc), c) =

DEC (Redexes.COND (c, c1, c2), rc)
| decompose_cont (Sem.ASSIGN (i, r, rc), c) =

DEC (Redexes.UPDATE (i, r, c), rc)
| decompose_cont (Sem.PUSH (nil, vs, p, rc), v) =

DEC (Redexes.UNPERMUTE (v, vs, p), rc)
| decompose_cont (Sem.PUSH (c :: cs, vs, p, rc), v) =

decompose_clo (c, Sem.PUSH (cs, v :: vs, p, rc))
| decompose_cont (Sem.CALL (vs, rc), v) =

DEC (Redexes.BETA (v, vs), rc)

(* decompose : Sem.clo -> decomposition *)
fun decompose c =

decompose_clo (c, Sem.HALT)
end

Fig. 5. The decomposition function for Core Scheme
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empty context. In turn, decompose_clo traverses a closure and accumulates
the current context until a potential redex or a value closure is found; in the
latter case, decompose_cont is called in order to dispatch on the accumulated
context for this given value.

The decomposition function can be expressed in a variety of ways. In Fig. 5,
we have conveniently specified it as a big-step abstract machine with two tran-
sition functions, decompose_clo and decompose_cont.

5.3 One-step reduction

One-step reduction can now be defined with the following steps: (a) decomposing
a non-value closure into a potential redex and a reduction context, (b) contract-
ing the potential redex if it is an actual one, and (c) recomposing the contractum
into the context.

(* reduce : Clo.clo * Clo.sto -> Clo.clo option *)
fun reduce (c, s, pg) =

(case Decomposition.decompose c
of (Decomposition.VAL v)

=> SOME (v, s, pg)
| (Decomposition.DEC (pr, rc))

=> (case Redexes.contract (pr, rc, s, pg)
of (Redexes.NEXT (c’, rc’, s’, pg’))

=> SOME (Recomposition.recompose (rc’, c’), s’, pg’)
| (Redexes.STUCK msg)

=> NONE))

5.4 Reduction-based evaluation

Finally, we can define evaluation as the iteration of one-step reduction. We im-
plement it as the iteration of (a) decomposition, (b) contraction, and (c) recom-
position.

(* iterate : Decomposition.decomposition * Sem.sto -> Sem.answer *)
fun iterate (Decomposition.VAL v, s, pg)

= Sem.VALUE (v, s, pg)
| iterate (Decomposition.DEC (pr, rc), s, pg)

= (case Redexes.contract (pr, rc, s, pg)
of Redexes.NEXT (c’, rc’, s’, pg’)

=> let val c = Recomposition.recompose (rc’, c’)
val d = Decomposition.decompose c

in iterate (d, s’, pg’)
end

| Redexes.STUCK msg
=> Sem.STUCK msg)

(* evaluate : Syn.term -> Sem.answer *)
fun evaluate t

= iterate (Decomposition.decompose (Sem.CLO_GND (t, Sem.env_init)),
Sem.sto_init,
Perm.init)

13



6 Refocusing for reduction-free evaluation

We use Danvy and Nielsen’s refocusing technique to mechanically transform
the iteration of one-step reduction implemented in Section 5.4 into an abstract
machine. In this section we show the main steps of this transformation and their
effect on the Core Scheme calculus of closures.

The reduction sequence as described in Section 5 consists in repeating the
following steps: decomposing a closure into a potential redex and a context,
contracting the redex when it is an actual one, and recomposing the context with
the contractum, thereby obtaining the next closure in the reduction sequence.
The recomposition operation creates an intermediate closure (the next one in the
reduction sequence) which is then immediately decomposed in the next iteration.
Using refocusing, we can bypass the creation of intermediate closures and proceed
directly from one redex to the next. The method is based on the observation that
the composition of functions recompose and decompose can be replaced by a
more efficient function, called refocus, which is extensionally equal to (and
optimally implemented by) decompose_clo. The situation is depicted in the
following diagram:
◦

decompose

��?
??

??
??

??
??

◦

decompose

��?
??

??
??

??
??

◦

��>
>>

>>
>>

>>
>>

>

//_____ ◦
contract

// ◦

recompose
??�����������

refocus
//_________ ◦

contract
// ◦

recompose
??�����������

refocus
//_________

6.1 An eval/continue abstract machine over closures

First, we fuse the functions recompose and decompose into one function refocus

that given a closure and its surrounding context, searches for the next redex ac-
cording to the given reduction strategy. The result is a small-step state-transition
system, where refocus performs a single transition to the next redex site, if there
is one, and iterate implements its iteration (after performing the contraction).

Next, we distribute the calls to iterate in the definition of refocus in order
to obtain a big-step state-transition system [11]. The difference between the big-
step and the small-step transition system is that in the former, the function
refocus does not stop on encountering a redex site; it calls the function iterate

directly. The resulting big-step transition system is presented in Figs. 6 and 7,
where refocus_clo is an alias for the refocus function described above. (The
definition of refocus_clo and refocus_cont is a clone of the definition of
decompose_clo and decompose_cont in Figure 5.)

This resulting transition system is staged in that the call to the contraction
function is localized in iterate whereas refocus_clo and refocus_cont im-
plement the congruence rules, i.e., the navigation in a closure towards the next
redex. Inlining the definition of iterate (and thus making do without the data
type decomposition) yields an eval/continue abstract machine with two mu-
tually recursive transition functions: refocus_clo that dispatches on closures,
and refocus_cont that dispatches on contexts.
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structure EAC_AM = struct
datatype decomposition = VAL of Sem.value

| DEC of Redexes.potred * Sem.cont

(* refocus_clo : Sem.clo * Sem.cont * Sem.sto * Sem.perms -> Sem.answer *)
fun refocus_clo (Sem.CLO_GND (Syn.QUOTE q, r), rc, s, pg) =

refocus_cont (rc, Sem.CLO_QUOTE q, s, pg)
| refocus_clo (Sem.CLO_GND (Syn.VAR i, r), rc, s, pg) =

iterate (DEC (Redexes.LOOKUP (i, r), rc), s, pg)
| refocus_clo (Sem.CLO_GND (Syn.LAM (is, t), r), rc, s, pg) =

iterate (DEC (Redexes.PROC (is, t, r), rc), s, pg)
| refocus_clo (Sem.CLO_GND (Syn.APP (t, ts), r), rc, s, pg) =

iterate (DEC (Redexes.PROP_APP (t, ts, r), rc), s, pg)
| refocus_clo (Sem.CLO_GND (Syn.COND (t0, t1, t2), r), rc, s, pg) =

iterate (DEC (Redexes.PROP_COND (t0, t1, t2, r), rc), s, pg)
| refocus_clo (Sem.CLO_GND (Syn.SET (i, t), r), rc, s, pg) =

iterate (DEC (Redexes.PROP_SET (i, t, r), rc), s, pg)
| refocus_clo (v as Sem.CLO_QUOTE _, rc, s, pg) =

refocus_cont (rc, v, s, pg)
| refocus_clo (v as Sem.CLO_LAM _, rc, s, pg) =

refocus_cont (rc, v, s, pg)
| refocus_clo (Sem.CLO_APP (c, cs, vs, p), rc, s, pg) =

refocus_clo (c, Sem.PUSH (cs, vs, p, rc), s, pg)
| refocus_clo (Sem.CLO_CALL (v, vs), rc, s, pg) =

refocus_cont (Sem.CALL (vs, rc), v, s, pg)
| refocus_clo (Sem.CLO_COND (c0, c1, c2), rc, s, pg) =

refocus_clo (c0, Sem.SELECT (c1, c2, rc), s, pg)
| refocus_clo (Sem.CLO_SET (i, r, c1), rc, s, pg) =

refocus_clo (c1, Sem.ASSIGN (i, r, rc), s, pg)
| refocus_clo (v as Sem.CLO_UNSPECIFIED, rc, s, pg) =

refocus_cont (rc, v, s, pg)
| refocus_clo (v as Sem.CLO_PRIMOP (Sem.CWCC, _), rc, s, pg) =

refocus_cont (rc, v, s, pg)
| refocus_clo (v as Sem.CLO_CONT _, rc, s, pg) =

refocus_cont (rc, v, s, pg)

(* refocus_cont : Sem.cont * Sem.value * Sem.sto * Sem.perms -> Sem.answer *)
and refocus_cont (Sem.HALT, v, s, pg) =

iterate (VAL v, s, pg)
| refocus_cont (Sem.SELECT (c1, c2, rc), c, s, pg) =

iterate (DEC (Redexes.COND (c, c1, c2), rc), s, pg)
| refocus_cont (Sem.ASSIGN (i, r, rc), c, s, pg) =

iterate (DEC (Redexes.UPDATE (i, r, c), rc), s, pg)
| refocus_cont (Sem.PUSH (nil, vs, p, rc), v, s, pg) =

iterate (DEC (Redexes.UNPERMUTE (v, vs, p), rc), s, pg)
| refocus_cont (Sem.PUSH (c :: cs, vs, p, rc), v, s, pg) =

refocus_clo (c, Sem.PUSH (cs, v :: vs, p, rc), s, pg)
| refocus_cont (Sem.CALL (vs, rc), v, s, pg) =

iterate (DEC (Redexes.BETA (v, vs), rc), s, pg)
and iterate ... =

...

(* evaluate : Syn.term -> Sem.answer *)
fun evaluate t

= refocus_clo (Sem.CLO_GND (t, Sem.env_init),
Sem.HALT,
Sem.sto_init,
Perm.init)

end

Fig. 6. Staged eval/apply/continue abstract machine over closures (part 1/2)
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structure EAC_AM = struct
(* ... *)
and iterate (VAL v, s, pg) =

Sem.VALUE (v, s, pg)
| iterate (DEC (Redexes.LOOKUP (i, r), rc), s, pg) =

(case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME sv)

=> (case sv
of (SOME v)

=> refocus_cont (rc, v, s, pg)
| NONE
=> Sem.STUCK "attempt to reference an undefined variable")

| NONE
=> Sem.STUCK "attempt to read an invalid location")

| NONE
=> Sem.STUCK "attempt to reference an undeclared variable")

| iterate (DEC (Redexes.UNPERMUTE (v, vs, pi), rc), s, pg) =
refocus_clo (Sem.CLO_CALL (pi (v, vs)), rc, s, pg)

| iterate (DEC (Redexes.BETA (Sem.CLO_LAM (is, t, r, l), vs), rc), s, pg) =
if List.length is = List.length vs
then let val (ls, s’) = Sto.news (s, vs)

in refocus_clo (Sem.CLO_GND (t, Env.extends (is, ls, r)), rc, s’, pg)
end

else Sem.STUCK "arity mismatch"
| iterate (DEC (Redexes.BETA (Sem.CLO_PRIMOP (Sem.CWCC, _), vs), rc), s, pg) =

if 1 = List.length vs
then let val (l, s’) = Sto.new (s, Sem.CLO_UNSPECIFIED)

in refocus_clo (Sem.CLO_CALL (hd vs, [Sem.CLO_CONT (rc, l)]), rc, s’, pg)
end

else Sem.STUCK "arity mismatch"
| iterate (DEC (Redexes.BETA (Sem.CLO_CONT (rc’, l), vs), rc), s, pg) =

if 1 = List.length vs
then refocus_cont (rc’, hd vs, s, pg)
else Sem.STUCK "arity mismatch"

| iterate (DEC (Redexes.BETA (_, vs), rc), s, pg) =
Sem.STUCK "attempt to apply a non-procedure"
| iterate (DEC (Redexes.UPDATE (i, r, v), rc), s, pg)
= (case Env.lookup (i, r)

of (SOME l)
=> (case Sto.update (l, v, s)

of (SOME s’)
=> iterate (refocus_cont (rc, Sem.CLO_UNSPECIFIED), s’, pg)

| NONE
=> Sem.STUCK "attempt to write an invalid location")

| NONE
=> Sem.STUCK "attempt to assign an undeclared variable")

| iterate (DEC (Redexes.COND (Sem.CLO_QUOTE (Syn.QBOOL false), c1, c2), rc),
s, pg) =

refocus_clo (c2, rc, s, pg)
| iterate (DEC (Redexes.COND (_, c1, c2), rc), s, pg) =

refocus_clo (c1, rc, s, pg)
| iterate (DEC (Redexes.PROC (is, t, r), rc), s, pg) =

let val (l, s’) = Sto.new (s, Sem.CLO_UNSPECIFIED)
in refocus_cont (rc, Sem.CLO_LAM (is, t, r, l), s’, pg) end

| iterate (DEC (Redexes.PROP_APP (t, ts, r), rc), s, pg) =
let val ((pi, rev_pi_inv), pg’) = Perm.new pg

val (c, cs) = rev_pi_inv (Sem.CLO_GND (t, r),
map (fn t => Sem.CLO_GND (t, r)) ts)

in refocus_clo (Sem.CLO_APP (c, cs, nil, pi), rc, s, pg’) end
| iterate (DEC (Redexes.PROP_COND (t0, t1, t2, r), rc), s, pg) =

refocus_clo (Sem.CLO_COND (Sem.CLO_GND (t0, r),
Sem.CLO_GND (t1, r),
Sem.CLO_GND (t2, r)), rc, s, pg)

| iterate (DEC (Redexes.PROP_SET (i, t, r), rc), s, pg) =
refocus_clo (Sem.CLO_SET (i, r, Sem.CLO_GND (t, r)), rc, s, pg)

(* ... *)
end

Fig. 7. Staged eval/apply/continue abstract machine over closures (part 2/2)16



6.2 An abstract machine over terms and environments

The result of applying refocusing to the calculus of closures is a machine operat-
ing on closures, as shown in Section 6.1. Since we are not interested in modeling
the execution of programs in the closure calculus, but in Core Scheme, i.e., with
explicit terms and environments, we go the rest of the way and bypass closure
manipulation using the method developed in our previous work [3, 4, 9].

To this end, we first short-circuit the ‘corridor’ transitions corresponding to
building intermediate closures – these are the transitions corresponding to the
propagation of environments in closures: specifically, we observe that each of the
closures built with CLO_COND, CLO_APP and CLO_SET is immediately consumed
in exactly one of the clauses of refocus after being constructed. Since these

structure EC_AM = struct
type env = Sto.loc Env.env

datatype primop = CWCC

datatype clo = CLO_GND of Syn.term * env

datatype value = VAL_QUOTE of Syn.quotation
| VAL_UNSPECIFIED
| VAL_LAM of (ide list * Syn.term) * env * Sto.loc
| VAL_PRIMOP of primop * Sto.loc
| VAL_CONT of cont * Sto.loc

and cont = HALT
| SELECT of clo * clo * cont
| ASSIGN of ide * env * cont
| PUSH of clo list * value list * value Perm.perm * cont
| CALL of value list * cont

local val (l_primop, s1) = Sto.new (Sto.empty, VAL_UNSPECIFIED)
val (l_cwcc, s2) = Sto.new (s1, VAL_PRIMOP (CWCC, l_primop))

in val env_init = Env.extend ("call/cc", l_cwcc, Env.empty)
val sto_init = s2

end

type sto = value option Sto.sto

type perms = (value, clo) Perm.permgen

datatype answer = VALUE of value * sto * perms
| STUCK of string

(* eval : Syn.term * env * cont * sto * perms -> answer *)
fun eval ... =

...
(* continue : cont * value * sto * perms -> answer *)
and continue ... =

...

(* evaluate : Syn.term -> answer *)
fun evaluate t =

eval (t, env_init, HALT, sto_init, Perm.init)
end

Fig. 8. The eval/continue abstract machine over terms and environments (part 1/3)
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structure EC_AM = struct
(* ... *)
fun eval (Syn.QUOTE q, r, rc, s, pg) =

continue (rc, VAL_QUOTE q, s, pg)
| eval (Syn.VAR i, r, rc, s, pg) =

(case Env.lookup (i, r)
of (SOME l)

=> (case Sto.fetch (l, s)
of (SOME sv)

=> (case sv
of (SOME v)

=> continue (rc, v, s, pg)
| NONE

=> STUCK "attempt to reference an undefined variable")
| NONE

=> STUCK "attempt to read an invalid location")
| NONE

=> STUCK "attempt to reference an undeclared variable")
| eval (Syn.LAM (is, t), r, rc, s, pg) =

let val (l, s’) = Sto.new (s, VAL_UNSPECIFIED)
in continue (rc, VAL_LAM ((is, t), r, l), s’, pg) end

| eval (Syn.APP (t, ts), r, rc, s, pg) =
let val ((pi, rev_pi_inv), pg’) = Perm.new pg

val (CLO_GND (t’, r’), cs) = rev_pi_inv (CLO_GND (t, r),
map (fn t => CLO_GND (t, r)) ts)

in eval (t’, r’, PUSH (cs, nil, pi, rc), s, pg) end
| eval (Syn.COND (t0, t1, t2), r, rc, s, pg) =

eval (t0, r, SELECT (CLO_GND (t1, r), CLO_GND (t2, r), rc), s, pg)
| eval (Syn.SET (i, t), r, rc, s, pg) =

eval (t, r, ASSIGN (i, r, rc), s, pg)
(* ... *)

end

Fig. 9. The eval/continue abstract machine over terms and environments (part 2/3)

closures were only needed to express intermediate results of one-step reduction
(and they do not arise from the Core Scheme term language), we can merge the
two clauses of refocus for each such closure. We then obtain a machine that
operates only on CLO_GND closures, which are pairs of terms and environments.
Hence, we can unfold a closure CLO_GND (t, s) into a term and an environment.
(The reader is directed to our previous work for numerous other examples of
this derivation [3, 4, 9].) This final machine is displayed in Figs. 8, 9, and 10.
It is an eval/continue abstract machine for Core Scheme terms, in which an
eval configuration consists of a term, an environment, a context, a store, and
a permutation generator, and a continue configuration consists of a context,
a value, a store, and a permutation generator.5 The eval transition function
dispatches on the term and the continue transition function on the context.

5 This machine is the same one as in the companion paper [10]. As pointed out there,
it is in defunctionalized form: refunctionalizing it yields the continuation-passing
evaluation function of a natural semantics, and closure-unconverting this evaluation
function yields the compositional valuation function of a denotational semantics.
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structure EC_AM = struct
(* ... *)
and continue (HALT, v, s, pg) =

VALUE (v, s, pg)
| continue (SELECT (CLO_GND (t1, r1), CLO_GND (t2, r2), rc),

VAL_QUOTE (Syn.QBOOL false), s, pg) =
eval (t2, r2, rc, s, pg)

| continue (SELECT (CLO_GND (t1, r1), CLO_GND (t2, r2), rc),
_, s, pg) =

eval (t1, r1, rc, s, pg)
| continue (ASSIGN (i, r, rc), v, s, pg) =

(case Env.lookup (i, r)
of (SOME l)

=> (case Sto.update (l, v, s)
of (SOME s’)

=> continue (rc, VAL_UNSPECIFIED, s’, pg)
| NONE

=> STUCK "attempt to write an invalid location")
| NONE

=> STUCK "attempt to assign an undeclared variable")
| continue (PUSH (nil, vs, pi, rc), v, s, pg) =

let val (v’, vs’) = pi (v, vs)
in continue (CALL (vs’, rc), v’, s, pg) end

| continue (PUSH ((CLO_GND (t, r)) :: cs, vs, p, rc), v, s, pg) =
eval (t, r, PUSH (cs, v :: vs, p, rc), s, pg)

| continue (CALL (vs, rc), VAL_LAM ((is, t), r, l), s, pg) =
if List.length is = List.length vs
then let val (ls, s’) = Sto.news (s, vs)

in eval (t, Env.extends (is, ls, r), rc, s’, pg) end
else STUCK "arity mismatch"

| continue (CALL (vs, rc), VAL_PRIMOP (VAL_CWCC, _), s, pg) =
if 1 = List.length vs
then let val (l, s’) = Sto.new (s, VAL_UNSPECIFIED)

in continue (CALL ([VAL_CONT (rc, l)], rc), hd vs, s’, pg) end
else STUCK "arity mismatch"

| continue (CALL (vs, rc), VAL_CONT (rc’, l), s, pg) =
if 1 = List.length vs
then continue (rc’, hd vs, s, pg)
else STUCK "arity mismatch"

| continue (CALL (vs, rc), _, s, pg) =
STUCK "attempt to apply a non-procedure"

(* ... *)
end

Fig. 10. The eval/continue abstract machine over terms and environments (part 3/3)

7 Analysis

Compared to Figs. 8, 9, and 10, Clinger’s machine [5, Fig. 5] has one configuration
and two transition functions. This single configuration is a tuple and it is, so to
speak, the superposition of our two configurations.

The single real difference between Clinger’s machine and the one of Figs. 8,
9, and 10 is that it dissociates subterms and the current environment. In con-
trast, the propagation rules of our calculus of closures ensure that terms and
environments stick together at all times.

Ergo, the variant of the λρ̂-calculus presented here aptly accounts for Core
Scheme. An obvious next step is to scale this calculus to full Scheme and to
compare it with the reduction semantics in the R6RS. One could also refocus the
reduction semantics of the R6RS to obtain the corresponding abstract machine.
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This abstract machine would then provide a sound alternative semantics for the
R6RS.

8 Conclusion and perspectives

We have presented a version of the λρ̂-calculus and its reduction semantics, and
we have transformed a functional implementation of this reduction semantics into
the functional implementation of an abstract machine. This abstract machine
is essentially the same as the abstract machine for Core Scheme presented by
Clinger at PLDI’98. The transformations are the ones we have already used in
the past to derive other abstract machines from other reduction semantics, or
to posit a reduction semantics and verify whether transforming it yields a given
abstract machine.

This work is part of a larger effort to inter-derive semantic specifications
soundly and consistently.
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