
Automating Derivations of Abstract Machines
from Reduction Semantics:

A Generic Formalization of Refocusing in Coq

Filip Sieczkowski?, Ma lgorzata Biernacka, and Dariusz Biernacki

Institute of Computer Science, University of Wroc law

Abstract. We present a generic formalization of the refocusing trans-
formation for functional languages in the Coq proof assistant. The refo-
cusing technique, due to Danvy and Nielsen, allows for mechanical trans-
formation of an evaluator implementing a reduction semantics into an
equivalent abstract machine via a succession of simple program transfor-
mations. So far, refocusing has been used only as an informal procedure:
the conditions required of a reduction semantics have not been formally
captured, and the transformation has not been formally proved correct.
The aim of this work is to formalize and prove correct the refocusing
technique. To this end, we first propose an axiomatization of reduction
semantics that is sufficient to automatically apply the refocusing method.
Next, we prove that any reduction semantics conforming to this axiom-
atization can be automatically transformed into an abstract machine
equivalent to it. The article is accompanied by a Coq development that
contains the formalization of the refocusing method and a number of
case studies that serve both as an illustration of the method and as a
sanity check on the axiomatization.

1 Introduction

Refocusing has been introduced by Danvy and Nielsen [12] as a method for
optimizing functions that directly implement the transitive closure of the fol-
lowing three steps: (1) decomposition of a term in order to locate a reduction
site, (2) contraction of a redex, (3) recomposition of the entire term. Such an
implementation induces an overhead due to the recomposition of a term that
will immediately be decomposed in the next iteration; in such cases, refocusing
can be applied to eliminate the overhead and produce more efficient functions.

In particular, Danvy and Nielsen showed how to mechanically derive an ab-
stract machine from an evaluator implementing a reduction semantics (i.e., a
small-step operational semantics with explicit representation of reduction con-
texts).

The original derivation method was applied to substitution-based reduction
semantics and accounted for local contractions. It has later been used by Bier-
nacka and Danvy to derive abstract machines for context-sensitive reduction

? Author’s current affiliation: IT University of Copenhagen

semantics [3], and it has been extended to a syntactic correspondence in order
to facilitate derivations of environment-based machines from reduction semantics
using explicit substitutions [2]. The refocusing method has been applied since
for a variety of languages [4,7,8,9,11,13,14,16]. This transformation can serve
not only to derive new abstract machines, but also as a tool for interderiving
different semantic specifications of the same language that are often designed
independently from each other. For example, Danvy and Biernacka have shown
the underlying reduction semantics of several well-known abstract machines and
confirmed their correctness by applying refocusing [2].

The goal of this work is to formalize the refocusing transformation and prove
it correct in the Coq proof assistant. In the article introducing the vanilla ver-
sion of refocusing, Danvy and Nielsen define a set of conditions on a reduction
semantics sufficient for constructing a refocused evaluation function, and they
sketch a correctness proof of this function. However, they focus on the final ef-
ficient definition of an evaluation function and their representation of reduction
semantics is not adequate for a formalization on a computer. In contrast, we
formalize refocusing as a succession of simple intensional transformations of the
evaluation relation induced by reduction semantics and we formally prove the
correctness of all steps of the transformation.

To this end, we first give an axiomatization of reduction semantics that is
sufficient to automatically apply the refocusing method. Next, we prove that
any reduction semantics conforming to this axiomatization can be automati-
cally transformed into an abstract machine equivalent to it. We formalize each
intermediate step of the derivation and we state and prove its correctness. Our
work is based on preliminary results by Biernacka and Biernacki [1] which we
extend to a general framework.

Apart from the formalization of the basic refocusing transformation of Danvy
and Nielsen, we also consider its variant used by Biernacka and Danvy for
context-sensitive reduction semantics (useful, e.g., for expressing languages with
control operators such as call/cc), and also a syntactic correspondence that
for variants of calculi of closures leads to abstract machines with environments
(rather than with meta-level substitutions) [2,3].

The formalization is carried out in the Coq proof assistant.1 It includes a
number of case studies: the language of arithmetic expressions, the lambda cal-
culi (both pure and with call/cc) under call-by-value (accounting for Felleisen’s
CEK machine [15]) and call-by-name (accounting for Krivine’s abstract ma-
chine [17]), as well as Mini-ML. These case studies serve both as an illustration
of how to use the formalization in practice and as a sanity check on the axiom-
atization. However, due to space constraints, these examples are left out of this
article—the reader is welcome to consult the Coq development.

1 The Coq development accompanying this article can be found at <http://

fsieczkowski.com>. Sections 2 and 3 refer to the subdirectory substitutions,
Section 4—to the subdirectory environments, and Section 5—to the subdirectory
substitutions_cs of the Coq development.

http://fsieczkowski.com
http://fsieczkowski.com
substitutions
environments
substitutions_cs

The implementation makes essential use of the Coq module system [5] that
is based on the module system known from the ML family of languages. In Coq,
however, a module type (i.e., a signature in SML parlance) may contain not only
data declarations, but also logical axioms that capture extra properties of the
data. In consequence, in an implementation of any module of such a signature
one must provide proofs of the required properties. In our formalization, we first
gather all the properties characterizing a reduction semantics into a module type,
and similarly we define further signatures describing each of the intermediate
semantic artefacts of the refocusing transformation. Then we define a series of
functors each implementing one step of the derivation (i.e., the transformation
from one module to the next). The formalization is engineered as a generic
framework, so one can use it to transform one’s own reduction semantics into an
abstract machine. To this end, one has to specify the reduction semantics in the
format prescribed by the signature, and then to apply the sequence of functors
in order to obtain the abstract machine that is extensionally equivalent to the
initial semantics.

The rest of this article is structured as follows. In Section 2 we define an
axiomatization for the substitution-based reduction semantics amenable to re-
focusing. In Section 3 we give a brief summary of the refocusing method start-
ing with the semantics given in Section 2 and we show the resulting abstract
machine semantics in two versions: an eval/continue abstract machine and an
eval abstract machine.2 In Section 4 we formalize the extension of refocusing
for a language with closures. In Section 5 we turn to context-sensitive reduc-
tion semantics and sketch the formalization for this extension. We conclude in
Section 6.

2 An axiomatization of a substitution-based reduction
semantics

In this section we describe an axiomatization of a generic reduction semantics
that defines sufficient conditions for the semantics to be automatically refocused.
The description is similar to the one given by Danvy and Nielsen in [12], though
it differs in several points, e.g., we require potential redexes to be explicitly
provided, whereas Danvy and Nielsen specify them by their properties. The
differences we introduce arise from the need to completely formalize the language
and its reduction semantics in a proof assistant. We use the call-by-value lambda
calculus (λv) as a running example in this section and in the next.

2 We distinguish between eval/continue abstract machines, e.g., the CK abstract ma-
chine [15], that make transitions between two kinds of configurations: one focused
on the term under evaluation and one focused on the context of the evaluation, and
eval abstract machines, e.g., the Krivine Abstract Machine [17], that operate on
configurations of one kind.

2.1 Syntactic categories

We begin by specifying the syntactic categories used throughout the formaliza-
tion: terms, values, potential redexes, and context frames, which we denote with
t, v, r and f , respectively. All these sets are declared as parameters of the lan-
guage signature and have to be provided by the user in the implementation of
that signature. Both the set of values and the set of potential redexes should be
disjoint subsets of the set of terms. As traditional, values are terms irreducible in
a given strategy (i.e., results of evaluation), and potential redexes can be thought
of as minimal non-value terms.

Further, we introduce the syntactic category of reduction contexts (denoted
as E). A reduction context is defined as a list of context frames and is interpreted
similarly to the standard inside-out reduction context (i.e., as a stack). The
composition of two reduction contexts is denoted as E1 ◦ E2, while a context
extended with a single frame is denoted as f :: E. The meaning of reduction
contexts is usually specified by a plug function3, which describes the effect of
plugging a term in the context. Since reduction contexts are defined constructs
in our approach, we can specify plug as a (left) folding of an atomic plug function
over a reduction context, where atomic plug describes the effect of plugging a
term into a context frame and has to be provided by the user. We denote with
E[t] the term obtained by plugging a term t into a context E. Our approach
enforces that the composition of contexts and plug satisfy the property

(plug-compose) (E1 ◦ E2)[t] = E2[E1[t]],

which otherwise would have to be proved. In the example language λv, the
syntactic categories can be defined with the following grammars, where x ranges
over the (unspecified) set of variables:

t ::= x | λx.t | t t (terms)

v ::= x | λx.t (values)

r ::= v v (potential redexes)

f ::= [] t | v [] (context frames)

The grammar of potential redexes includes both standard beta redexes (“actual
redexes”) and stuck terms, e.g., x v.

2.2 Decompositions and contraction

The notion of decomposition is defined as in Danvy and Nielsen [12]: any pair
(E, t) is a decomposition of the term E[t]. A decomposition of the form (E, v)
is said to be trivial, while the decomposition ([], t) is called empty. Our axiom-
atization requires that for both values and potential redexes every nonempty

3 In some recent articles [11,13,14] this function is called recompose.

decomposition is trivial and that every term that has only trivial or empty de-
compositions is either a value or a potential redex.4 We also define a partial
function contract that takes a potential redex as argument and returns the term
resulting from reducing it. For stuck terms, the function contract is undefined.
All the definitions and properties introduced so far are specified in the module
type RED LANG.

Let us now look at the λv-calculus. It is easy to see that a value can never
be decomposed into a term and a nonempty context. It follows that potential
redexes can only be decomposed trivially or into the empty context and the
redex itself: any redex r = v v′ can be decomposed either as ([], r), ([] v′, v),
or as (v [], v′), so the obligations on decompositions of values and redexes are
fulfilled. The requirement that a term with only trivial or empty decompositions
is either a value or a redex is also easy to prove by case analysis on the term.

Contraction in our example is defined using the standard capture-avoiding
substitution: (λx.t) v reduces to t[x/v]. Both the semantics before and after
the refocusing transformation are defined using contraction as a black box, and
for the basic transformation we do not require any specific properties of this
function.

2.3 Reduction semantics

For a language satisfying the conditions stated above we can now specify a
reduction semantics. First, we notice that a decomposition of any term t can
lead to one of three possibilities:

1. t is a redex r that cannot be further decomposed
2. t is a value v that cannot be decomposed (e.g., a lambda form or a lazy

constructor)
3. t can be decomposed into a term t′ and a context frame f

The first and the third case are straightforward—either we have found a
decomposition by locating the next potential redex, or we need to further de-
compose t′ in the context extended with f . In the second case, we have to look
at the current context: if it is empty, we have finished decomposing and reached
a value. Otherwise, we have to examine the innermost context frame f in the
surrounding context, and the value v. Together they can either form a potential
redex or a value (in the case when all the decompositions of f [v] are trivial, e.g.,
when f [v] is a pair constructed of two values), or they can be decomposed into
a new term t′ and a new context frame f ′. We require the user to provide two
functions that capture this insight: dect, that for a given term describes how it
can be decomposed in one step, and an analogous function decf, that does the
same but for a pair of a context frame and a value. These “atomic” decompo-
sition functions let us build a generic decomposition predicate. We require the

4 It is tempting to use a stronger requirement for values: a value can only have the
empty decomposition. However, such a condition would preclude, i.e., values of the
form S v (representing natural numbers), where v is a value.

user to provide not only the definitions of these two functions dect and decf, but
also a proof of their correctness with respect to the (atomic) plug function, i.e.,
that these functions are inverses of the atomic plug function. The decomposition
relation can now be defined by iterating these user-defined functions until a de-
composition is found. Formally, it is defined as an indexed family of inductive
predicates in Coq, and its transcribed definition is presented in the top part of
Figure 1.

In the case of the λv-calculus, we can define the atomic decomposition func-
tions as follows:

dect v = v
dect (t1 t2) = (t1, [] t2)

decf ([] t) v = (t, v [])
decf (v []) v′ = v v′

Next, we introduce two strict, well-founded orderings: a subterm order ≺t

that characterizes the relation of being a subterm of another term (and is defined
using the atomic plug function), and an order on context frames≺f that describes
the order of evaluation of subterms (intuitively, f ≺f f

′ means that f ′ has more
subterms left to be visited than f). The latter order is left to be provided by the
user, together with a proof that this order is compatible with what the atomic
decomposition functions describe. The relation might be definable in a similar
manner to ≺t, however, it seems that the required proofs are easier when the
relation is defined by the user. Specifically, we require the following properties
to hold:

• if dect t = (t′, f), then f is maximal with respect to ≺f

• if decf f v = (t, f ′), then f ′ ≺f f and ∀f ′′.f ′′ ≺f f =⇒ f ′′ �f f
′

• if decf f v returns a redex or a value, then f is minimal with respect to ≺f

• if dect t 6= (t′, f) for all t′, f , then t has only the empty decomposition

Additionally, we require that all the elementary decompositions of a given term
are comparable, i.e., if f [t] = f ′[t′], then f ≺f f

′∨f ′ ≺f f ∨(f = f ′∧t = t′), and
that if f [t] = f ′[t′] ∧ f ≺f f

′, then t′ is a value, which effectively fixes the order
of evaluation. Of course, both the structure of terms and the order of evaluation
exist without specifying these orders: their explicit definition, however, allows us
to conduct inductive reasoning without knowing the precise structure of terms.
We need this kind of reasoning to prove the necessary properties of the semantics,
such as the unique-decomposition lemma.

In our example of the λv-calculus, the order on context frames can be defined
as the smallest strict order with the property v [] ≺f [] t for any term t and
value v. This relation should hold for any t and v, because the term (v t) can be
decomposed into both contexts. It is also easy to see that the orders satisfy all
the required conditions.

The properties of orders stated above are similar to those specified in Danvy
and Nielsen [12], but they are in general more lax for the purpose of a formal-
ization in a proof assistant. For example, unlike Danvy and Nielsen, we do not
impose a fixed evaluation order but we leave it to the user to specify it.

dec t E d ⇐⇒


d = (r, E) if dect t = r
decctxE v d if dect t = v
dec t′ (f :: E) d if dect t = (t′, f)

decctx [] v d ⇐⇒ d = v

decctx (f :: E) v d ⇐⇒


d = (r, E) if decf f v = r
decctxE v

′ d if decf f v = v′

dec t (f ′ :: E) d if decf f v = (t, f ′)

iter v v′ ⇐⇒ v = v′

iter (r, E) v ⇐⇒ r 7→ t ∧ dec (E[t]) [] d ∧ iter d v for some d

eval t v ⇐⇒ dec t [] d ∧ iter d v for some d

Fig. 1. A generic evaluator for reduction semantics

The module type RED REF LANG contains all the requirements on the language
stated above in the form of parameter declarations to be provided by the imple-
mentation, definitions (including inductive definitions), and axioms expressing
required properties to be proved in the implementation. The definition of the
reduction semantics is then given by the module types RED SEM and RED REF SEM

parameterized by RED LANG.

3 From reduction semantics to abstract machine by
refocusing

In this section, we present the formalization of the refocusing transformation for
a language conforming to the axiomatization of reduction semantics specified
in Section 2.3. The transformation follows the steps of the original refocusing
method as presented by Danvy and Nielsen [12] and it consists of a series of se-
mantics, each obtained in a systematic way from the preceding one and provably
equivalent to it. Each of the semantics is given by an inductively defined relation
that in the Coq formalization can be obtained by instantiating a functor with
the module implementing the language under consideration.

3.1 An evaluator

The starting point of the refocusing transformation is the evaluation function
obtained by naively iterating the reduce-plug-decompose procedure that uses
the components introduced in the previous section. This semantics is shown in
Figure 1, where successful contraction of a potential redex is denoted with 7→,
and the dect and decf functions are the elementary decomposition functions
from Section 2.3. Both the iterating function iter and the evaluation function
eval are represented as inductively defined relations (see module type RED SEM).

decom
pose

contract

decom
pose

decom
posepl

ug

pl
ug

contract contractrefocus refocus

Fig. 2. A schematic view of the refocusing transformation

iterssam v v
′ ⇐⇒ v = v′

iterssam (r, E) v ⇐⇒ r 7→ t ∧ dec t E d ∧ iterssam d v for some d

evalssam t v ⇐⇒ dec t [] d ∧ iterssam d v for some d

Fig. 3. A generic small-step abstract machine for reduction semantics

3.2 A small-step abstract machine

The first step of the transformation, where the actual refocusing happens, builds
on the observation that in a deterministic reduction semantics the following
property should hold

dec (E[t]) [] d ⇐⇒ dec t E d.

Indeed, this property is a special case of (plug-compose), which we have asserted
in Section 2. Thus, we can substitute the right-hand side of this equivalence for
the left-hand side in the definition of the iter function in the naive evaluator (the
place where this change takes place is indicated with a gray box in Figure 1). The
resulting definition is more efficient in that it avoids reconstructing the entire
term after a contraction and then decomposing it again. The situation is shown
in Figure 2, where “refocus” denotes the more efficient procedure that bypasses
the successive plug and decompose steps, and instead it continues to decompose
with the term obtained after contraction in the current context. Hence we arrive
at a more efficient evaluator, a small-step abstract machine (a.k.a a pre-abstract
machine) [3,12]. The definition of this machine is presented in Figure 3, where
the only change compared to Figure 1 is in the contents of the gray box (the
dec relation is defined as before and omitted).

The correctness of this step of transformation is captured by the following
proposition.

Proposition 1. For any term t and any value v of a language satisfying the
axioms of Section 2, the equivalence eval t v ⇐⇒ evalssam t v holds.

The proof follows immediately from a similar equivalence defined for iter

and iterssam, which in turn is done by induction on the derivation and uses the
(plug-compose) property.

decsam t E v ⇐⇒


itersam (r, E) v if dect t = r
decctx-samE v

′ v if dect t = v′

decsam t
′ (f :: E) v if dect t = (t′, f)

decctx-sam [] v v′ ⇐⇒ itersam v v
′

decctx-sam (f :: E) v v′ ⇐⇒


itersam (r, E) v′ if decf f v = r
decctx-samE v

′′ v′ if decf f v = v′′

decsam t (f ′ :: E) v′ if decf f v = (t, f ′)

itersam v v
′ ⇐⇒ v = v′

itersam (r, E) v ⇐⇒ r 7→ t ∧ decsam t E v

evalsam t v ⇐⇒ decsam t [] v

Fig. 4. A generic staged abstract machine for reduction semantics

The specification of a small-step abstract machine is captured in the module
type SS ABSTRACT MACHINE in the Coq development, and it is constructed by
the functor SSAbstractMachine given a module implementing the reduction
semantics.

3.3 A staged abstract machine

The next step of the transformation consists in fusing computations, using
lightweight fusion [10], so that the definitions of the relations dec and decctx
are now made recursively dependent on the iter relation. The definition of the
generic staged abstract machine is shown in Figure 4.

The correctness of this step of derivation is captured by the following propo-
sition:

Proposition 2. For any term t and any value v of a language satisfying the
axioms of Section 3, the equivalence evalssam t v ⇐⇒ evalsam t v holds.

The proof is a little more complicated than in the case of the small-step
abstract machine. To prove the “only if” case we need the following lemma:

Lemma 1. For any term t, context E, decomposition d, and value v of a lan-
guage satisfying the axioms of Section 2, the following implications hold:

dec t E d ∧ itersam d v =⇒ decsam t E v,

iterssam d v =⇒ itersam d v.

The lemma is proved by induction on the derivations of dec t E d and iterssam d v,
respectively. For the “if” case, we need the property stating that dec is a total
function, which follows from the axiomatization, and a similar lemma:

〈t〉init B 〈t, []〉e

〈t, E〉e B


〈t′, E〉e if dect t = r and r 7→ t′

〈E, v〉c if dect t = v
〈t′, f :: E〉e if dect t = (t′, f)

〈[], v〉c B 〈v〉fin

〈f :: E, v〉c B


〈t, E〉e if decf f v = r and r 7→ t′

〈E, v′〉c if decf f v = v′

〈t, f ′ :: E〉e if decf f v = (t, f ′)

evalecam t v ⇐⇒ 〈t〉init B+ 〈v〉fin

Fig. 5. A generic eval/continue abstract machine semantics derived from reduction
semantics

Lemma 2. For any term t, context E, decomposition d and value v of a lan-
guage satisfying the axioms of Section 2, the following implication holds:

decsam t E v ∧ dec t E d =⇒ iterssam d v.

The lemma is proved by induction on the derivation of decsam.
The specification of a staged abstract machine is captured in the module type

STAGED ABSTRACT MACHINE in the Coq development, and it is constructed by the
functor StagedAbstractMachine given a module implementing the reduction
semantics.

3.4 The result: an eval/continue abstract machine

The final step of the transformation yields an eval/continue abstract machine
by inlining the definition of itersam in decsam and decctx-sam and by introducing
the relation B (and its transitive closure) between configurations defined by the
latter two. The grammar of configurations of the machine reads as follows:

c ::= 〈t〉init | 〈t, E〉e | 〈E, v〉c | 〈v〉fin

Apart from the initial (〈t〉init) and the final (〈v〉fin) configurations correspond-
ing to the “loading” and the “unloading” of the machine, there are two other
kinds of configurations: an eval -configuration of the form 〈t, E〉e and an continue-
configuration of the form 〈E, v〉c. The eval -configurations arise from decomposi-
tions of terms in the reduction semantics, and the continue-configurations arise
from analyzing values in context. The transitions of the machine and the induced
evaluation function are presented in Figure 5.

The correctness of the overall transformation can then be stated with the fol-
lowing theorem, which follows from the correctness of individual transformation
steps.

Theorem 1. For any term t and any value v of a language satisfying the axioms
of Section 2, the equivalence eval t v ⇐⇒ evalecam t v holds.

The specification of an eval/continue machine is captured in the module
type EVAL CONTINUE MACHINE in the Coq development, and it is constructed by
the functor EvalContinueMachine given a module implementing the reduction
semantics.

Redundancies in the generic abstract machine. Due to the transformation
working in a very general setting, the resulting abstract machine may contain
transitions that are not actually possible, e.g., in the case of the λv-calculus,
the transition from 〈f :: E, v〉c to 〈E, v′〉c is present in the derived machine,
but it is never made because the side condition can never arise. It is however
possible to simplify the machine by replacing the dect and decf functions with
their definitions, compressing corridor transitions, and then removing unreach-
able transitions. In the case of the λv-calculus the obtained abstract machine
coincides with Felleisen’s CK machine [15].

3.5 An eval abstract machine

In some cases we can obtain an eval abstract machine from an eval/continue
abstract machine. It is possible when the reduction semantics satisfies an extra
property that amounts to the condition that values have only empty decompo-
sitions. When this condition is fulfilled, it is possible to eliminate the continue-
configurations since then the machine never makes a single transition from one
continue-configuration to another continue-configuration. This step of the trans-
formation has also been shown in Danvy and Nielsen [12], but the authors do not
specify conditions on the reduction semantics under which it can be performed.

In the case of an eval abstract machine there are no continue-configurations
in the machine:

c ::= 〈t〉init | 〈t, E〉e | 〈v〉fin

The transitions of the machine and the induced evaluation function are presented
in Figure 6.

The correctness of the overall transformation to an eval machine follows from
the correctness of each of its steps, and is summarized by the following theorem:

Theorem 2. Let L be a language satisfying the axioms of Section 2 and such
that for any frame f and any value v, decf f v is not a value. Then for any term
t and any value v of L, the equivalence eval t v ⇐⇒ evaleam t v holds.

The specification of an eval abstract machine is captured in the module type
EVAL MACHINE in the Coq development, and it is constructed by the functor
EvalMachine given a module implementing the reduction semantics.

〈t〉init B 〈t, []〉e

〈t, E〉e B


〈v〉fin if dect t = v and E = []
〈t′, E〉e if dect t = r and r 7→ t′

〈t′, E′〉e if dect t = v,E = f :: E′, decf f v = r, and r 7→ t
〈t′, f ′ :: E′〉e if dect t = v,E = f :: E′, and decf f v = (t′, f ′)
〈t′, f :: E〉e if dect t = (t′, f)

evaleam t v ⇐⇒ 〈t〉init B+ 〈v〉fin

Fig. 6. A generic eval abstract machine semantics derived from reduction semantics

4 Refocusing in reduction semantics with explicit
substitutions

In this section we sketch the formalization of a derivation method that produces
environment-based abstract machines for languages with closures. A closure is
a purely syntactic entity that consists of a term together with an explicit sub-
stitution. The idea that a language with closures corresponds more faithfully
to abstract machines using environments than a language with substitution as
a meta-level operation originates in Curien’s work: he introduced the calculus
of closures λρ as the simplest calculus of closures accounting for environment
machines for the λ-calculus [6].

The extension of refocusing that operates on languages with closures is due
to Biernacka and Danvy [2]. The method uses an intermediate calculus (the
λρ̂-calculus) that minimally extends Curien’s λρ-calculus in order to accommo-
date all the necessary refocusing steps, but the final result it produces, i.e.,
an environment-based abstract machine, operates on terms of the smaller λρ-
calculus. In the formalization we also use two calculi: one denoted by C (the

calculus corresponding to Curien’s λρ-calculus) and the other denoted by Ĉ,
which is an extended version of C amenable to refocusing (the calculus corre-
sponding to Biernacka and Danvy’s λρ̂-calculus). It might seem that given C one

should be able to compute Ĉ, however, this is a task that requires some insight,
and so we formalize both connected calculi.

4.1 Axiomatization of closure calculi

For both the calculi C and Ĉ we need to specify the syntactic categories of
closures, values and context frames, denoted c, v, and f in the C-calculus, and
ĉ, v̂, and f̂ in the Ĉ-calculus, respectively. Since Ĉ is an extension of C, we require
that c ⊆ ĉ, v ⊆ v̂, and f ⊆ f̂ hold. We will apply the refocusing transformation to
the Ĉ-calculus, hence we require that it fulfills all the obligations of Section 2.3
with closures taking on the role of terms.

dececamc cE v ⇐⇒


dececamc c

′ (E′ · E) v if dect c = r̂, r̂ 7→ ĉ′

and E′[c′] = ĉ′

decctx-ecamcE v
′ v if dect c = v̂′ and v′ = v̂′

decctx-ecamc [] v v′ ⇐⇒ v = v′

decctx-ecamc (f :: E) v v′ ⇐⇒


dececamc c

′ (E′ · E) v′ if decf f v = r̂, r̂ 7→ ĉ′

and E′[c′] = ĉ′

decctx-ecamcE v
′′ v′ if decf f v = v′′

dececamc c (f ′ :: E) v′ if decf f v = (ĉ, f̂ ′),

c = ĉ and f ′ = f̂ ′

evalecamc t v ⇐⇒ dececamc (t[•]) [] v

Fig. 7. A generic eval/continue like semantics utilizing the C calculus

Furthermore, we require that in the C-calculus each closure is either a term
with an explicit substitution (i.e., with a list of closures) or a value, and that a
closure has only the empty decomposition.

Finally, we also need the following compatibility properties expressing the
fact that the syntactic extension in the Ĉ-calculus is inessential with respect to
the C-calculus:

dect c = r̂ ∧ r̂ 7→ ĉ′ =⇒ ĉ′ is a C-closure ∨ ∃c′, f.f [c′] = ĉ′

dect c = v̂ =⇒ v̂ is a C-value

decf f v = r̂ ∧ r̂ 7→ ĉ =⇒ ĉ is a C-closure ∨ ∃c, f ′.f ′[c] = ĉ

decf f v = v̂′ =⇒ v̂′ is a C-value

decf f v = (ĉ, f̂) =⇒ ∃c′, f ′.f ′ = f̂ ∧ c′ = ĉ

4.2 Towards an efficient eval/continue machine

Most of the derivation is adapted directly from Section 3 with the transformation
working over the closures of the Ĉ-calculus. However, the properties stated in
Section 4.1 allow us to make two additional steps in the derivation just before
changing the format of the semantics to the abstract machine. The purpose of
these two steps is to expose the environment in the resulting abstract machine.

Transition compression—back to the C-calculus. After performing the
refocusing steps as in the standard version, we obtain a semantics in the form of
an eval/continue machine for the Ĉ-calculus. We can now exploit the connection

between the two calculi C and Ĉ to arrive at a semantics defined only on C-
closures. We do this by compressing transitions that first introduce, and then
immediately consume the extra syntactic constructs of the Ĉ-calculus that are

〈t〉init B 〈t, •, []〉e

〈t, s, E〉e B


〈t′, s′, E′ · E〉e if dect t[s] = r̂, r̂ 7→ ĉ and E′[t′[s′]] = ĉ
〈E′ · E, v〉c if dect t[s] = r̂, r̂ 7→ ĉ and E′[v] = ĉ
〈E, v〉c if dect t[s] = v

〈[], v〉c B 〈v〉fin

〈f :: E, v〉c B


〈t, s, E′ · E〉e if decf f v = r̂, r̂ 7→ ĉ and E′[t[s]] = ĉ
〈E′ · E, v′〉c if decf f v = r̂, r̂ 7→ ĉ and E′[v′] = ĉ
〈E, v′〉c if decf f v = v′

〈t, s, f ′ :: E〉e if decf f v = (t[s], f ′)
〈f ′ :: E, v′〉c if decf f v = (v′, f ′)

evalecam-env t v ⇐⇒ 〈t〉init B+ 〈v〉fin

Fig. 8. A generic eval/continue environment-based abstract machine semantics derived
from reduction semantics

not present in the C-calculus. This step results in the semantics presented in
Figure 7 and it relies on the compatibility properties stated in the previous
subsection. For example, we observe that the existence of the context E′ and
the closure c′ that appear in the first clause of the definition is ensured by the
first of the compatibility properties.

The correctness of this step of the derivation is summarized by the following
proposition:

Proposition 3. For any term t and any value v of a language satisfying the
axioms of Section 4.2, the equivalence evalecam t v ⇐⇒ evalecamc t v holds.

Unfolding the closures. The final step of the extended transformation consists
in “unfolding” the closures into their components (i.e., terms and substitutions)
and it yields an eval/continue environment-based machine. As before, we intro-
duce the transition relation B together with its transitive closure. The grammar
of configurations of the machine reads as follows:

c ::= 〈t〉init | 〈t, s, E〉e | 〈E, v〉c | 〈v〉fin

Note the change in the eval configuration, which now operates separately on
terms and on substitutions that have become environments. The transitions of
the machine and the induced evaluation function are presented in Figure 8.

The correctness of the transformation can then be stated with the following
theorem, which follows from the correctness of individual transformation steps.

Theorem 3. For any term t and any value v of a language satisfying the axioms
of Section 4.2, the equivalence eval t v ⇐⇒ evalecam-env t v holds.

Under conditions similar to those for the substitution-based eval/continue ab-
stract machine of Section 3.5, one can transform the environment-based eval/con-
tinue abstract machine into an environment-based eval abstract machine.

5 Refocusing in context-sensitive reduction semantics

In this section we sketch the (minor) changes needed to adapt the formalization
from Sections 2, 3 and 4 to languages with context-sensitive reduction. The
refocusing method has been formalized for both substitution-based and closure-
based source languages.

The notion of context-sensitive reduction semantics was first introduced by
Biernacka and Danvy in order to deal with languages with multiple binders in
the refocusing framework [2]. They also used it to account for languages with
control effects such as the control operators call/cc or shift and reset [3].

In a standard reduction semantics the contracting function has type redex→
term. This, however, can be insufficient for languages that contain more sophis-
ticated constructs, where contraction depends not only on the redex, but also on
the shape of the entire context surrounding that redex. For example, the control
operator call/cc can be seen as a binding construct that captures the context
which can then be applied to a value inside its body. Now, when we plug a term
built with call/cc in a context, we trigger a contraction, where the structure
of the contracted term depends on the structure of the context.

This more general notion of reduction requires only a small adaptation in the
reduction semantics: we need to change the type of the contracting function into
redex× context→ term× context. Such a formulation of reduction semantics
admits refocusing, as no part of the transformation depends on any specific
properties of contraction.

The changes in the formalization needed to account for context-sensitive re-
duction are minor. In the axiomatization, they consist only in changing the type
of contraction and propagating this change in the dec, iter, and eval relations.
This change is then propagated through definitions of the refocusing steps and
proofs without any impact on the structure or difficulty of proofs. As mentioned
above, besides introducing context-sensitive reductions in the standard trans-
formation, a combination with the environment-based extension is provided, as
this is the setting in which context-sensitive reduction semantics have appeared
and is a source of many interesting case studies.

6 Conclusion

We have formalized and proved correct the refocusing derivation method in the
Coq proof assistant. The formalization is done as a generic framework and can
be used to derive abstract machines for any language satisfying the requirements
described in Section 2 (and in Section 4 for closure calculi). These (standard)
requirements have to be packaged in a Coq module as specified in the signa-
ture. The output is an abstract machine extensionally equivalent to the initial

semantics and is obtained by applying a sequence of functors to the module
implementing the reduction semantics. The correctness of the final machine is
a consequence of the correctness of each step of the transformation which in
turn is ensured by each functor. The framework is quite general: it allows one to
express languages with meta-level substitutions or with explicit substitutions, as
well as languages with context-sensitive reduction. It is also possible to express
the transition function of the final abstract machine as a Coq function and to
employ the code extraction mechanism of Coq to generate a certified executable
implementation of the machine.

The axiomatization of reduction semantics that we present in this article
seems usable in practice, but it would be interesting to see if there are other,
simpler axiomatizations, especially for languages with closures. Also, further au-
tomatization of some of the tasks that are now delegated to the user—including
providing atomic decomposition functions—should be investigated.

Whereas the current article shows the subsequent semantics in the derivation
chain are extensionally equivalent, there is an ongoing work on characterizing
such equivalence in terms of execution traces keeping track of the reduction se-
quence. This approach can further lead, with the help of coinductive reasoning of
Coq, to refocusing and its correctness proof for potentially infinite computations.

Acknowledgements We would like to thank Olivier Danvy and the anony-
mous reviewers of IFL’10 for numerous useful comments on the presentation of
this work. This work has been supported by the MNiSW grant number N N206
357436, 2009-2011.

References

1. Ma lgorzata Biernacka and Dariusz Biernacki. Formalizing constructions of ab-
stract machines for functional languages in Coq. In Jürgen Giesl, editor, Prelim-
inary proceedings of the Seventh International Workshop on Reduction Strategies
in Rewriting and Programming (WRS’07), Paris, France, June 2007.

2. Ma lgorzata Biernacka and Olivier Danvy. A concrete framework for environment
machines. ACM Transactions on Computational Logic, 9(1):1–30, 2007.

3. Ma lgorzata Biernacka and Olivier Danvy. A syntactic correspondence between
context-sensitive calculi and abstract machines. Theoretical Computer Science,
375(1-3):76–108, 2007.

4. Ma lgorzata Biernacka and Olivier Danvy. Towards compatible and interderivable
semantic specifications for the Scheme programming language, Part II: Reduction
semantics and abstract machines. In Jens Palsberg, editor, Semantics and Al-
gebraic Specification: Essays dedicated to Peter D. Mosses on the occasion of his
60th birthday, number 5700 in Lecture Notes in Computer Science, pages 186–206.
Springer, 2009.

5. Jacek Chrza̧szcz. Implementing modules in the Coq system. In David A. Basin
and Burkhart Wolff, editors, TPHOLs, volume 2758 of Lecture Notes in Computer
Science, pages 270–286. Springer, 2003.

6. Pierre-Louis Curien. An abstract framework for environment machines. Theoretical
Computer Science, 82:389–402, 1991.

7. Olivier Danvy. Defunctionalized interpreters for programming languages. In Peter
Thiemann, editor, Proceedings of the 2008 ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’08), SIGPLAN Notices, Vol. 43, No. 9,
Victoria, British Columbia, September 2008. ACM Press. Invited talk.

8. Olivier Danvy. From reduction-based to reduction-free normalization. In Ad-
vanced Functional Programming, Sixth International School, number 5832 in Lec-
ture Notes in Computer Science, pages 64–164, Nijmegen, The Netherlands, May
2008. Springer-Verlag.

9. Olivier Danvy and Jacob Johannsen. Inter-deriving semantic artifacts for object-
oriented programming. Journal of Computer and System Sciences, 76:302–323,
2010.

10. Olivier Danvy and Kevin Millikin. On the equivalence between small-step and
big-step abstract machines: a simple application of lightweight fusion. Information
Processing Letters, 106(3):100–109, 2008.

11. Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. Defunctionalized inter-
preters for call-by-need evaluation. In Matthias Blume and German Vidal, editors,
Functional and Logic Programming, 10th International Symposium, FLOPS 2010,
number 6009 in Lecture Notes in Computer Science, pages 240–256, Sendai, Japan,
April 2010. Springer.

12. Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research
Report BRICS RS-04-26, DAIMI, Department of Computer Science, Aarhus Uni-
versity, Aarhus, Denmark, November 2004. A preliminary version appeared in
the informal proceedings of the Second International Workshop on Rule-Based
Programming (RULE 2001), Electronic Notes in Theoretical Computer Science,
Vol. 59.4.

13. Olivier Danvy and Ian Zerny. Three syntactic theories for combinatory graph re-
duction. In Maŕıa Alpuente, editor, 20th International Symposium on Logic-Based
Program Synthesis and Transformation, LOPSTR 2010, number 3-30 in RISC-
Linz Report Series, Castle of Hagenberg, Austria, July 2010. Research Institute
for Symbolic Computation (RISC), Johannes Kepler University in Linz. Invited
talk.

14. Olivier Danvy, Ian Zerny, and Jacob Johannsen. A walk in the semantic park.
In Proceedings of the 2011 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM 2011), Austin, USA, January
2011. ACM Press. Invited talk.

15. Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine,
and the λ-calculus. In Martin Wirsing, editor, Formal Description of Programming
Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-Holland),
Amsterdam, 1986.

16. Ronald Garcia, Andrew Lumsdaine, and Amr Sabry. Lazy evaluation and delimited
control. Logical Methods in Computer Science, 6(3:1):1–39, July 2010.

17. Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and
Symbolic Computation, 20(3):199–207, 2007.

	Automating Derivations of Abstract Machines from Reduction Semantics:A Generic Formalization of Refocusing in Coq

