
Final Project Compiler Construction

Hans de Nivelle

Due: Feb 26, 2010

The final project is based on Exercise 9 about stack machines. First add the fol-
lowing 3 instructions to the implementation of the stack machine. That should’t
be too much work.

output Write the floating point number on the top of the stack to standard
output and remove it from the stack.

input Read a number from standard input and push in on the top of the stack.

outputchar Interpret the number of the top of the stack as character (using
its ASCII code) and print it to standard output.

1 Task Description

The task is to write a compiler that compiles some programming language into
instructions for the stack machine. You may either create the instructions di-
rectly directly, or create some type of assembler text that can be read by the
stack machine. The language must have the following constructions:

• if ... then ... else ... , where the else part is optional.

• while ... do ...

• do ... while ...

• Some construction for grouping statements, either { ... } or begin ... end.

• The language must have the usual operators, with sensible priorities and
associativities: Arithmetic operators +, -, *, /, . Comparison opera-
tors ==, !=, <, <=, >, >= Note that the comparison operators create
numbers (1.0 when the outcome is true, 0.0 if the outcome is false.)

• print "....." Print the string to standard output. (This must be trans-
lated into a sequence of outputchars.

• print ... Print a double.

• read ... Reads a double.

1

• return ...

• A program consists of a collection of function definitions. Execution starts
at a function with name main, which has no arguments.

You many assume that every function, except main returns a single double.
You may also assume that no function is used before it is defined. (No
forward declarations.)

• Local variables must have initializers, as in local a = 1.

.

#if I_WANT_TO_IMPRESS_MY_TEACHTER == 1

you may add one or more of the following features:

• Local variables in every block, not only at function definitions.

• A conditional operator operator ... ? ... : Logical operators
||, &&, !, that evaluate their arguments only when required. (These

operators can be defined using ... ? ... : ...)

#endif

2 Example Program

// This could be an implementation of factorial:

factorial(n)

{ // You may also use ’begin’

if(n == 0)

return 1

else

return n * factorial(n - 1);

}

// This is another possibility:

factorial2(n)

{

local result = 1;

while(n > 0)

{

result = result * n;

n = n - 1;

}

2

}

main()

{

local a = 0;

print "please type a number: ";

read a;

print "factorial is";

print factorial(a);

}

3 Suggestions

As far as I can see, the hardest part of the project is implementing the following
three containers:
Container for Local Variables

The container must be able to store the addresses of local variables. It must
be able to know how many additional, nameless results are on the stack, so that
it can decide how far a variable is away from the top of the stack. It should
have the following methods:

• Add a local variable.

• Add a nameless variable. (That corresponds to an intermediate value of
an expression.)

• Popping a local variable. (Corresponds to the fact that during evaluation
of an expression, the stack decreases.)

• Looking up a local variable. It should return a number that specifies how
far away from the top-of-stack the local variable is situated.

• Clear. If you have local variables only the start of a function block, it is
enough to have a clear method. If you have local variables at every block,
you need to remember the length of the container at each block entry, and
restore the length when you are finished with the block.

• size. Returns the size of the container. This is needed when you want to
return a value, and want to decide where to write the result.

Code Container

The most elegant solution is to generate a kind of readable assembler text
for the stack instructions. In that case, you don’t need the code container. The
code container is in principle easy, but it needs to be able to deal with the fact

3

that there exist forward jumps. When the compiler generates the code for the
jump, it does not yet know the address of the jump, so that it has to come back
later and fill in the address.

The best solution is to let the code container do this. Create a label class
that is associated to the code container. The code container can be asked to
create a new label, after which the label can be used in emitted code. As long
as the label has no definition, the code container will keep track of where the
label was used. When a definition is given, the code container fills in the correct
address everywhere where the label was used. If the label is used more after its
definition, the code container can simply fill in the value.
The code container should have the following methods:

• Append a statement to the code. The statement can contain labels. If the
value of the label is known, it can be replaced and forgotten, otherwise it
has to be remembered.

• Create a new label.

• Assign a value to a label.

Container for Function Definitions

This container is easy. It contains a map from pairs containing a function
name and an arity, to the starting addresses and the return type (a single number
or nothing) of the function.

4 Parser Generator

You can try your luck without, but believe me, the project is a lot easier if
you use a parser generator. In all cases, I want to see a formal grammar of the
language.

You should make the three containers as global variables, and add actions
to the rules that emit the code. (Use %global) for this.

4

