LALR parsing

LALR stands for look ahead left right. It is a technique for deciding when reductions have to be made in shift/reduce parsing. Often, it can make the decisions without using a look ahead. Sometimes, a look ahead of 1 is required.

Most parser generators (and in particular Bison and Yacc) construct LALR parsers.

In LALR parsing, a deterministic finite automaton is used for determining when reductions have to be made. The deterministic finite automaton is usually called prefix automaton. On the following slides, I will explain how it is constructed.

Items

Let $\mathcal{G}=(\Sigma, R, S)$ be a grammar.
Definition Let $\sigma \in \Sigma, w_{1}, w_{2} \in \Sigma^{*}$. If $\sigma \rightarrow w_{1} \cdot w_{2} \in R$, then $\sigma \rightarrow w_{1} . w_{2}$ is called an item.

An item is a rule with a dot added somewhere in the right hand side.

The intuitive meaning of an item $\sigma \rightarrow w_{1} . w_{2}$ is that w_{1} has been read, and if w_{2} is also found, then rule $\sigma \rightarrow w_{1} w_{2}$ can be reduced.

Items

Let $a \rightarrow b B c$ be a rule. The following items can be constructed from this rule:

$$
a \rightarrow . b B c, \quad a \rightarrow b . B c, \quad a \rightarrow b B . c, \quad a \rightarrow b B c .
$$

For a given grammar G, the set of possible items is finite.

Operations on Itemsets (1)

Definition: An itemset is a set of items.
Because for a given grammar, there exists only a finite set of possible items, the set of itemsets is also finite.

Let I be an itemset. The closure $\operatorname{CLOS}(I)$ of I is defined as the smallest itemset J, s.t.

- $I \subseteq J$,
- If $\sigma \rightarrow w_{1} . A w_{2} \in J$, and there exists a rule $A \rightarrow v \in R$, then $A \rightarrow . v \in J$.

Operations on Itemsets (2)

Let I be an itemset, let $\alpha \in \Sigma$ be a symbol. The set $\operatorname{TRANS}(I, \alpha)$ is defined as

$$
\left\{\sigma \rightarrow w_{1} \alpha . w_{2} \mid \sigma \rightarrow w_{1} . \alpha w_{2} \in I\right\} .
$$

The Prefix Automaton

Let $\mathcal{G}=(\Sigma, R, S)$ be a grammar. The prefix automaton of \mathcal{G} is the deterministic finite automaton $\mathcal{A}=\left(\Sigma, Q, Q_{s}, Q_{a}, \delta\right)$, that is the result of the following algorithm:

- Start with $\mathcal{A}=(\Sigma,\{\operatorname{CLOS}(I)\},\{\operatorname{CLOS}(I)\}, \emptyset, \emptyset)$, where $I=\{\hat{S} \rightarrow . S \#\}, \quad \hat{S} \notin \Sigma$ is a new start symbol, S is the original start symbol of \mathcal{G}, and $\# \notin \Sigma$ is the EOF symbol.
- As long as there exists an $I \in Q$, and a $\sigma \in \Sigma$, s.t. $I^{\prime}=\operatorname{CLOS}(\operatorname{TRANS}(I, \sigma)) \notin Q$, put

$$
Q:=Q \cup\left\{I^{\prime}\right\}, \quad \delta:=\delta \cup\left\{\left(I, \sigma, I^{\prime}\right)\right\}
$$

- As long as there exist $I, I^{\prime} \in Q$, and a $\sigma \in \Sigma$, s.t. $I^{\prime}=\operatorname{CLOS}(\operatorname{TRANS}(I, \sigma))$, and $\left(I, \sigma, I^{\prime}\right) \notin \delta$, put

$$
\delta:=\delta \cup\left\{\left(I, \sigma, I^{\prime}\right)\right\}
$$

The Prefix Automaton (2)

The prefix automaton can be big, but it can be easily computed.
Every context-free language has a prefix automaton, but not every language can be parsed by an LALR parser, because of the look ahead sets.

Parse Algorithm (1)

```
std::vector< state > states;
    // Stack of states of the prefix automaton.
std::vector< token > tokens;
    // We assume that a token has attributes, so
    // we don't encode them separately.
std::dequeue< token > lookahead;
    // Will never be longer than one.
states. push_back( q0 ); // The initial state.
while( true )
{
```


Parse Algorithm (2)

```
decision = unknown;
state topstate = states. back( );
if(topstate has only one reduction R and no shifts)
    decision = reduce(R);
// We know for sure that we need lookahead:
if( decision == unknown && lookahead. size( ) == 0 )
{
    lookahead. push_back( inputstream. readtoken( ));
}
```


Parse Algorithm (3)

if(lookahead. front() == EOF)
\{
if (topstate is an accepting state)
return tokens. back();
else
return error, unexpected end of input.
\}

Parse Algorithm (4)

```
if( decision == unknown &&
        topstate has only one reduction R with
            lookahead. front( ) &&
        no shift is possible with lookahead. front( ))
{
    decision = reduce(R);
}
if( decision == unknown &&
        topstate has only a shift Q with
            lookahead. front( ) &&
        no reduction is possible with lookahead. front()
{
    decision = shift(Q);
}
```


Parse Algorithm (5)

if(decision == unknown)
\{
// Either we have a conflict, or the parser is // stuck.
if (no reduction/no shift is possible) print error message, try to recover.

Parse Algorithm (6)

```
    // A conflict can be shift/reduce, or
// reduce/reduce:
Let \(R\), from the set of possible reductions, (taking into account lookahead. front( )), be the rule with the smallest number.
decision = reduce(R);
}
```

Parse Algorithm (7)

```
if( decision == push(Q))
{
        states. push_back( Q );
        tokens. push_back( lookahead. front( ));
        lookahead. pop_front( );
}
else
{
    // decision has form reduce(R)
        unsigned int n =
        the length of the rhs of R.
```


Parse Algorithm (8)

```
token lhs =
        compute_lhs( R,
        tokens. begin( ) + tokens. size( ) - n,
        tokens. begin( ) + tokens. size( ));
            // this also computes the attribute.
for( unsigned int i = 0; i < n; ++ i )
{
    states. pop_back( );
    tokens. pop_back( );
}
```


Parse Algorithm (9)

```
        // The shift of the lhs after a reduction is
        // also called 'goto'
        topstate = states. back( );
        state newstate =
            the state reachable from topstate under lhs.
            states. push_back( newstate );
            tokens. push_back( lhs );
        }
}
// Unreachable.
```


Lookahead Sets

We already have seen lookahead sets in action.
If a state has more than one reduction, or a reduction and a shift, the parser looks at the lookahead symbol, in order to decide what to do next.
$\mathrm{LA}(I, \sigma \rightarrow w) \subseteq \Sigma$ is defined a set of tokens. If the parser is in state I, and the lookahead $\in \operatorname{LA}(I, \sigma \rightarrow w)$, then the parser can reduce $\sigma \rightarrow w$.

When should a token σ be in $\mathrm{LA}(I, \sigma \rightarrow w)$?

Lookahead Sets (2)

Definition:
$s \in \mathrm{LA}(I, \sigma \rightarrow w)$ if

1. $\sigma \rightarrow w . \in I$ (obvious)
2. There exists a correct input word $w_{1} \cdot s \cdot w_{2} \cdot \#$, such that
3. The parser reaches a state with state stack (\ldots, I) and token stack (\ldots, w), the lookahead (of the parser) is s, and
4. the parser can reduce the rule $\sigma \rightarrow w$, after which
5. it can read the rest of the input w_{2} and reach an accepting state.

Computing Look Ahead Sets

For every rule $A \rightarrow w$ of the grammar \mathcal{G}, such that there exist states I_{1}, I_{2}, I_{3}, s.t. $A \rightarrow . w \in I_{1}, \quad A \rightarrow w . \in I_{2}$, there exists a path from I_{1} to I_{2} in the prefix automaton using w, and there is a transition from I_{1} to I_{3} based on A, the following must hold:

- For every symbol $\sigma \in \Sigma$, for which a transition from I_{3} to some other state is possible in the prefix automaton, $\sigma \in \mathrm{LA}\left(I_{2}, \quad A \rightarrow w.\right)$.
- For every item of form $B \rightarrow v . \in I_{3}$, $\mathrm{LA}\left(I_{3}, \quad B \rightarrow v.\right) \subseteq \mathrm{LA}\left(I_{2}, \quad A \rightarrow w.\right)$

Compute the LA as the smallest such sets.

Computing Look Ahead Sets (2)
Example

$$
\begin{aligned}
S & \rightarrow A a \\
A & \rightarrow B \\
A & \rightarrow B b \\
B & \rightarrow C \\
B & \rightarrow C c \\
C & \rightarrow d
\end{aligned}
$$

The algorithm on the previous slides can sometimes compute too big look ahead sets. You will see this in the exercises.

Computing the Correct Sets

I don't want to say much about this, because it is complicated. Definition: An $\operatorname{LR}(1)$-item has form $\sigma \rightarrow w_{1} . w_{2} / s$, where $\sigma \rightarrow w_{1} w_{2}$ is a rule of the grammar, and $s \in S$.

STEP remains the same.
CLOS has to be modified.

