Exercise Compiler Construction (4)

Hans de Nivelle

Due: 4 November 2009

- 1. Consider the language (Σ, R, S) , defined by $\Sigma = \{ '(',')' \}$, $R = \{S \to SS, S \to (S), S \to \epsilon.$
 - Give derivations for

$$'(()()())', \ '((()))', \ '((()()))'.$$

- Show that the language is ambiguous. (There are words that have more than one derivation.)
- Repair the grammar, so that it is not ambiguous anymore, but still accepts the same set of words.
- 2. (a) In the programming language Lisp, everything is a list. The empty list has form () or nil. Non-empty lists have form (L1), (L1 L2), (L1 L2 L3), etc. Give a complete grammar for Lisp. The elements of a list can be atoms, numbers, or by themselves lists. (You may ignore the existence of dotted pairs and arrays.)
 - (b) Give a grammar for the language of Prolog-style lists. Lists have form

$$[], [L], [L_1, L_2], [L_1, L_2, L_3], \text{ etc.}$$

The elements of the lists can by themselves be lists again.

- (c) Consider the language consisting of functional expressions of form c, and $f(t_1, \ldots, t_n)$, with n > 0, and t_1, \ldots, t_n functional expressions by themselves. Give a grammar for this language.
- (d) Give a grammar for propositional formulas consisting of propositional variables, and the following operators:

operator	meaning	binding strength
!	negation	600, prefix
&	and	500, leftassoc
	or	400, leftassoc
\longrightarrow	implication	300, rightassoc
\longleftrightarrow	equivalence	200, nonassoc.

In addition to the operators, the language must allow parentheses.

3. (a) Give the attribute functions for the grammar of Task 2a. Take into account that $(L_1 \cdots L_n)$ denotes $\mathbf{cons}(L_1, \mathbf{cons}(L_2, \dots \mathbf{nil}))$. Give a derivation for the list

(car (quote (1 2 3))).

(b) Give the attribute functions for the grammar in Task 2d.