Exercise Compiler Construction (5)

Hans de Nivelle

Due: November 25th 2009

- 1. Consider the grammar $\mathcal{G} = (\{\hat{S}, S, T, U, \#, +, *, \mathrm{id}, (,)\}, \hat{S}, R)$ with R =
 - $\begin{array}{l} \hat{S} \rightarrow S \# \\ S \rightarrow S + T \\ S \rightarrow T \\ T \rightarrow T \ast U \\ T \rightarrow U \\ U \rightarrow \mathrm{id} \end{array}$
 - $U \to (S)$
 - (a) Draw the prefix automaton for \mathcal{G} .
 - (b) Identify the states in which reductions are possible. In which of these states is a look ahead necessary?
 - (c) Compute the lookaheads, using the algorithm in the slides.
- 2. (a) Draw the prefix automaton for the language of Task list 4, 2b.
 - (b) Identify the states in which reductions are possible. Determine the states in which look ahead is necessary.
 - (c) Compute the look ahead sets, using the algorithm on the slides.
- 3. Consider the following grammar $\mathcal{G} = (\{\hat{S}, S, A, B, a, b, c\}, \hat{S}, R)$ with R =
 - $\begin{array}{l} \hat{S} \rightarrow S \# \\ S \rightarrow cbca \\ S \rightarrow AaAb \\ A \rightarrow B \\ B \rightarrow c \end{array}$
 - (a) Draw the prefix automaton for this language.
 - (b) Identify the states in which reductions are possible. Compute the lookaheads, using the algorithm in the slides.
 - (c) Actually, this is an example, where the algorithm in the slides computes too big look aheads. What is the consequence of this?
 - (d) Determine the correct lookahead sets.