Exercise Compiler Construction (6)

Hans de Nivelle
Due: December 2nd 2009

1. Consider the grammar G = ({5’, S, T, U, #,+,*,1d, (,)}, 5',R) with R =

S’—>S#
S—S+T
S—T
T—TxU
T—-U
U —id
U—(9)

(a)
(b)

Download Maphoon from the course homepage, read the manual.

Prepare a file simple.m containing the grammar given above, and run
it through Maphoon. In subdirectory examples are a few examples.

Read the output of Maphoon. How many states does the prefix
automaton have?

) In subdirectory example_calculator is a grammar for a calculator.

If you try to run the calculator (./calculator), it crashes. The
reason for this is the fact that no attribute constraints have been
specified. When an attribute is unspecified, the parser assumes that
the attribute is absent. Because the tokenizer sometimes returns
tokens with attributes, the parser crashes.

Modify the attribute constraints of the tokens E.F,G,H, LISTARGS,
IDENTIFIER, NUMBER in such a way that the parser does not
crash anymore. For E,F ,G,H, you should allow 0 or 1 value. The
reason for allowing 0 values is to represent an undefined value. Un-
defined values are caused by division by zero, lookup of undefined
variables, or computing ! of a non-integer or negative number.

For LISTARGS, you should allow an arbitrary number of values. For
ID and SCANERROR, you should allow exactly 1 string. For NUM,
you should allow exactly one value.

Currently, there is no nice way for quitting the calculator. Do not
worry about that.



(¢) Write the attribute functions for the rules involving E,F,G,H. A few
have been done already, so you can use those as example. If you want
so see what is going on in the parser, you can set #define MAPH_DEBUG 1
in file parser. cpp.

(d) Why is there no error if you type -1 ! ; 7
(a) Type some string that causes a syntax error in the calculator, for
example a b ¢ ; . What do you see?

(b) Verify that the parser gives up after 10 unparsable tokens. Change
this number into 15, and check that it is indeed 15.

(c) Write the attribute function for LISTARGS. Add some more func-
tions to the rule H : IDENTIFIER LPAR LISTARGS RPAR .



