

LALR stands for look ahead left right. It is a technique for deciding when reductions have to be made in shift/reduce parsing.

Often, it can make the decisions without using a look ahead. Sometimes, a look ahead of 1 is required.

Most parser generators (and in particular Bison and Yacc) construct LALR parsers.

In LALR parsing, a deterministic finite automaton is used for determining when reductions have to be made. The deterministic finite automaton is usually called prefix automaton. On the following slides, I will explain how it is constructed.

Items

Let $\mathcal{G} = (\Sigma, R, S)$ be a grammar.

Definition Let $\sigma \in \Sigma$, $w_1, w_2 \in \Sigma^*$. If $\sigma \to w_1 \cdot w_2 \in R$, then $\sigma \to w_1.w_2$ is called an item.

An item is a rule with a dot added somewhere in the right hand side.

The intuitive meaning of an item $\sigma \to w_1.w_2$ is that w_1 has been read, and if w_2 is also found, then rule $\sigma \to w_1w_2$ can be reduced.

Items

Let $a \to bBc$ be a rule. The following items can be constructed from this rule:

$$a \rightarrow .bBc, \quad a \rightarrow b.Bc, \quad a \rightarrow bB.c, \quad a \rightarrow bBc.$$

For a given grammar G, the set of possible items is finite.

Operations on Itemsets (1)

Definition: An itemset is a set of items.

Because for a given grammar, there exists only a finite set of possible items, the set of itemsets is also finite.

Let I be an itemset. The closure CLOS(I) of I is defined as the smallest itemset J, s.t.

- \bullet $I \subseteq J$,
- If $\sigma \to w_1.Aw_2 \in J$, and there exists a rule $A \to v \in R$, then $A \to v \in J$.

Operations on Itemsets (2)

Let I be an itemset, let $\alpha \in \Sigma$ be a symbol. The set $\mathrm{TRANS}(I, \alpha)$ is defined as

$$\{\sigma \to w_1 \alpha. w_2 \mid \sigma \to w_1. \alpha w_2 \in I \}.$$

The Prefix Automaton

Let $\mathcal{G} = (\Sigma, R, S)$ be a grammar. The prefix automaton of \mathcal{G} is the deterministic finite automaton $\mathcal{A} = (\Sigma, Q, Q_s, Q_a, \delta)$, that is the result of the following algorithm:

- Start with $\mathcal{A} = (\Sigma, \{\text{CLOS}(I)\}, \{\text{CLOS}(I)\}, \emptyset, \emptyset)$, where $I = \{\hat{S} \to .S \#\}, \quad \hat{S} \not\in \Sigma \text{ is a new start symbol, } S \text{ is the original start symbol of } \mathcal{G}, \text{ and } \# \not\in \Sigma \text{ is the EOF symbol.}$
- As long as there exists an $I \in Q$, and a $\sigma \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, \sigma)) \notin Q$, put

$$Q := Q \cup \{I'\}, \quad \delta := \delta \cup \{(I, \sigma, I')\}.$$

• As long as there exist $I, I' \in Q$, and a $\sigma \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, \sigma))$, and $(I, \sigma, I') \notin \delta$, put

$$\delta := \delta \cup \{(I, \sigma, I')\}.$$

The Prefix Automaton (2)

The prefix automaton can be big, but it can be easily computed.

Every context-free language has a prefix automaton, but not every language can be parsed by an LALR parser, because of the look ahead sets.

Parse Algorithm (1) std::vector< state > states; // Stack of states of the prefix automaton. std::vector< token > tokens; // We assume that a token has attributes, so // we don't encode them separately. std::dequeue< token > lookahead; // Will never be longer than one. states. push_back(q0); // The initial state. while(true)

Parse Algorithm (2)

```
decision = unknown;
state topstate = states. back( );
if(topstate has only one reduction R and no shifts)
   decision = reduce(R);
// We know for sure that we need lookahead:
if( decision == unknown && lookahead. size( ) == 0 )
   lookahead. push_back( inputstream. readtoken( ));
```

Parse Algorithm (3)

```
if( lookahead. front( ) == EOF )
{
   if( topstate is an accepting state )
     return tokens. back( );
   else
     return error, unexpected end of input.
}
```

Parse Algorithm (4) if(decision == unknown && topstate has only one reduction R with lookahead. front() && no shift is possible with lookahead. front()) { decision = reduce(R); if (decision == unknown && topstate has only a shift Q with lookahead. front() && no reduction is possible with lookahead. front()? decision = shift(Q);

```
Parse Algorithm (5)
  if( decision == unknown )
  {
    // Either we have a conflict, or the parser is
    // stuck.
  if( no reduction/no shift is possible )
    print error message, try to recover.
```

Parse Algorithm (6)

```
// A conflict can be shift/reduce, or
// reduce/reduce:

Let R, from the set of possible reductions,
(taking into account lookahead. front()),
be the rule with the smallest number.

decision = reduce(R);
```

Parse Algorithm (7) if(decision == push(Q)) states. push_back(Q); tokens. push_back(lookahead. front()); lookahead. pop_front(); else // decision has form reduce(R) unsigned int n = the length of the rhs of R.

Parse Algorithm (8)

```
token lhs =
   compute_lhs( R,
      tokens. begin() + tokens. size() - n,
      tokens. begin( ) + tokens. size( ));
         // this also computes the attribute.
for( unsigned int i = 0; i < n; ++ i )</pre>
   states. pop_back( );
   tokens. pop_back( );
```

Parse Algorithm (9)

```
// The shift of the lhs after a reduction is
      // also called 'goto'
      topstate = states. back( );
      state newstate =
         the state reachable from topstate under lhs.
      states. push_back( newstate );
      tokens. push_back( lhs );
// Unreachable.
```

Lookahead Sets

We already have seen lookahead sets in action.

If a state has more than one reduction, or a reduction and a shift, the parser looks at the lookahead symbol, in order to decide what to do next.

 $LA(I, \sigma \to w) \subseteq \Sigma$ is defined a set of tokens. If the parser is in state I, and the lookahead $\in LA(I, \sigma \to w)$, then the parser can reduce $\sigma \to w$.

When should a token σ be in LA $(I, \sigma \to w)$?

Lookahead Sets (2)

Definition:

$$s \in \mathrm{LA}(I, \ \sigma \to w)$$
 if

- 1. $\sigma \to w$. $\in I$ (obvious)
- 2. There exists a correct input word $w_1 \cdot s \cdot w_2 \cdot \#$, such that
- 3. The parser reaches a state with state stack (..., I) and token stack (..., w), the lookahead (of the parser) is s, and
- 4. the parser can reduce the rule $\sigma \to w$, after which
- 5. it can read the rest of the input w_2 and reach an accepting state.

Computing Look Ahead Sets

For every rule $A \to w$ of the grammar \mathcal{G} , such that there exist states I_1, I_2, I_3 , s.t. $A \to w \in I_1$, $A \to w \in I_2$, there exists a path from I_1 to I_2 in the prefix automaton using w, and there is a transition from I_1 to I_3 based on A, the following must hold:

- For every symbol $\sigma \in \Sigma$, for which a transition from I_3 to some other state is possible in the prefix automaton, $\sigma \in LA(I_2, A \to w.)$.
- For every item of form $B \to v$. $\in I_3$, $LA(I_3, B \to v) \subseteq LA(I_2, A \to w)$

Compute the LA as the smallest such sets.

Computing Look Ahead Sets (2)

Example

$$S \to Aa$$
,

$$A \to B$$
,

$$A \rightarrow Bb$$
,

$$B \to C$$

$$B \to C,$$
 $B \to Cc,$ $C \to d.$

$$C \to d$$
.

The algorithm on the previous slides can sometimes compute too big look ahead sets. You will see this in the exercises.

Computing the Correct Sets

I don't want to say much about this, because it is complicated.

Definition: An LR(1)-item has form $\sigma \to w_1.w_2/s$, where $\sigma \to w_1w_2$ is a rule of the grammar, and $s \in S$.

STEP remains the same.

CLOS has to be modified.