
LALR parsing
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LALR stands for look ahead left right. It is a technique for

deciding when reductions have to be made in shift/reduce parsing.

Often, it can make the decisions without using a look ahead.

Sometimes, a look ahead of 1 is required.

Most parser generators (and in particular Bison and Yacc)

construct LALR parsers.

In LALR parsing, a deterministic finite automaton is used for

determining when reductions have to be made. The deterministic

finite automaton is usually called prefix automaton. On the

following slides, I will explain how it is constructed.
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Items

Let G = (Σ, R, S) be a grammar.

Definition Let σ ∈ Σ, w1, w2 ∈ Σ∗. If σ → w1 · w2 ∈ R, then

σ → w1.w2 is called an item.

An item is a rule with a dot added somewhere in the right hand

side.

The intuitive meaning of an item σ → w1.w2 is that w1 has been

read, and if w2 is also found, then rule σ → w1w2 can be reduced.
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Items

Let a → bBc be a rule. The following items can be constructed

from this rule:

a → .bBc, a → b.Bc, a → bB.c, a → bBc.

For a given grammar G, the set of possible items is finite.
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Operations on Itemsets (1)

Definition: An itemset is a set of items.

Because for a given grammar, there exists only a finite set of

possible items, the set of itemsets is also finite.

Let I be an itemset. The closure CLOS(I) of I is defined as the

smallest itemset J, s.t.

• I ⊆ J,

• If σ → w1.Aw2 ∈ J, and there exists a rule A → v ∈ R, then

A → .v ∈ J.
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Operations on Itemsets (2)

Let I be an itemset, let α ∈ Σ be a symbol. The set TRANS(I, α)

is defined as

{σ → w1α.w2 | σ → w1.αw2 ∈ I }.
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The Prefix Automaton

Let G = (Σ, R, S) be a grammar. The prefix automaton of G is the

deterministic finite automaton A = (Σ, Q, Qs, Qa, δ), that is the

result of the following algorithm:

• Start with A = (Σ, {CLOS(I)}, {CLOS(I)}, ∅, ∅), where

I = {Ŝ → .S #}, Ŝ 6∈ Σ is a new start symbol, S is the

original start symbol of G, and # 6∈ Σ is the EOF symbol.

• As long as there exists an I ∈ Q, and a σ ∈ Σ, s.t.

I ′ = CLOS(TRANS(I, σ)) 6∈ Q, put

Q := Q ∪ {I ′}, δ := δ ∪ {(I, σ, I ′)}.

• As long as there exist I, I ′ ∈ Q, and a σ ∈ Σ, s.t.

I ′ = CLOS(TRANS(I, σ)), and (I, σ, I ′) 6∈ δ, put

δ := δ ∪ {(I, σ, I ′)}.
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The Prefix Automaton (2)

The prefix automaton can be big, but it can be easily computed.

Every context-free language has a prefix automaton, but not every

language can be parsed by an LALR parser, because of the look

ahead sets.
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Parse Algorithm (1)

std::vector< state > states;

// Stack of states of the prefix automaton.

std::vector< token > tokens;

// We assume that a token has attributes, so

// we don’t encode them separately.

std::dequeue< token > lookahead;

// Will never be longer than one.

states. push_back( q0 ); // The initial state.

while( true )

{
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Parse Algorithm (2)

decision = unknown;

state topstate = states. back( );

if(topstate has only one reduction R and no shifts)

decision = reduce(R);

// We know for sure that we need lookahead:

if( decision == unknown && lookahead. size( ) == 0 )

{

lookahead. push_back( inputstream. readtoken( ));

}
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Parse Algorithm (3)

if( lookahead. front( ) == EOF )

{

if( topstate is an accepting state )

return tokens. back( );

else

return error, unexpected end of input.

}
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Parse Algorithm (4)

if( decision == unknown &&

topstate has only one reduction R with

lookahead. front( ) &&

no shift is possible with lookahead. front( ))

{

decision = reduce(R);

}

if( decision == unknown &&

topstate has only a shift Q with

lookahead. front( ) &&

no reduction is possible with lookahead. front())

{

decision = shift(Q);

}
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Parse Algorithm (5)

if( decision == unknown )

{

// Either we have a conflict, or the parser is

// stuck.

if( no reduction/no shift is possible )

print error message, try to recover.
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Parse Algorithm (6)

// A conflict can be shift/reduce, or

// reduce/reduce:

Let R, from the set of possible reductions,

(taking into account lookahead. front( )),

be the rule with the smallest number.

decision = reduce(R);

}
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Parse Algorithm (7)

if( decision == push(Q))

{

states. push_back( Q );

tokens. push_back( lookahead. front( ));

lookahead. pop_front( );

}

else

{

// decision has form reduce(R)

unsigned int n =

the length of the rhs of R.
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Parse Algorithm (8)

token lhs =

compute_lhs( R,

tokens. begin( ) + tokens. size( ) - n,

tokens. begin( ) + tokens. size( ));

// this also computes the attribute.

for( unsigned int i = 0; i < n; ++ i )

{

states. pop_back( );

tokens. pop_back( );

}
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Parse Algorithm (9)

// The shift of the lhs after a reduction is

// also called ’goto’

topstate = states. back( );

state newstate =

the state reachable from topstate under lhs.

states. push_back( newstate );

tokens. push_back( lhs );

}

}

// Unreachable.
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Lookahead Sets

We already have seen lookahead sets in action.

If a state has more than one reduction, or a reduction and a shift,

the parser looks at the lookahead symbol, in order to decide what

to do next.

LA(I, σ → w) ⊆ Σ is defined a set of tokens. If the parser is in

state I, and the lookahead ∈ LA(I, σ → w), then the parser can

reduce σ → w.

When should a token σ be in LA(I, σ → w) ?
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Lookahead Sets (2)

Definition:

s ∈ LA(I, σ → w) if

1. σ → w. ∈ I (obvious)

2. There exists a correct input word w1 · s · w2 · #, such that

3. The parser reaches a state with state stack (. . . , I) and token

stack (. . . , w), the lookahead (of the parser) is s, and

4. the parser can reduce the rule σ → w, after which

5. it can read the rest of the input w2 and reach an accepting

state.
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Computing Look Ahead Sets

For every rule A → w of the grammar G, such that there exist

states I1, I2, I3, s.t. A → .w ∈ I1, A → w. ∈ I2, there exists a path

from I1 to I2 in the prefix automaton using w, and there is a

transition from I1 to I3 based on A, the following must hold:

• For every symbol σ ∈ Σ, for which a transition from I3 to some

other state is possible in the prefix automaton,

σ ∈ LA(I2, A → w.).

• For every item of form B → v. ∈ I3,

LA(I3, B → v.) ⊆ LA(I2, A → w.)

Compute the LA as the smallest such sets.
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Computing Look Ahead Sets (2)

Example

S → Aa,

A → B,

A → Bb,

B → C,

B → Cc,

C → d.
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The algorithm on the previous slides can sometimes compute too

big look ahead sets. You will see this in the exercises.
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Computing the Correct Sets

I don’t want to say much about this, because it is complicated.

Definition: An LR(1)-item has form σ → w1.w2/s, where

σ → w1w2 is a rule of the grammar, and s ∈ S.

STEP remains the same.

CLOS has to be modified.
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