LALR stands for look ahead left right. It is a technique for deciding when reductions have to be made in shift/reduce parsing. Often, it can make the decisions without using a look ahead. Sometimes, a look ahead of 1 is required. Most parser generators (and in particular Bison and Yacc) construct LALR parsers. In LALR parsing, a deterministic finite automaton is used for determining when reductions have to be made. The deterministic finite automaton is usually called prefix automaton. On the following slides, I will explain how it is constructed. #### Items Let $\mathcal{G} = (\Sigma, R, S)$ be a grammar. Definition Let $\sigma \in \Sigma$, $w_1, w_2 \in \Sigma^*$. If $\sigma \to w_1 \cdot w_2 \in R$, then $\sigma \to w_1.w_2$ is called an item. An item is a rule with a dot added somewhere in the right hand side. The intuitive meaning of an item $\sigma \to w_1.w_2$ is that w_1 has been read, and if w_2 is also found, then rule $\sigma \to w_1w_2$ can be reduced. #### Items Let $a \to bBc$ be a rule. The following items can be constructed from this rule: $$a \rightarrow .bBc, \quad a \rightarrow b.Bc, \quad a \rightarrow bB.c, \quad a \rightarrow bBc.$$ For a given grammar G, the set of possible items is finite. ### Operations on Itemsets (1) Definition: An itemset is a set of items. Because for a given grammar, there exists only a finite set of possible items, the set of itemsets is also finite. Let I be an itemset. The closure CLOS(I) of I is defined as the smallest itemset J, s.t. - \bullet $I \subseteq J$, - If $\sigma \to w_1.Aw_2 \in J$, and there exists a rule $A \to v \in R$, then $A \to v \in J$. ## Operations on Itemsets (2) Let I be an itemset, let $\alpha \in \Sigma$ be a symbol. The set $\mathrm{TRANS}(I, \alpha)$ is defined as $$\{\sigma \to w_1 \alpha. w_2 \mid \sigma \to w_1. \alpha w_2 \in I \}.$$ #### The Prefix Automaton Let $\mathcal{G} = (\Sigma, R, S)$ be a grammar. The prefix automaton of \mathcal{G} is the deterministic finite automaton $\mathcal{A} = (\Sigma, Q, Q_s, Q_a, \delta)$, that is the result of the following algorithm: - Start with $\mathcal{A} = (\Sigma, \{\text{CLOS}(I)\}, \{\text{CLOS}(I)\}, \emptyset, \emptyset)$, where $I = \{\hat{S} \to .S \#\}, \quad \hat{S} \not\in \Sigma \text{ is a new start symbol, } S \text{ is the original start symbol of } \mathcal{G}, \text{ and } \# \not\in \Sigma \text{ is the EOF symbol.}$ - As long as there exists an $I \in Q$, and a $\sigma \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, \sigma)) \notin Q$, put $$Q := Q \cup \{I'\}, \quad \delta := \delta \cup \{(I, \sigma, I')\}.$$ • As long as there exist $I, I' \in Q$, and a $\sigma \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, \sigma))$, and $(I, \sigma, I') \notin \delta$, put $$\delta := \delta \cup \{(I, \sigma, I')\}.$$ #### The Prefix Automaton (2) The prefix automaton can be big, but it can be easily computed. Every context-free language has a prefix automaton, but not every language can be parsed by an LALR parser, because of the look ahead sets. # Parse Algorithm (1) std::vector< state > states; // Stack of states of the prefix automaton. std::vector< token > tokens; // We assume that a token has attributes, so // we don't encode them separately. std::dequeue< token > lookahead; // Will never be longer than one. states. push_back(q0); // The initial state. while(true) #### Parse Algorithm (2) ``` decision = unknown; state topstate = states. back(); if(topstate has only one reduction R and no shifts) decision = reduce(R); // We know for sure that we need lookahead: if(decision == unknown && lookahead. size() == 0) lookahead. push_back(inputstream. readtoken()); ``` ## Parse Algorithm (3) ``` if(lookahead. front() == EOF) { if(topstate is an accepting state) return tokens. back(); else return error, unexpected end of input. } ``` ## Parse Algorithm (4) if(decision == unknown && topstate has only one reduction R with lookahead. front() && no shift is possible with lookahead. front()) { decision = reduce(R); if (decision == unknown && topstate has only a shift Q with lookahead. front() && no reduction is possible with lookahead. front()? decision = shift(Q); ``` Parse Algorithm (5) if(decision == unknown) { // Either we have a conflict, or the parser is // stuck. if(no reduction/no shift is possible) print error message, try to recover. ``` ## Parse Algorithm (6) ``` // A conflict can be shift/reduce, or // reduce/reduce: Let R, from the set of possible reductions, (taking into account lookahead. front()), be the rule with the smallest number. decision = reduce(R); ``` # Parse Algorithm (7) if(decision == push(Q)) states. push_back(Q); tokens. push_back(lookahead. front()); lookahead. pop_front(); else // decision has form reduce(R) unsigned int n = the length of the rhs of R. #### Parse Algorithm (8) ``` token lhs = compute_lhs(R, tokens. begin() + tokens. size() - n, tokens. begin() + tokens. size()); // this also computes the attribute. for(unsigned int i = 0; i < n; ++ i)</pre> states. pop_back(); tokens. pop_back(); ``` ## Parse Algorithm (9) ``` // The shift of the lhs after a reduction is // also called 'goto' topstate = states. back(); state newstate = the state reachable from topstate under lhs. states. push_back(newstate); tokens. push_back(lhs); // Unreachable. ``` #### Lookahead Sets We already have seen lookahead sets in action. If a state has more than one reduction, or a reduction and a shift, the parser looks at the lookahead symbol, in order to decide what to do next. $LA(I, \sigma \to w) \subseteq \Sigma$ is defined a set of tokens. If the parser is in state I, and the lookahead $\in LA(I, \sigma \to w)$, then the parser can reduce $\sigma \to w$. When should a token σ be in LA $(I, \sigma \to w)$? #### Lookahead Sets (2) #### Definition: $$s \in \mathrm{LA}(I, \ \sigma \to w)$$ if - 1. $\sigma \to w$. $\in I$ (obvious) - 2. There exists a correct input word $w_1 \cdot s \cdot w_2 \cdot \#$, such that - 3. The parser reaches a state with state stack (..., I) and token stack (..., w), the lookahead (of the parser) is s, and - 4. the parser can reduce the rule $\sigma \to w$, after which - 5. it can read the rest of the input w_2 and reach an accepting state. #### Computing Look Ahead Sets For every rule $A \to w$ of the grammar \mathcal{G} , such that there exist states I_1, I_2, I_3 , s.t. $A \to w \in I_1$, $A \to w \in I_2$, there exists a path from I_1 to I_2 in the prefix automaton using w, and there is a transition from I_1 to I_3 based on A, the following must hold: - For every symbol $\sigma \in \Sigma$, for which a transition from I_3 to some other state is possible in the prefix automaton, $\sigma \in LA(I_2, A \to w.)$. - For every item of form $B \to v$. $\in I_3$, $LA(I_3, B \to v) \subseteq LA(I_2, A \to w)$ Compute the LA as the smallest such sets. ## Computing Look Ahead Sets (2) Example $$S \to Aa$$, $$A \to B$$, $$A \rightarrow Bb$$, $$B \to C$$ $$B \to C,$$ $B \to Cc,$ $C \to d.$ $$C \to d$$. The algorithm on the previous slides can sometimes compute too big look ahead sets. You will see this in the exercises. #### Computing the Correct Sets I don't want to say much about this, because it is complicated. Definition: An LR(1)-item has form $\sigma \to w_1.w_2/s$, where $\sigma \to w_1w_2$ is a rule of the grammar, and $s \in S$. STEP remains the same. CLOS has to be modified.