Bottom Up (Shift/Reduce) Parsing




Bottom Up Parsing has the following advantages over top-down

parsing.
Attribute computation is easy.

Since choices are made only at the end of a rule, shared prefixes are
unproblematic. Because of this, there is usually no need to modify

grammar rules.
The parser can be generated automatically.

One big disadvantage is the fact that bottom-up parsing does not

suppport left /right information flow. (For example, checking

symbol definitions.)




Shift /Reduce Parsing
Let G = (X, A, R, S) be an attribute grammar.

The shift /reduce parser operates on triples
(s,v,u) € (XR®9)* X (X®9)" x (X®S)*, where

e sc (X® A)* is the stack.
e vE(X® AT is the lookahead,

(
u € (X ® A)* is the input that is not yet read.




Shift /Reduce Parsing

We write F for the transition relation of the parser.

The parser starts in a state of form (e, €, u).

(Empty stack, empty lookahead, no input read.)




Read

A read means that the parser moves one unread token to the
lookahead:

(s,v,(0,a) u)F (s,v-(0,a),u).




Shift

A shift means that the parser shifts one token from lookahead to
the stack:

(s,(0,) -v,u) F (s-(0,a),v,u).




Reduction

A reduction means that the parser replaces the right hand side of a
grammar rule by the left hand side. It uses the attribute function

of the grammar rule to compute the new attribute.

If (A—wy-...-wy,): f € R, then

(s (wi,a1) ... (Wp,ap), v, u) (s (4, flar,...,ay)), v, u).

Reductions can only be made at the top of the stack!




Accept

The shift /reduce parser accepts its input if it is in a state
((S,a), €, €).

This means that it has read all the input, has empty lookahead,

and it managed to rewrite the input to S.

In practice an EOF symbol is used. Let # & X be a special EOF
symbol.

The shift /reduce parser accepts its input if it is in a state

((S;a),#;¢).




Making the Decisions

At each state, the parser has the following choices:

e If the top of the stack contains the right hand side of a rule, it

can reduce.
e It it didn’t reach end of file, it can shift.

It is possible that more than one reduction is possible. If a
reduction is possible, it is still possible to shift. In order to decide,
the parser uses the lookahead.

A good parser makes its decisions as early as possible, that means
with the smallest possible lookahead.

We will only consider parsers that use a lookahead of at most 1.




Parser Generation Tools/Practical Aspects

There exist many parser generation tools that support attribute
grammars. (Yacc, Bison, Maphoon). The attribute functions are
usually represent by general C/CTT -statements. In the code,
$1,$2,$3, ... refer to the attributes of the first,second, etc.
token on the right hand side.

The notation $$ refers to the attribute of the token on the left
hand side.

A rule of form A —- A+ B: f(x,y,2) = x + z is represented by:

A->A+B// $$ =81+ $3;




LALR parsing

LALR stands for look ahead left right. It is a technique for
deciding when reductions have to be made in shift /reduce parsing.

Often, it can make the decisions without using a look ahead.
Sometimes, a look ahead of 1 is required.

Most parser generators (and in particular Bison and Yacc)
construct LALR parsers.

In LALR parsing, a deterministic finite automaton is used for
determining when reductions have to be made. The deterministic
finite automaton is usually called prefix automaton. On the

following slides, I will explain how it is constructed.




[tems

Let G = (3, R, S) be a context-free grammar.

Definition Let A € X, wi,wy € X*. If A — w1 - wy € R, then

A — wy . wy 1s called an item.

An item is a rule with a dot added somewhere in the right hand

side.

The intuitive meaning of an item A — w; . wo is that w; has been
read, and if wy will also be read, then the rule A — w;ws can be

reduced.




[tems

Let a — bBc be a rule. The following items can be constructed

from this rule:

a— .bBc, a—b.Bc, a—bB.c, a— bBc.

For a given grammar G, the set of possible items is always finite.




Operations on Itemsets (1)

Definition: An itemset is a set of items.

Because for a given grammar, there exists only a finite set of

possible items, the set of itemsets is also finite.

Let I be an itemset. The closure CLOS(I) of I is defined as the

smallest itemset J, s.t.
e ICJ

o If A— wy . Bwy € J, and there exists a rule B — v € R, then
B—.veJ




Operations on Itemsets (2)

Let I be an itemset, let & € X be a symbol. The set TRANS(7, a)

is defined as

{A—wa.w | A= w .awy €1 }.




The Prefix Automaton

Let G = (X, R,S) be a grammar. The prefix automaton of G is the
deterministic finite automaton A = (3, Q, Qs, Qa,9), that is the
result of the following algorithm:

e Start with A = (X, {CLOS(I)},{CLOS(I)},0,0), where
I = {S — .S #}, S &3 is a new start symbol, S is the
original start symbol of G, and # & X is the EOF symbol.

e As long as there exist an I € () and an A € X, s.t.
I’ = CLOS(TRANS(I, A)) ¢ Q, put

Q:=QuU{Il'}, §:=0U{(l,A I}

e As long as there exist 1,1’ € (), and an A € X, s.t.
I' = CLOS(TRANS(I, A)), and (I, A, I') € 6, put

6:=0U{(I,A I}




The Prefix Automaton (2)

The prefix automaton may be big, but it can be easily computed.

Every context-free language has a prefix automaton, but not every
language can be parsed by an LALR parser, because of the look

ahead sets.

Theorem: Let G = (X, R, S) be a context-free grammar. Let £ be
its associated language, i.e. L= {w € ¥* | S =* w}. Let L’ be the
language defined by

{fweX | e . wuw' e L}

Then the language L’ is regular.

proof. It follows from the construction of the prefix automaton on

the previous slides.




Parse Algorithm (1)

std::vector< state > states;
// Stack of states of the prefix automaton.

std: :vector< token > tokens;
// We assume that a token has attributes, so

// we don’t encode them separately.

std: :dequeue< token > lookahead;

// Will never be longer than one.

states. push_back( qO0 ); // The initial state.

while( true )
{




Parse Algorithm (2)

decision = unknown;

state topstate = states. back( );
if (topstate has only one reduction R and no shifts)

decision = reduce(R);
// We know for sure that we need lookahead:
if( decision == unknown && lookahead. size( ) == 0 )

{
lookahead. push_back( inputstream. readtoken( ));




Parse Algorithm (3)

if ( lookahead. front( ) == EOF )
{
if( topstate is an accepting state )
return tokens. back( );
else

return error, unexpected end of input.




Parse Algorithm (4)

if( decision == unknown &&
topstate has only one reduction R with

lookahead. front( ) &&
no shift is possible with lookahead. front( ))

decision = reduce(R);
+
if ( decision == unknown &&
topstate has only a shift Q with
lookahead. front( ) &&

no reduction is possible with lookahead. front()

decision = shift(Q);




Parse Algorithm (5)

if( decision == unknown )

{

// Either we have a conflict, or the parser is
// stuck.

if( no reduction/no shift is possible )

print error message, try to recover.




Parse Algorithm (6)

// A conflict can be shift/reduce, or

// reduce/reduce:
Let R, from the set of possible reductions,

(taking into account lookahead. front( )),

be the rule with the smallest number.

decision = reduce(R);




Parse Algorithm (7)

if ( decision == push(Q))

{
states. push_back( Q );
tokens. push_back( lookahead. front( ));
lookahead. pop_front( );

+

else

{

// decision has form reduce(R)

unsigned int n =
the length of the rhs of R.




Parse Algorithm (8)

token lhs =
compute_lhs( R,
tokens. begin( ) + tokens. size( ) - n,
tokens. begin( ) + tokens. size( ));

// this also computes the attribute.

for( unsigned int i = 0; i < n; ++ i )
{

states. pop_back( );

tokens. pop_back( );




Parse Algorithm (9)

// The shift of the lhs after a reduction is
// usually called ’goto’

topstate = states. back( );
state newstate =

the state reachable from topstate under lhs.

states. push_back( newstate );
tokens. push_back( lhs );

// Unreachable.




Lookahead Sets

We already have seen lookahead sets in action.

If a state has more than one reduction, or a reduction and a shift,
the parser looks at the lookahead symbol, in order to decide what
to do next.

LA(I, A — w) C X is defined a set of tokens. If the parser is in
state I, and the lookahead € LA(I, A — w), then the parser can
reduce A — w.

When should a token ¢ be in LA(I, A — w) ?




Lookahead Sets (2)

Definition:
s € LA(I, A — w) if
. A— w . €1 (obvious)

. There exists a correct input word w; s ws #, such that

. The parser reaches a state with state stack (..., ) and token

stack (..., w), the lookahead (of the parser) is s, and
. the parser can reduce the rule A — w, after which

. it can read the rest of the input w9y and reach an accepting

state.




Computing Look Ahead Sets

For every rule A — w of the grammar G, such that there exist
states I1,1Is,I3,st. A—.wel;, A— w.€E Iy, there exists a
path from I; to I in the prefix automaton that reads w, and there
is a transition from I; to I3 that reads A, the following must hold:

e For every symbol o € Y, for which a transition from I3 to some

other state is possible in the prefix automaton,
O'ELA( I, A—w. )

e For every item of form B — v . € I3,
LA(Ig, B —wv )QLA(IQ, A—w )

Compute the LA as the smallest such sets.




Computing Look Ahead Sets (2)

Example

S — Aa,
A — B,

A — Bb,

B — C,
B — Ce,
C —d.




The algorithm on the previous slides can sometimes compute too

big look ahead sets. You will see this in the exercises.




Computing the Lookahead Sets in the Correct Way

Definition: Let G = (3, R, S) be a grammar. An LR(1)-item (based
on G) is an object of form A — w; . we/s, where (A — wyws) € R,

and s € X is a terminal symbol of G.
A LR(1)-item set is a set of LR(1)-items.

The intuitive meaning of A — w; . wa/s is something like: “We

have read wq, and are prepared to read wsy . s after that’.




Closure of LR(1)-Itemsets

Let I be an LR(1)-itemset. The closure CLOS(I) of I is defined as
the smallest LR(1)-itemset J, s.t.

o [ C J

o If A— wy . Bwsy/s € J, and there exists a rule B — v € R,
then for each terminal symbol s’ € FIRST (wss), also
B— .v/s e

(FIRST is defined in the slides on top-down parsing.)




Transitions of LR(1)-Itemsets

Let I be an LR(1)-itemset, let a € 3 be a symbol. TRANS(7, a) is
defined as

{A = wia.wy/s | A—wy . awsy/s €T }.




Core of an LR(1)-Itemset

Let I be an LR(1)-itemset. The core of I, written as CORE([) is
defined as

{A—w . wy|ds€eX: A— wy . wy/s €T}

(The set of LR(0)-items that one obtains when one removes all the
lookaheads.)




Construction of the Prefix Automaton with LR(1)-Items

Let G = (X, R,S) be a grammar. The prefix automaton of G is the
deterministic finite automaton A = (3, Q, Qs, Qa,9), that is the
result of the following algorithm:

e Start with A = (X, {CLOS(I)},{CLOS(I)},0,0), where
I = {S — . S/#}, S & 3 is a new start symbol, S is the
original start symbol of G, and # & X is the EOF symbol.




e As long as there exist an I € () and an A € X, s.t.
I' = CLOS(TRANS(I, A)), and there is no state I"” € @) with
CORE(I") = CORE(I"), set

Q:=QuU{I'}, §:=0U{(,AT)}.

e As long as there exist 1,1’ € (), and an A € X, s.t.
CORE(I") = CORE(CLOS(TRANS(I, A))), and either

1. (I,A,I") €9, or

2. I' £1,

set
I" := I" UCLOS(TRANS(I, A)),
0 :=0U{([,ATI)}.

(Formally, one must define a predicate between automata, and

construct the fixed point of this predicate. It would be unpleasant.)




Once the prefix automaton A = (X, Q, Qs, Q4,d) has been
constructed, the lookahead sets can be obtained from the

LR(1)-items as follows:

If a state I contains items of form A — w/s’, the lookahead set for

reducing A — w equals

{feX | A—w/s eI}




The construction on the previous slides is carried out automatically
by parser generators. Examples are YACC, Bison, and also
Maphoon.

Using a parser generator, it is easier to extend the language later.
Also, the parser generator automatically analyzes the language,

and shows where the conflicts are.

Top-Down parsing (recursive descend) has the advantage that one

doesn’t need to study a tool, but it will be a lot harder to change
the language later. Developers often avoid use of a parser generator,
and then regret later, when they have to change the language.




