
Bottom Up (Shift/Reduce) Parsing
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Bottom Up Parsing has the following advantages over top-down

parsing.

Attribute computation is easy.

Since choices are made only at the end of a rule, shared prefixes are

unproblematic. Because of this, there is usually no need to modify

grammar rules.

The parser can be generated automatically.

One big disadvantage is the fact that bottom-up parsing does not

suppport left/right information flow. (For example, checking

symbol definitions.)
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Shift/Reduce Parsing

Let G = (Σ, A,R, S) be an attribute grammar.

The shift/reduce parser operates on triples

(s, v, u) ∈ (Σ⊗ S)∗ × (Σ⊗ S)∗ × (Σ⊗ S)∗, where

• s ∈ (Σ⊗A)∗ is the stack.

• v ∈ (Σ⊗A)∗ is the lookahead,

• u ∈ (Σ⊗A)∗ is the input that is not yet read.
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Shift/Reduce Parsing

We write ⊢ for the transition relation of the parser.

The parser starts in a state of form (ǫ, ǫ, u).

(Empty stack, empty lookahead, no input read.)
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Read

A read means that the parser moves one unread token to the

lookahead:

(s, v, (σ, α) · u) ⊢ (s, v · (σ, α), u).
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Shift

A shift means that the parser shifts one token from lookahead to

the stack:

(s, (σ, α) · v, u) ⊢ (s · (σ, α), v, u).

6



Reduction

A reduction means that the parser replaces the right hand side of a

grammar rule by the left hand side. It uses the attribute function

of the grammar rule to compute the new attribute.

If (A → w1 · . . . · wn) : f ∈ R, then

(s · (w1, α1) · . . . · (wn, αn), v, u) ⊢ (s · (A, f(α1, . . . , αn)), v, u).

Reductions can only be made at the top of the stack!
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Accept

The shift/reduce parser accepts its input if it is in a state

( (S, α), ǫ, ǫ).

This means that it has read all the input, has empty lookahead,

and it managed to rewrite the input to S.

In practice an EOF symbol is used. Let # 6∈ Σ be a special EOF

symbol.

The shift/reduce parser accepts its input if it is in a state

( (S, α),#, ǫ).
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Making the Decisions

At each state, the parser has the following choices:

• If the top of the stack contains the right hand side of a rule, it

can reduce.

• It it didn’t reach end of file, it can shift.

It is possible that more than one reduction is possible. If a

reduction is possible, it is still possible to shift. In order to decide,

the parser uses the lookahead.

A good parser makes its decisions as early as possible, that means

with the smallest possible lookahead.

We will only consider parsers that use a lookahead of at most 1.
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Parser Generation Tools/Practical Aspects

There exist many parser generation tools that support attribute

grammars. (Yacc, Bison, Maphoon). The attribute functions are

usually represent by general C/C++ -statements. In the code,

$1,$2,$3, ... refer to the attributes of the first,second, etc.

token on the right hand side.

The notation $$ refers to the attribute of the token on the left

hand side.

A rule of form A → A+B : f(x, y, z) = x+ z is represented by:

A -> A + B // $$ = $1 + $3;
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LALR parsing

LALR stands for look ahead left right. It is a technique for

deciding when reductions have to be made in shift/reduce parsing.

Often, it can make the decisions without using a look ahead.

Sometimes, a look ahead of 1 is required.

Most parser generators (and in particular Bison and Yacc)

construct LALR parsers.

In LALR parsing, a deterministic finite automaton is used for

determining when reductions have to be made. The deterministic

finite automaton is usually called prefix automaton. On the

following slides, I will explain how it is constructed.
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Items

Let G = (Σ, R, S) be a context-free grammar.

Definition Let A ∈ Σ, w1, w2 ∈ Σ∗. If A → w1 · w2 ∈ R, then

A → w1 . w2 is called an item.

An item is a rule with a dot added somewhere in the right hand

side.

The intuitive meaning of an item A → w1 . w2 is that w1 has been

read, and if w2 will also be read, then the rule A → w1w2 can be

reduced.
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Items

Let a → bBc be a rule. The following items can be constructed

from this rule:

a → . bBc, a → b . Bc, a → bB . c, a → bBc .

For a given grammar G, the set of possible items is always finite.
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Operations on Itemsets (1)

Definition: An itemset is a set of items.

Because for a given grammar, there exists only a finite set of

possible items, the set of itemsets is also finite.

Let I be an itemset. The closure CLOS(I) of I is defined as the

smallest itemset J, s.t.

• I ⊆ J,

• If A → w1 . Bw2 ∈ J, and there exists a rule B → v ∈ R, then

B → . v ∈ J.
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Operations on Itemsets (2)

Let I be an itemset, let α ∈ Σ be a symbol. The set TRANS(I, α)

is defined as

{A → w1α . w2 | A → w1 . αw2 ∈ I }.
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The Prefix Automaton

Let G = (Σ, R, S) be a grammar. The prefix automaton of G is the

deterministic finite automaton A = (Σ, Q,Qs, Qa, δ), that is the

result of the following algorithm:

• Start with A = (Σ, {CLOS(I)}, {CLOS(I)}, ∅, ∅), where

I = {Ŝ → .S #}, Ŝ 6∈ Σ is a new start symbol, S is the

original start symbol of G, and # 6∈ Σ is the EOF symbol.

• As long as there exist an I ∈ Q and an A ∈ Σ, s.t.

I ′ = CLOS(TRANS(I, A)) 6∈ Q, put

Q := Q ∪ {I ′}, δ := δ ∪ {(I, A, I ′)}.

• As long as there exist I, I ′ ∈ Q, and an A ∈ Σ, s.t.

I ′ = CLOS(TRANS(I, A)), and (I, A, I ′) 6∈ δ, put

δ := δ ∪ {(I, A, I ′)}.
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The Prefix Automaton (2)

The prefix automaton may be big, but it can be easily computed.

Every context-free language has a prefix automaton, but not every

language can be parsed by an LALR parser, because of the look

ahead sets.

Theorem: Let G = (Σ, R, S) be a context-free grammar. Let L be

its associated language, i.e. L = {w ∈ Σ∗ | S ⇒∗ w}. Let L′ be the

language defined by

{w ∈ Σ∗ | ∃w′ ∈ Σ∗ : ww′ ∈ L}.

Then the language L′ is regular.

proof. It follows from the construction of the prefix automaton on

the previous slides.
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Parse Algorithm (1)

std::vector< state > states;

// Stack of states of the prefix automaton.

std::vector< token > tokens;

// We assume that a token has attributes, so

// we don’t encode them separately.

std::dequeue< token > lookahead;

// Will never be longer than one.

states. push_back( q0 ); // The initial state.

while( true )

{
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Parse Algorithm (2)

decision = unknown;

state topstate = states. back( );

if(topstate has only one reduction R and no shifts)

decision = reduce(R);

// We know for sure that we need lookahead:

if( decision == unknown && lookahead. size( ) == 0 )

{

lookahead. push_back( inputstream. readtoken( ));

}
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Parse Algorithm (3)

if( lookahead. front( ) == EOF )

{

if( topstate is an accepting state )

return tokens. back( );

else

return error, unexpected end of input.

}
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Parse Algorithm (4)

if( decision == unknown &&

topstate has only one reduction R with

lookahead. front( ) &&

no shift is possible with lookahead. front( ))

{

decision = reduce(R);

}

if( decision == unknown &&

topstate has only a shift Q with

lookahead. front( ) &&

no reduction is possible with lookahead. front())

{

decision = shift(Q);

}
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Parse Algorithm (5)

if( decision == unknown )

{

// Either we have a conflict, or the parser is

// stuck.

if( no reduction/no shift is possible )

print error message, try to recover.
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Parse Algorithm (6)

// A conflict can be shift/reduce, or

// reduce/reduce:

Let R, from the set of possible reductions,

(taking into account lookahead. front( )),

be the rule with the smallest number.

decision = reduce(R);

}

23



Parse Algorithm (7)

if( decision == push(Q))

{

states. push_back( Q );

tokens. push_back( lookahead. front( ));

lookahead. pop_front( );

}

else

{

// decision has form reduce(R)

unsigned int n =

the length of the rhs of R.
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Parse Algorithm (8)

token lhs =

compute_lhs( R,

tokens. begin( ) + tokens. size( ) - n,

tokens. begin( ) + tokens. size( ));

// this also computes the attribute.

for( unsigned int i = 0; i < n; ++ i )

{

states. pop_back( );

tokens. pop_back( );

}
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Parse Algorithm (9)

// The shift of the lhs after a reduction is

// usually called ’goto’

topstate = states. back( );

state newstate =

the state reachable from topstate under lhs.

states. push_back( newstate );

tokens. push_back( lhs );

}

}

// Unreachable.
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Lookahead Sets

We already have seen lookahead sets in action.

If a state has more than one reduction, or a reduction and a shift,

the parser looks at the lookahead symbol, in order to decide what

to do next.

LA(I, A → w) ⊆ Σ is defined a set of tokens. If the parser is in

state I, and the lookahead ∈ LA(I, A → w), then the parser can

reduce A → w.

When should a token σ be in LA(I, A → w) ?
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Lookahead Sets (2)

Definition:

s ∈ LA(I, A → w) if

1. A → w . ∈ I (obvious)

2. There exists a correct input word w1 s w2 #, such that

3. The parser reaches a state with state stack (. . . , I) and token

stack (. . . , w), the lookahead (of the parser) is s, and

4. the parser can reduce the rule A → w, after which

5. it can read the rest of the input w2 and reach an accepting

state.
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Computing Look Ahead Sets

For every rule A → w of the grammar G, such that there exist

states I1, I2, I3, s.t. A → . w ∈ I1, A → w . ∈ I2, there exists a

path from I1 to I2 in the prefix automaton that reads w, and there

is a transition from I1 to I3 that reads A, the following must hold:

• For every symbol σ ∈ Σ, for which a transition from I3 to some

other state is possible in the prefix automaton,

σ ∈ LA( I2, A → w . ).

• For every item of form B → v . ∈ I3,

LA( I3, B → v .) ⊆ LA( I2, A → w .)

Compute the LA as the smallest such sets.
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Computing Look Ahead Sets (2)

Example

S → Aa,

A → B,

A → Bb,

B → C,

B → Cc,

C → d.
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The algorithm on the previous slides can sometimes compute too

big look ahead sets. You will see this in the exercises.
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Computing the Lookahead Sets in the Correct Way

Definition: Let G = (Σ, R, S) be a grammar. An LR(1)-item (based

on G) is an object of form A → w1 . w2/s, where (A → w1w2) ∈ R,

and s ∈ Σ is a terminal symbol of G.

A LR(1)-item set is a set of LR(1)-items.

The intuitive meaning of A → w1 . w2/s is something like: ‘We

have read w1, and are prepared to read w2 . s after that’.
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Closure of LR(1)-Itemsets

Let I be an LR(1)-itemset. The closure CLOS(I) of I is defined as

the smallest LR(1)-itemset J, s.t.

• I ⊆ J,

• If A → w1 . Bw2/s ∈ J, and there exists a rule B → v ∈ R,

then for each terminal symbol s′ ∈ FIRST(w2s), also

B → . v/s′ ∈ J.

(FIRST is defined in the slides on top-down parsing.)
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Transitions of LR(1)-Itemsets

Let I be an LR(1)-itemset, let α ∈ Σ be a symbol. TRANS(I, α) is

defined as

{A → w1α . w2/s | A → w1 . αw2/s ∈ I }.
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Core of an LR(1)-Itemset

Let I be an LR(1)-itemset. The core of I, written as CORE(I) is

defined as

{A → w1 . w2 | ∃s ∈ Σ : A → w1 . w2/s ∈ I}.

(The set of LR(0)-items that one obtains when one removes all the

lookaheads.)
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Construction of the Prefix Automaton with LR(1)-Items

Let G = (Σ, R, S) be a grammar. The prefix automaton of G is the

deterministic finite automaton A = (Σ, Q,Qs, Qa, δ), that is the

result of the following algorithm:

• Start with A = (Σ, {CLOS(I)}, {CLOS(I)}, ∅, ∅), where

I = {Ŝ → . S/#}, Ŝ 6∈ Σ is a new start symbol, S is the

original start symbol of G, and # 6∈ Σ is the EOF symbol.
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• As long as there exist an I ∈ Q and an A ∈ Σ, s.t.

I ′ = CLOS(TRANS(I, A)), and there is no state I ′′ ∈ Q with

CORE(I ′′) = CORE(I ′), set

Q := Q ∪ {I ′}, δ := δ ∪ {(I, A, I ′)}.

• As long as there exist I, I ′ ∈ Q, and an A ∈ Σ, s.t.

CORE(I ′) = CORE(CLOS(TRANS(I, A))), and either

1. (I, A, I ′) 6∈ δ, or

2. I ′ 6= I,

set






I ′ := I ′ ∪ CLOS(TRANS(I, A)),

δ := δ ∪ {(I, A, I ′)}.

(Formally, one must define a predicate between automata, and

construct the fixed point of this predicate. It would be unpleasant.)
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Once the prefix automaton A = (Σ, Q,Qs, Qa, δ) has been

constructed, the lookahead sets can be obtained from the

LR(1)-items as follows:

If a state I contains items of form A → w/s′, the lookahead set for

reducing A → w equals

{s′ ∈ Σ | A → w/s′ ∈ I}.
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The construction on the previous slides is carried out automatically

by parser generators. Examples are YACC, Bison, and also

Maphoon.

Using a parser generator, it is easier to extend the language later.

Also, the parser generator automatically analyzes the language,

and shows where the conflicts are.

Top-Down parsing (recursive descend) has the advantage that one

doesn’t need to study a tool, but it will be a lot harder to change

the language later. Developers often avoid use of a parser generator,

and then regret later, when they have to change the language.
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