
Intermediate Code
Generation

1

Memory Allocation

For a type T, sizeof(T) is the space that is required to store an

object of type T in memory.

For primitive types, typical values are

sizeof(bool) = 1, sizeof(char) = 1,

sizeof(int) = 4, sizeof(unsigned int) = 4,

sizeof(float) = 4, sizeof(double) = 8.

2

Alignment

In some architectures, not every object can start on every address

in memory, or at least not with the same efficiency.

In 32-bit architectures, a 32-bit word consists of four bytes, each of

which has a separate address. If an int is positioned at an address

that is a multiple of four, then it can be loaded in one read cycle. If

its address is not a multiple of four, then two cycles are required.

In the same way, reading/writing a double can take 2 or 3 cycles.

3

Alignment

One can put every object on the largest possible alignment but

that is inefficient. For example the array char p [10] would

then take 40 bytes instead of 10.

Sometimes, it is possible to save by space rearranging variables, but

I am not sure if there exist compilers that do that:

char c1; int i1; char c2; int i2;

// 16 bytes because i1 and i2 must be aligned.

char c1; char c2; int i1; int i2;

// 12 bytes.

Alignment seems pretty complicated, and I do not know a general

method. I will ignore alignment in the rest of the slides.

4

Arrays

Consider the code fragment:

#define SIZE 100

int p [SIZE];

for(unsigned int i = 0; i < SIZE; ++ i)

p [i] = i * i;

5

Arrays (2)

Dealing with arrays is easy:

T p[N];

p [i];

Define

sizeof(p[N]) = N.sizeof(T).

If p is of type T[]&, then p[i] is of type T&. It can be computed

by

p[i] = p+ i× sizeof(T).

(Remember that p has a reference type.)

6

Structs

Consider:

struct S { T1 t1; ... ; Tn tn };

We have seen before, that there are good reasons to treat S like a

primitive type. If a struct is used one time in the code, without

name, one should generate a name for it.

Define:

sizeof(S) = sizeof(T1) + · · ·+ sizeof(Tn).

This calculation needs to be made only once when S is declared.

7

Field Functions

In order to access the fields of a struct, we will assume that each

struct type has field functions.

Intuitively, a field function is a function that adds the offset of the

field inside the struct to a reference to the struct (its address), and

changes its type.

For example

struct S

{

int node;

char c;

S* next;

};

would have the field functions shown on the next slide.

8

Field Functions (2)

int& S_node(S& s) { return s; }

const int& S_node(const S& s) { return s; }

char& S_c(S& s) { return s + 4; }

const char& S_c(const S& s) { return s + 4 };

S* & S_next(S& s) { return s + 5; }

S* const& S_next(const S& s) { return s + 5; }

The parser should replace expression of form f.a by field a(f), and

the type checker should replace this by S a(f) for the proper

struct type S.

9

Field Functions (3)

In case the struct has static fields, the field functions have to be

modified to return a global variable.

struct S

{

static int x;

}

int& S_x(S& s) { return &stat_x }

const int& S_x(const S& s) { return &stat_x; }

We assume stat x is a global variable in which field S::x is stored.

In the rest of these slides, we assume that every struct type has

the associated field functions defined, and that the parser always

replaces field selection by a generic field function.

10

Field Functions (4)

There are some subtleties involving references: If a field already is

a reference, then it is not made into a double reference:

struct S

{

int& x;

};

S.x = 3; // shouldn’t change x itself, but the

// int that x refers to.

int& x S_x(S& s) { return s; }

int& x S_x(const S& s) { return s; }

11

Static Member Functions

For functions, static means something different than for member

fields.

All member functions are static in the sense that they do not

belong to any object. Different objects of the same type have the

same member functions.

For a member function, static means that the function can only

adress static variables of the struct.

12

Usage of ‘this’

class A

{

f(B b, C c);

g(B b, C c) const;

}

can be replaced by

A::f(A* this, B b, C c);

B::g(const A* this, B b, C c);

In the call, a.f(b,c) and a.g(b,c) can be replaced by f(&a,b,c)

and g(&a,b,c).

13

The C-language

The C-language has evolved from an almost unchecked language

into a strongly typed language.

14

Type System of C/C++

We recursively define the type system of C/C++.

• We assume the primitive types given before: bool, char, int,

unsigned int, float, double.

• If T is a type, then const(T) is a type.

• If T is a type, then raw(T) is a type.

The aim of raw(T) is to represent the type of unitialized memory.

Unitialized memory is the space occupied by an object of type T

before a constructor is called, or after the destructor was called.

15

Type System of C/C++

• If T is a type, then pointer(T) is a type.

• If T is a type, then ref(T) is a type.

• If T is a type, and n is a natural number, then array(n, T) is a

type.

The aim of ref(T) is to represent reference types of form T&. The

type const T& is represented by ref(const(T)).

We do not distinguish arrays with unknown size from pointers.

(Like char* p and char p[]) As far as I know, they are the same

in C/C++. It they turn out different, then another type

constructor for arrays with unknown size needs to be added.

16

Type System of C/C++

• If T is a type, then reg(T) is a type.

The aim of reg(T) is to represent the fact that T is stored in a

register variable.

These are not the registers of the processor, but local variables in

the intermediate representation.

17

Type System of C/C++

• If v is an identifier that represents the name of a struct or a

class type, then v is a type. We treat v like a primitive type!

• If v is an identifier, that is the name of an enum type, then v

is a type. We treat v like a primitive type!

• If U and T1, . . . , Tn are types, then func(U ;T1, . . . , Tn) is also

a type.

We assume that for each struct, the field functions are defined, (see

a few slides back what these are). In case a struct is introduced

without name, then we assume that it has a random name.

func(U ;T1, . . . , Tn) is the type of functions from T1 × · · · × Tn to U.

18

Restrictions on Types

There are couple of restrictions on the possible types:

Types of form const(const(T)) are not allowed.

Types of form const(ref(T)) are not allowed.

Types of form reg(T) cannot be used to construct further types. T

must be a primitive type. (Not struct.)

19

Examples of C-Types

char p[100], *q, **r;

p : array(100,char),

q : pointer(char),

r : pointer(pointer(char))

char r[5][100];

r : array(5, array(100, char))

const int& x;

x : ref(const(int))

const int& f(const int& , int);

f : func(ref(const(int));

ref(const(int)), int)

20

Translation into Stack Machine

I first explain how translation into a stack machine works, then I

explain that a stack machine is not sufficient for compilation of

C++.

Expressions can be transformed into reverse Polish notation.

A function with arity n can be replaced by a code fragment that

takes n-objects from the stack, and puts one object back on the

stack.

21

Stack Machine (2)

For example, the expression x := x+ 4 ∗ y can be replaced by

x 4 y ∗ + (:= x).

push(x); // Push value of x on the stack.

push(4); // Push 4 on the stack.

push(y); // Push value of y on the stack.

* // Take two numbers from top of stack,

// multiply them, and push result back.

+ // Take two numbers from top of stack,

// multiply them, and push result back.

write(x); // Take number from top of stack,

// and write it into variable x.

22

Stack Machine (3)

unsigned int fact(unsigned int x)

{

if(x == 0)

return 1;

else

{

f = fact(x - 1);

return x * f;

}

}

23

Stack Machine (4)

Local variables (x and f on the previous slide) can be easily

maintained on the stack.

When a local variable goes out of scope, it can be easily removed

by increasing the stack pointer.

The defined function fact can have the same interface as built-in

functions. It removes top of stack, and replaces it by the result. In

this way, defined functions can be mixed with built-in functions in

expressions.

We use stack[i] (with i ≥ 0) to refer to the object that occurs at

depth i on the stack. Top of stack is stack[0].

24

// Initially, we assume that local variable x is

// on top of the stack.

push stack[0] // We evaluate (x==0).

push 0

== // Takes two numbers from top of stack, compares

// them, and puts result back on stack.

iffalse goto L1;

// Remove one boolean from top of stack, and jump

// if boolean is true.

push 1; // We prepare to return 1.

stack[1] = stack[0];

// We overwrite local variable x with result,

pop; // and correct the size of the stack.

return;

25

L1:

push stack[0];

push 1;

- ; // We calculated (x-1).

call fact; // Replaces x-1 by fact(x-1);

// We create variable f, and initialize with fact(x-1).

// Since fact(x-1) is already on the top of the stack,

// we need to do nothing.

push stack[1]; // Variable x;

push stack[1]; // Variable f;

* // Now we have x*f on top of stack.

stack[2] = stack[0];

pop; pop; return;

// Remove local variables, and return.

26

Problems with Stack Machines and C++

Unfortunately, it is not possible to evaluate C++ with a simple

stack model, because of the following two reasons:

1. Nearly every return from a function involves copying back the

result. (Look at the previous slide.) This is inefficient for big

objects. Moreover, objects are not required to have a copy or

move constructor in C++. Such objects cannot be copied, but

still it should be possible to write a function that returns such

an object.

2. In an expression of form f(g(h())), the function h can

construct an object, which is passed as reference to g. Function

g can decide to further pass the reference to f. This implies

that the result of h has to be preserved all through the

evaluation of f(g(h())), so that an evaluator based on a pure

stack machine, is not possible.

27

Problems with Stack Machines and C++ (2)

const A& max(const A& a1, const A& a2)

{

if(a1 > a2)

return a1;

else

return a2;

}

A sum(const A& a1, const A& a2)

{

A res = a1;

res. add(a2);

return res;

}

28

Problems with Stack Machines and C++ (3)

How to evaluate?

std::cout << max(max(1 + 2, 3 + 4),

max(5 + 6, 7 + 8)) +

max(max(10 + 11, 12 + 3),

max(8 + 9, 12 + 16)) << "\n";

It is clear that we need a more sophisticated evaluation model for

expressions.

The good news is that local variables still can be kept in a

stack-like fashion.

I will assume that the stack always grows downwards, because it

more natural to look forward, than to look backwards. When

arguments of a function are pushed onto the stack in reverse order,

they will be in the right order on the stack.

29

Intermediate Representation

I will introduce an intermediate representation, on which it is still

possible to do code optimization, but from which it is also easy to

generate executable code.

• We assume a stack based memory model. Local variables are

stored on the stack. Parameters to unknown functions (that

are not inline) are also stored in memory.

• We don’t store intermediate results in memory. Storing in

memory causes an aliasing problem, which makes optimization

difficult.

30

Intermediate Representation (2)

We assume an infinite set of register variables. The register

variables have either one of the primitive types bool, char, int,

unsigned int, float, double, or a pointer/reference type.

struct types are not stored in register variables.

The name of a register variables starts with @, when it is not of

pointer or reference type.

The name of a register variable with pointer or reference variable

starts with $.

In principle, one should include the primitive type of a register in

the name also, but we assume that the primitive type will be clear

from the context.

31

Intermediate Representation (3)

We assume that for every primitive type, there are instructions of

the form below, assigning a constant to a register variable:

@i = 4;

@pi = 3.1415926535;

@c = ’h’;

@i = sizeof(T); // It’s also a constant.

32

Intermediate Representation (4)

We assume that for every primitive operation ⋆ on primitive types,

there is an instruction of form

@i1 = @i2 * @i3;

I also assume that there are conversion functions between the

primitive types.

@f1 = float(@i3); // Convert integer into float.

I will not list all instructions, but it is clear that such a list can be

constructed, and that it is not too big.

33

Usage of Pointer Registers

Pointers can be used for writing and reading from memory:

[$P] = @i; // Write @i into address determined by

// $P.

@f = [$Q]; // Write content of address, determined

// by $Q into @f.

$P = [$Q]; // Pointers by themselves can also be

// written and read.

And of course, there is also pointer arithmetic:

$P = $Q + @i; // Pointers to different types can

// be freely mixed.

$Q = $P;

34

Creation and Deletion of Variables

Local variables are created in memory, in stack like fashion. The

stack grows downwards.

pushvar $P, T // Create a local variable of type

// T on stack, and make $P point

// to it.

popvar T // Remove the last pushed local variable

// which must have type T, from stack.

staticvar $P, T, name.

// Create or refer to a static variable

// of type T with the given name.

The functions new and delete are library functions, that have no

instructions in intermediate representation.

35

Creation and Deletion of Variables (2)

Actually, it works a bit different: There are three special register

variables, $SP (Stack Pointer), $SBP (Static Base Pointer) and $SEP

(Static End Pointer).

Static memory is in the interval [$SBP .. $SEP). Dynamic

memory is above $SP.

pushvar $P, T is an abbreviation for

$P = $SP; $SP = $SP - sizeof(T);

Similarly, popvar T is an abbreviation for

$SP = $SP + sizeof(T).

Linking replaces a command of form staticvar $P,T, name by

$P = $SBP + X, where X is the position of name in static memory.

36

Control Instructions

goto L;

iftrue @B goto L;

iffalse @B goto L;

// Jump if boolean is true or false.

call Fname; call [$P];

// Call a function. The return address is pushed

// on the stack. (The same stack stack that is

// used for local variables.)

return;

// Return from a function.

// This means that we pull an address from the

// top of the stack, and jump to it.

37

Inline and Outline Functions

There are two types of functions, inline and outline functions,

which are compiled in different ways.

Inline functions are not called. Instead, the definition of the

function is inserted whenever the function is called. This is more

efficient, but it makes the resulting code longer. In addition, an

inline function can never be recursive. One needs a couple of inline

functions as building blocks for the translation.

Outline functions are functions that are really called. ‘Outline’ is

not a proper English term, but I find it convenient to use it.

Outline functions have to be treated like a black box. The

parameters are put in memory, together with a pointer where the

result should be put. After that the function is called, and it

assumed that it writes its result at the indicated place.

38

Calling Convention for Outline Functions

Suppose that we want to call function f of type

func(T ; T1, . . . , Tn) with arguments t1, . . . , tn.

1. First decide where the result will be written. If necessary,

create a raw(T) on the stack.

2. For each ti, create code that pushes the result (which will have

type Ti) on the stack.

3. Push a pointer to the result (the memory allocated in step 1)

on the stack.

4. Call f. We assume that the code of f writes the result and

cleans up all local variables that were used inside the function

body.

5. Clean up the parameters (created in step 2).

39

Calling Convention for Outline Functions (2)

The reasons for passing the pointer to the result (instead of letting

the function decide where it puts its result, or using a purely

stack-based order) are as follows:

1. Constructors cannot choose the location, into which the object

has to be constructed, by themselves. For example, in

X* p = new X(t), the memory manager determines the

address and the constructor has to put the X where new

decided.

2. If somewhere, in a block with local variables, a statement of

form return X(t) is encountered, the function cannot create

the X, and after that clean up the local variables.

This would force us to either keep the local variables, or to

move the X. Keeping local variables is inefficient. Moving is

also inefficient, or impossible when X has no copy constructor.

40

How an Outline Function is Called

A

B tn

C tn

D t1, . . . , tn

E t1, . . . , tn

F & result t1, . . . , tn

G return address & result t1, . . . , tn

H local variables return address & result t1, . . . , tn

I local variables return address & result t1, . . . , tn

J return address & result t1, . . . , tn

K & result t1, . . . , tn

L

41

How an Outline Function is Called (2)

The figure on the previous slide explains what happens when

f(t1, . . . , tn) is called.

A This is the situation before we start preparing the call. We have

to decide where in memory the result will be written. (In

reality, it is already decided by the context.)

B We create a space for tn on the stack. The color red means that

the space is created, but no meaninful value has been written.

(Raw data.)

C We evaluate tn, specifying that the result should be written on

the position of tn. Since tn has a value now, it is not red

anymore.

D,E We do this for all of the parameters.

42

How an Outline Function is Called (3)

The figure on the previous slide explains what happens when

f(t1, . . . , tn) is called.

F In/Before A, it was decided on which memory location, the

result of f(t1, . . . , tn) will be written. We now push the address

of this memory location on the stack. Since the result is not

written yet, it is the address of something red.

G We call function f, which pushes the return address on the

stack.

H We are now inside function f. The code of f may create local

variables and other data, which can further extend the stack

downwards.

43

I At point I, the code of f reaches a return statement. Since we

know & result, we know where it has to be written. After

writing, result becomes black.

J If there are local variables, we clean them up.

K We leave the code of f, by taking the return address from the

stack, and jumping to it.

L We are not inside f anymore. We clean up the pointer to the

result and the parameters. The result itself is stored

somewhere else, and it is not deleted of course.

44

Inline Functions

Inline functions are functions that are not called, but substituted

away. Whenever the compiler encounters a call f(t1, . . . , tn) of an

inline function f, it looks up the code of the definition of f, and

replaces the call f(t1, . . . , tn) by its definition.

Inline functions are more efficient than outline functions, because

1. Passing of parameters can take places in register variables,

which can be accessed more efficiently than memory.

2. There is no need to jump, to store a return address, and to

return.

3. Because the compiler has access to the resulting code, and code

using registers can be more easily analyzed than code involving

memory, the compiler has a better chance of optimizing it.

45

Inline Functions (2)

The body of an inline function f of type func(T ; T1, . . . , Tn) is a

block of code of form C[R;S1, . . . , Sn;U1, . . . , Um], where

• R is the return register. If T has form reg(T ′), then the type

of register R equals T ′. Otherwise, the type of R equals ref(T).

• S1, . . . , Sn are the input registers. For each of the input

registers holds: If Ti has form reg(T ′

i), then the type of Si

equals T ′

i . Otherwise, the type of Si equals ref(Ti).

• U1, . . . , Um are the remaining registers. They are the local

variables of the function. They can be of any type.

(C is a block of code, with parameters R, S1, . . . , Sn, U1, . . . , Um

that will instantiated at the moment of compilation.)

46

Compilation of Inline Functions

Suppose that we want to substitute an inline function call

f(t1, . . . , tn), and that f has type func(T ;T1, . . . , Tn).

1. If T is not a register type, then decide where in memory the

result will be written. Reserve a pointer variable for the result

and make it point to a raw(T). If T is a register type, then

reserve a register for the result itself.

2. For each argument ti do: If Ti has a register type, then reserve

a register for ti and create code that writes ti into the assigned

register. If Ti does not have a register type, then create code

that pushes the result of ti onto the stack.

3. Substitute the definition of f by replacing the local registers in

the body of f by ehe register variables that were selected in

step 1 and 2. The body of f should clean up all local variables.

4. Clean up the parameters that are in memory.

47

Compilation of Inline Functions (2)

Assume that the inline function has type func(U ;T1, . . . , Tn). Let R

be its output register. Let S1, . . . , Sn be the input registers.

If type U has form reg(U ′), then R has type U ′. Otherwise, U has

type ref(U).

The same applies to T1, . . . , Tn and S1, . . . , Sn : If type Ti has form

reg(T ′

i), then Si has type T ′

i . Otherwise, Si has type ref(Ti).

48

Compilation of Outline Functions

The first task of the outline functions is to assign registers to the

parameters, so that they will be available in the body as variables.

If the function has n parameters with types T1, . . . , Tn, then it

starts with a sequence:

$T1 = $SP + d1; // d1 is position of parameter T1.

$T2 = $SP + d2; // d2 is position of parameter T2.

...

$Tn = $SP + dn; // dn is position of parameter Tn.

Each $Ti has type ref(Ti). In addition, we have

$R’ = [$SP] + d; // d is position of return variable.

$R = [$R’]; // Result can be written into [R].

49

Compilation of Constants and Variables

A constant of primitive type T is always considered to have type

reg(T). Non-primitive types have no constants.

A variable of type T has type reg(ref(T)), when it occurs in an

expression. In the code, the variable will be represented by a

register of type ref(T). Local variables are created by

pushvar $P, T.

Static variables are loaded into a pointer register by

staticvar $P, T, name, when they are needed.

In all cases, the resulting pointer register has type ref(T), where T

is the type of the variable.

String constants are considered static variables of type

array(n, const(char)).

50

Conversions

Conversions are functions that change the type of a term, and

which the user doesn’t have to insert in the term. Sometimes the

user has to provide definitions. Conversions can be both inline and

outline.

• A copy constructor of type T is a function of type

func(T ; ref(const(T))) or func(T ; ref(T)).

User defined types can have default copy constructors, or copy

constructors written by the user.

• All primitive types, all pointer, and all reference types have

inline copy constructors, which always use registers. They have

type func(reg(T); reg(ref(const(T)))).

51

Conversions (2)

• A box function of type T is a function that changes a value

into a reference. The type of a box function has form

func(reg(ref(const(T))); T). Every type has a box function.

Box functions have no actual definition, but they are used as

an intermediate step.

• A read function is an inline function that changes a memory

variable into a register variable. Read functions are defined for

primitive types, and for reference and pointer types. The type

has form: func(reg(T); T).

• A write function is an inline function that changes a register

variable into a memory variable. Store functions are defined

only for primitive types, and for reference and pointer types.

The type of a write function has form: func(T ; reg(T)).

52

Conversions (3)

• Arrays have no copy constructors, but instead are converted

into pointers. For this we have array2pointer functions, which

are inline, and which have type

func(reg(pointer(T)); reg(ref(array(n, T))))

• There are the usual conversions between primitive types: They

have (for example) types func(reg(float); reg(int)),

func(reg(int); reg(char)).

• In addition, there can be user defined conversions between user

defined types.

53

Graph of Basic Conversions for Primitive Types

The graph shows the possible conversions for primitive type int.

Changing a reference into an object is done by a copy

constructor. Changing register to non-register is done by a write

function. The write function on the left is the write function

of int. The write function on the right belongs to ref(int).

Changing non-register to register is done by a read function. The

read function to the left belongs to int. The read function to

the right belongs to ref(int).

int

box ''❖❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

read

��

ref(int)

copy constr.

ss

read

		
reg(int)

write

OO

reg(ref(int))
inline copy constr.

mm

write

OO

54

Translation Function

We now define the translation function translate(V, t). V is the

name of a register variable, and t is the term that will be compiled.

The term t should not contain box functions. We will deal with

those later.

• If the type of t equals T and T is not a register type, then V

must be a register of type ref(T). The call of translate(V, t)

will generate code, that writes the result of t into the memory

position specified by V.

• If the type of t has form reg(T), then V must be a register

variable of type T. The call of translate(V, t) will generate

code that writes the result of t into register V.

55

Translation Function

We use << for emitting statements. So << call f means that we

generate the statement call f.

In the algorithm, we use the notation t[i] instead of ti for the i-th

subterm.

We also write T[i] instead of Ti for its type.

56

Translation Function

Suppose that we call translate(V, a+ 1). If the type of + equals

func(int; int, int), then V must have type ref(int), and the

generated code will have form:

....

[V] = the sum of a and 1.

This implies that V must be initialized before with a proper address.

If the type of + equals func(reg(int); int, int)), then V must have

type int, and the generated code will have form:

...

V = the sum of and 1.

57

If f is an outline function, then translate(V, f(t1, . . . , tn)) is

defined as follows:

for(i = n; i != 0; -- i)

{

Let T[i] be type of t[i].

Let V[i] be a new pointer register of type

ref(T[i]).

<< pushvar V[i], T[i];

// The notation << means that we write the

// instruction into the output.

translate(V[i], t[i]);

}

58

Let T be the type of f(t[1], ..., t[n]).

Let W be a new pointer register of type

ref(ref(T)).

<< pushvar V, ref(T);

<< [V] = W;

<< call f;

<< popvar ref(T);

for(i = n; i != 0; i --)

<< popvar T[i];

(For the moment, we ignore destructor calls. We come back to

this.)

59

For the case where f is an inline function,

translate(V, f(t1, . . . , tn)) is defined on the next slide.

Inline functions are bit more complicated, because of the mixing of

register and non-register parameters.

60

for(i = n; i != 0; -- i)

{

Let T[i] be the type of t[i].

If T[i] has form reg(T’[i]) then

{

let V[i] be a new register variable of type T’[i]

translate(V[i], t[i]);

}

else

{

let V[i] be a new pointer variable

of type ref(T[i]);

<< pushvar V[i], T[i];

translate(V[i], T[i]);

}

}

61

Remember that the definition of F has form

that P(R, S[1], ..., S[n], U[1], ..., U[m]).

Let F[1], ..., F[m] be a sequence of unused register

variables.

<< P [R := V; S[1] := V[1], ..., S[n] := V[n];

U[1] := F[1], ..., U[m] := F[m]);

// If type of f(t[1], ..., t[n]) is a

// register type, then P [...] has now put

// its result in V. Otherwise, it has

// written its result into [V].

62

// It remains to up parameters that were in memory:

for(i = n; i != 0; -- i)

{

If T[i] is not of form reg(...), then

<< popvar T[i];

}

63

Compiling Constants and Variables

For a constant c, the call of translate(V, c) emits the code V = c.

This is possible because constants are always of type reg(T) with

T primitive.

For a local variable v of type T, there always exists a pointer

variable with type reg(ref(T)) that represents v. Let P be this

pointer variable. Then translate(V, v) emits the code V = P.

For a static variable v, translate(V, v) emits the code

staticvar V, T, v;

64

Some Examples with int

First we try a few inline functions: Between [and] are the

parameters, which will be substituted.

int_plus : func(reg(int); reg(int), reg(int))

[@R0, @R1; @R2;] { @R2 = @R0 + @R1; }

int_minus : func(reg(int); reg(int), reg(int))

[@R0, @R1; @R2] { @R2 = @R0 - @R1; }

int_assign: func(reg(ref(int)); reg(ref(int)), reg(int))

[$P, @R; $Q;] { [$P] = @R; $Q = $P; }

int_inline_copy: func(reg(int); reg(ref(const(int))))

[@R; $P;] { @R = [$P] }

65

We try to compile the expression i = j + k. Assume that i,j,k

are local variables, represented by pointer registers $I,$J,$K.

Result of type checking and adding conversions is:

int_assign(i, int_plus(int_inline_copy(j),

int_inline_copy(k))).

Type checking i = (j + 4) results in

int_assign(i, int_plus(int_inline_copy(j), 4)).

66

Example with Outline Function

fact : func(int; int, int)

(Implementation is not visible)

int_read: func(reg(int); int)

[@R; $P] { @R = [$P]; }

int_write: func(int; reg(int))

[$P; @R] { [$P] = @R; }

i = fact(i + 1) ==>

int_assign(i,

int_read(

fact(

int_write(

int_plus(int_inline_copy(i), 1)))));

67

Example with Arrays and Field Functions

Consider:

struct tt

{

int a;

int b;

}

table [100];

i = 53;

table [i]. a = table [i + 1]. b;

68

Example with Arrays and Field Functions (2)

We need the field functions:

tt_a : func(reg(ref(int)); reg(ref(tt)))

[$P; $Q] { $P = $Q; }

tt_b : func(reg(ref(int)); reg(ref(tt)))

[$P; $Q] { $P = $Q + sizeof(int); }

and the functions on the next slide:

69

tt_array2pntr : func(reg(pointer(tt));

reg(ref(array(tt))))

[$P; $Q] { $P = $Q; }

// Because it is only a type conversion.

tt_pntr_plus : func(reg(pointer(tt));

reg(pointer(tt)), reg(int))

[$P; $Q, @I; @J]

{ @J = sizeof(tt) * @I;

@P = $Q + @J;

}

// Finally an example with a local variable!

tt_star : func(reg(ref(tt)); reg(pointer(tt)))

[$P; $Q] { $P = $Q; }

// The * operator. It is only a type conversion.

70

table [i]. a = table [i + 1]. b;

// This expression is syntactic sugar for:

field_a(* (table + i)) =

field_b(* (table + (i + 1)))

The result of type checking and overload resolution is on the next

slide.

71

int_assign(

tt_a(tt_star(

tt_pntr_plus(tt_array2pntr(table),

int_inline_copy(i)))),

int_inline_copy(tt_b(tt_star(

tt_pntr_plus(tt_array2pntr(table),

int_plus(int_inline_copy(i), 1))))))

We leave the rest of the compilation of this expression as a trivial

exercise to the to the interested reader!

72

Boolean ? Statement1 : Statement2

We explain how to compile expressions like:

abs = (x < 0) ? -x : x;

int fact(int i) { return i==0 ? 1 : i*fact(i-1); }

We assume that for primitive type t, if has type

func(reg(t); reg(bool), reg(t), reg(t)).

For a non-primitive type t, it has type

func(t; reg(bool), t, t).

73

translate(V, if(b, t1, t2)) is defined as follows:

Let B be a new register of type bool.

translate(B, b);

let L1,L2 be two new labels.

<< iffalse B goto L1;

translate(V, t1);

<< goto L2:

<< L1:

translate(V, t2);

<< L2:

74

Complete Compilation of Expressions

There a couple of topics left:

• After evaluation of an expression, the result is (1) either

thrown away, (2) used in a return statement, or (3) used in

an initialization. In the first case, we way need to create a

temporary variable for the result, when it is not a register type.

Case 2 and 3 are very similar.

• An expression may contain box-operators. They need to be

replaced by temporary variables.

75

Compilation of the Box Operator

Suppose that we have a max function which selects the greater of

two integers. Both of its arguments are reference types:

func(reg(ref(int)); reg(ref(int)), reg(ref(int)).

Assume that we want to compile the expression

std::cout << max(10, i + 1);

In this expression, max is applied on ints, but it requires

reg(ref(int))s. Inserting the conversions results in:

max(int_box(int_write(10)),

int_box(int_write(

int_plus(int_inline_copy(i), 1))));

Since it is impossible to determine how long the boxed ints are

needed, the semantics of C++ guarantees that objects in boxes

exist until the expression is completely evaluated.

76

Compilation of the Box Operator (2)

We ’unwind’ the expression, and introduce local variables for the

boxed variables, until no box operators are left. After that, we

compile as before:

{

int b1 = int_write(10);

int b2 = int_write(int_plus(int_inline_copy(i), 1));

std::cout << max(b1, b2);

}

77

Complete Compilation

Compilation proceeds in two stages: We first construct a sequence

of pushvars, translates and popvars. When this sequence is

complete, we expand the translates as described before.

The sequence is obtained by iteration:

If we want to compile return t, then let R be the register

representing the return variable of the function. Start with:

fulltranslate(R, t);

// Will write result into [R].

(clean up local variables of the function)

return;

78

Complete Compilation (2)

If we want to compile t and the result is thrown away, then let T be

the type of t. If T is not of form reg(T ′), then start with:

<< pushvar V, T;

fulltranslate(V, t);

<< popvar V;

otherwise, start with

fulltranslate(V, t);

79

Complete Compilation (3)

If we want to compile T v = t, (initialization of a variable v with t,

and t has type T, then start with:

<< pushvar V, T;

// Now register V represents variable v.

fulltranslate(V, t);

T cannot be of form reg(T ′).

We now have a sequence of pushvars, popvars, and

fulltranslates. On the next slides, we will replace the

Box-operators by local variables.

80

Complete Compilation (4)

As long as there are occurrences of fulltranslate(V,t), proceed

as follows:

If t contains no box operators, then replace fulltranslate(V,t)

by translate(V,t).

Otherwise, write t in the form t[box(t′)], where box is an

outermost occurrence of a box operator. Let T be the type of t′.

Type T is certainly not a register type. Replace

fulltranslate(V,t) by

<< pushvar W, T’ ; // W is a new register.

<< fulltranslate(W, t’);

<< translate(V, t’[box(t’) replaced by W]);

...

<< popvar W; // At the end of the sequence,

// in front of the other popvars.

81

Rvalue References

Using the compliation algorithm, it is easy to explain how Rvalue

references are used:

• For every type T, the box operator constructs an R-value

reference, so that it has type func(reg(rvalref(T)); T).

• When a return statement has form return v;, with v a local

variable of the function, translate is not used at all. Instead,

an an R-value copy constructor is used, if there is one.

As soon as v is used in an expression (even as simple as a field

selection), R-value references are not used.

• By explicit cast using std::move().

82

Destructor Calls

In order to handle destructors properly, every occurrence of

popvar T; that corresponds to pushvar V, T, has to to be

replaced by the following sequence of statements.

if type T has a destructor then

{

Let W be new pointer variable of type pntr(ref(T)).

<< pushvar W, ref(T);

[W] = V;

<< (the destructor call for type T);

<< popvar W, ref(T);

}

<< popvar V, T;

83

Box operators in the context of lazy evaluation

Special attention needs to be given to Box operators in the scope of

the lazy evaluating operators ? :, &&, and ||. Example:

X& f(X&);

X operator - (const X&, const X&);

bool operator < (const X&, const X&);

x3 = (x1 < x2) ? f(x2 - x1) : f(x1 - x2);

For each Box operator in the scope of a lazy operator, one should

create a boolean that remembers whether its object has been

constructed.

84

Remaining Topics

• I did not say much about inheritance. It doesn’t have impact

on the compilation algorithm, as far as I can see. It makes

method definitions more complicated.

• One could consider adding a second bool type, call it

branching bool, intended for the efficient handling of nested

occurrences of || and &&. In that case, it must be possible to

have calls to translate of form translate((L1,L2), t). It

will generate code that jumps either to L1 or to L2.

• Of course, it would be nice to verify the correctness of the

translation algorithm, but how? The specification wouldn’t be

much simpler than what I wrote, and the whole idea of

verification is based on the assumption that specifications are

simpler than implementations.

85

