
Improved Intermediate Code

1

Problems with the Previous Intermediate Language

The previous set of slides compilation.pdf had some problems that

I want to solve in this new set of slides. Problems of the

intermediate language were:

1. It was too low level. This makes it not suitable for describing

optimizations, makes examples long and unpleasant, and makes

the description of code generation harder than it needs to be.

2. (This has nothing to do with the course, but it is important for

research.) The intermediate representation was not suitable for

proving properties of the program.

3. The intermediate language could not represent SSA-normal

form.

2

Problems with the Previous Translation Algorithm

I was also not happy anymore with the translation algorithm. It

had a distinction between inline and outline functions. Inline

functions are functions that are substituted away, while outline

functions are functions that are called as subroutines. Outline

functions had their parameters always passed in memory, in a

complicated way, which was too low level. Inline functions passed

had their parameters passed in memory or in local variables. The

choice whether a parameter was passed in memory or locally was

made by the type system. A type reg(T) indicates that the

parameter was passed in a local variable. A type that is not of form

ref(T) was passed in memory. In order to convert between T and

reg(T), a read and a write function were used. This was

unnecessarily complicated, and it confused the students.

3

Changes in the Translation Algorithm

In the new version, the following changes are made:

1. There is no reason why the inline/outline distinction should be

connected to the way parameters are passed. All functions can

pass all parameters of simple types in local variables or in

memory.

2. The way a parameter is passed should be not expressed in the

language type system, but separately in the function definition.

This means that the ref type constructor will disappear,

together with the read/write functions.

3. There is no reason why inlining should be performed during

compilation. Substituting functions away is a simple operation

on intermediate code that can be performed at any time.

4

Types

The slides in compilation.pdf were rather sloppy about the type

system of the intermediate language. It seemed to use a strict

subset of the types of C/C++. More precisely, its type system was

obtained by removing const, and by replacing reg by pointer

everywhere in the source language.

In the new intermediate language, we will only five types: B for

boolean, C for char, I for integer, R for real and P for pointer.

5

Expressions and Memory

The previous intermediate language used instructions of form

@I = @I + 1; @J = [$P];, etc., in which the right hand side

could contain a single operator at most.

In the new intermediate language, we allow the use of arbitrary

expressions. This is much easier for algebraic simplification, and it

makes the programs shorter and easier to read. Expressions are

simply typed by the five types on the previous slide. (A simple

type system is a type system with a finite set of types, without

subtypes.)

All access to memory will be through pointers. Since the pointer

type does not specify what it points to, the type has to be specified

when something is loaded from memory.

6

Constants

• We assume that we have constants for each type

T ∈ {B,C, I, F} of the intermediate language. Constants have

form ′a′C , 3I , 4I , 4F , etc.

We also use some additional constants that act as interface with

the source language:

• For each type S of the source language, we assume constants

sizeofI(S) and sizeofC(S). (They differ only in their type.)

• For each struct, class or record type S occuring in the source

language, we assume constants fieldI(S, f), and fieldC(S, f),

which denote the offset of field f in struct S. (The use of field

functions in the previous language was not a good idea.)

Both field(S, f) and sizeof(S) are just convenient names for

constants. There is no further interaction with the source language.

7

Pointer Constants

For pointers, we have two types of constants:

• The null pointer nilP .

• Pointers pointing to global variables. They have form global(s),

where s is the name of the global variable.

We will not do much with global variables, but we define the

mechanism.

8

Functions

• For each T, we assume basic arithmetic functions +,−, ∗, /, etc.

of type T × T → T.

• We assume boolean operators ∧,∨,¬ of type B ×B → B.

These operators are not lazy!

• For each T, we assume comparison operators <,≤,=, >,≥, 6=

of type T × T → B.

• For types T1, T2 we assume conversion functions of form

convT1,T2
(t) with type T1 → T2. Some of the conversions are

lossy, some of them are not. For example, convI,F (i) converts i

to a float.

• For the pointer type P, and the other types T, we assume

addition functions +:P × T → P and −:P × T → P . There is

also a subtraction function − with type P × P → I. These

functions do not take the size of ⋆P into account!

9

Reading from Memory

For each type T, we assume a function memT (p) of type P → T

that reads the contents of pointer p from memory.

Reading from memory is not a function (because it uses the

memory), but it is still safe to treat it as a function because it has

no side effects, and will have the same value when it occurs twice in

the same expression.

10

Local Variables

It is possible to use local variables in expressions. The type of a

local variable is determined by its declaration.

Since operators are always typed, every expression has a type,

which can be easily determined.

If one wants, one can mark each subexpression with its type, but

the type system is so simple, that we will not do this most of the

time.

11

Examples of Expressions

We can now write the translations of simple expressions. Assume

that p is declared as a struct with a field f of type int. Assume

that i is of type int. Then p[i + 1].f can be represented by

the following expression:

memI(p+ sizeofI(S) ∗ (i+ 1I) + fieldI(S, f)).

We didn’t write the types in the expresssion, but they can be easily

determined.

12

Function Definitions

The next step is to define functions. A function declaration has

form F:T1 × · · · × Tn → U1 × · · · × UM : λv1, . . . , vn G, where F is

the function that is being declared, v1, . . . , vn are the parameters of

the function, and G is a flow graph.

The flow graph consists of statements of the following forms:

1. Assignment/Write/Copy Statements.

2. Goto/Conditional statements.

3. Allocation/Deallocation statements.

4. Call/Return statements.

5. Merging statements.

13

Assignment/Write/Copy Statement

An assignment statement stores the result of an expression into a

local variable. It has form v := e:T , where T ∈ {B,C, I, F, P} is

the type of e. If the type of e is easily visible, we may omit T.

Assignment can either create variable v, or overwrite variable v.

A write statement writes the result of an expression into memory.

It has form write p, e:T , where T is a type, p is an expression of

type P, and e is an expression of type T. If the type of e is evident,

T can be omitted.

A copy statement has form copy p, q, sizeof(S). Both p and q must

be expressions of type P. If everything goes well, the contents of

pointer p in memory is copied into pointer q. This can not be done

by a combination of read and write, because S does not have to be

a primitive type.

14

Goto/Conditional Statements

A goto statement has form: goto L1, . . . , Ln;

It is possible that n > 1, because we allow non-determinism.

A conditional statement has form {e} where e is an expression of

type B.

If e evaluates to true, then evaluation continues. Otherwise,

evaluation fails.

The combination of branching gotos and conditional statements

can be used to simulate if and switch statements.

15

Goto/Conditional Statements (2)

Conditional statements are expressed by a combination of

non-deterministic gotos, and conditional statements { }. The

statement if B then S1 else S2 is represented by:

goto L1,L2;

L1: { B }; S1; goto L3;

L2: { !B }; S2; goto L3;

L3:

This looks a bit strange at first, but it is easier to compute abstract

interpretations in this way.

16

Allocation/Deallocation Statements

Allocation/deallocation is always assumed to take place on the

stack. If one wants to allocated something on the heap, one must

use new and delete, which I assume are library functions.

• allocate p, c;

Allocate a space of size c and assign its address to p.

• deallocate p, c;

p must evaluate to a pointer that was allocated before with the

same number c.

17

Call/Return

• call f ; e1:T1, . . . , en:Tn; w1:U1, . . . , wm:Um;

Call function f. The types T1, . . . , Tn, U1, . . . , Um must fit to

the declaration of f. The expressions e1, . . . , en are evaluated

and written into the parameters v1, . . . , vn of f.

The w1, . . . , wk must be variables, into which the returned

values are copied.

• return e′1, . . . , e
′

m;

Exit the current function and return to the point from where it

was called. The types of e′1, . . . , e
′

m must fit to the U1, . . . , Um

in the declaration of f. The values e′1, . . . , e
′

k are copied into the

variables w1, . . . , wk that were used in the call of f. Return

does not work (not return) when there were allocations in the

body of the function that were not deallocated.

18

Call/Return (2)

If the types are clear, we will omit them.

Aim of the call and return mechanism is to be able to model

standard ways of parameter passing:

• Simple values can be passed and returned in registers.

• Types that are not simple can be passed and returned through

pointers pointing to the position in memory where the

parameter can be read from or written to.

19

Merging Statements

Merging Statements are used in Static Single Assignment form. We

will not always use SSA, but we define the merging statements for

the case we need them.

A merging statement consists of a set of assignments of form

v := Φ(v1, . . . , vn):T .

All variables v, v1, . . . , vn must have type T.

It is always assumed that the mergings in the statement take place

in parallel.

20

Example with Arrays

Consider the program

void fill(int* p, int n)

{

for(unsigned int i = 0; i < n; ++ i)

p [i] = i * i;

}

main()

{

int squares[5];

fill(squares, 5);

return 0;

}

21

Arrays (2)

Function fill has type P × I → . It is defined as λp, n :

i := 0I:I;

L0 : goto L1, L2;

L1 : {i < n};

write p+ i ∗ sizeofI(int), i ∗ i;

i := i+ 1I ;

goto L0;

L2 : {¬(i < n)};

return;

22

Arrays (3)

Function main has type → I. It is defined as λ :

allocate squares, 5I ∗ sizeofI(int);

call fill; squares, 5I ;

deallocate squares, 5I ∗ sizeofI(int);

return 0I ;

23

Adding an Offset Type?

It may be sensible to add an offset type O to the intermediate

language. O would be used for address calculations. It would be

the only type that can be added to a pointer. sizeof and field would

always construct O.

We will not use O in the slides, but it probably should be added if

one wants to use the intermediate language seriously.

24

Field Functions

I deleted the field functions because they were not a good idea.

They added an offset to a pointer and changed its type. Since we

have identified all pointer types, the second aspect is no longer

needed. For adding the offset, one can use field(S, f).

25

Example with Strcpy

This is the strcpy function that was used as an example of

optimization:

void strcopy(char* p, const char* q)

{

unsigned int i = 0;

while(q[i] != 0)

{

p[i] = q[i];

i ++ ;

}

p[i] = 0;

}

26

Strcpy in Intermediate Representation

strcpy has type P × P → and can be implemented as λp, q :

i := 0I ;

L0 b := (memC(q + i ∗ sizeofI(char)) 6= 0C) :B;

goto L1, L2;

L1 {b};

write p+ i ∗ sizeofI(char), memC(q + i ∗ sizeofI(char));

i := i+ 1I ;

goto L0;

L2 {¬b};

write p+ i ∗ sizeofI(char), 0C ;

return;

27

Strcpy in SSA Normal Form

λp, q :

i0 := 0I ;

L0 i1 := Φ(i0, i2);

b := (memC(q + i1 ∗ sizeofI(char)) 6= 0C):B;

goto L1, L2;

L1 {b};

write p+ i1 ∗ sizeofI(char), memC(q + i1 ∗ sizeofI(char));

i2 := i1 + 1I ;

goto L0;

L2 {¬b};

write p+ i1 ∗ sizeofI(char), 0C ;

return;

28

Observations

The new examples are a lot shorter, and a lot more readable than

the same example in optimization.pdf, which used the old

intermediate language. It fits on a single slide instead of 6.

Even the SSA fits on a single slide, although we cheated a little bit

by omitting the return statement.

It is immediately possible to see the redundant expressions, and the

possible optimizations.

29

Another Example: Recursive Factorial Function

int fact(int n)

{

if(n == 0)

return 1;

else

return n * fact(n - 1);

}

30

Translation of fact

fact has type I → I. Its definition is:

λn :

goto L1, L2;

L1 {n = 0I};

return 1I ;

L2 {n 6= 0I};

call (n− 1I);m;

return n ∗m;

31

Translation into Stack Machine

(This should be kept, but moved to another, earlier point in the

course.)

I first explain how translation into a stack machine works, then I

explain that a stack machine is not sufficient for compilation of

C++.

Expressions can be transformed into reverse Polish notation.

A function with arity n can be replaced by a code fragment that

takes n-objects from the stack, and puts one object back on the

stack.

32

Stack Machine (2)

For example, the expression x := x+ 4 ∗ y can be replaced by

x 4 y ∗ + (:= x).

push(x); // Push value of x on the stack.

push(4); // Push 4 on the stack.

push(y); // Push value of y on the stack.

* // Take two numbers from top of stack,

// multiply them, and push result back.

+ // Take two numbers from top of stack,

// multiply them, and push result back.

write(x); // Take number from top of stack,

// and write it into variable x.

33

Stack Machine (3)

unsigned int fact(unsigned int x)

{

if(x == 0)

return 1;

else

{

f = fact(x - 1);

return x * f;

}

}

34

Stack Machine (4)

Local variables (x and f on the previous slide) can be easily

maintained on the stack.

When a local variable goes out of scope, it can be easily removed

by increasing the stack pointer.

The defined function fact can have the same interface as built-in

functions. It removes top of stack, and replaces it by the result. In

this way, defined functions can be mixed with built-in functions in

expressions.

We use stack[i] (with i ≥ 0) to refer to the object that occurs at

depth i on the stack. Top of stack is stack[0].

35

// Initially, we assume that local variable x is

// on top of the stack.

push stack[0] // We evaluate (x==0).

push 0

== // Takes two numbers from top of stack, compares

// them, and puts result back on stack.

iffalse goto L1;

// Remove one boolean from top of stack, and jump

// if boolean is true.

push 1; // We prepare to return 1.

stack[1] = stack[0];

// We overwrite local variable x with result,

pop; // and correct the size of the stack.

return;

36

L1:

push stack[0];

push 1;

- ; // We calculated (x-1).

call fact; // Replaces x-1 by fact(x-1);

// We create variable f, and initialize with fact(x-1).

// Since fact(x-1) is already on the top of the stack,

// we need to do nothing.

push stack[1]; // Variable x;

push stack[1]; // Variable f;

* // Now we have x*f on top of stack.

stack[2] = stack[0];

pop; pop; return;

// Remove local variables, and return.

37

Problems with Stack Machines and C++

Unfortunately, it is not possible to evaluate C++ with a simple

stack model, because of the following two reasons:

1. Nearly every return from a function involves copying back the

result. (Look at the previous slide.) This is inefficient for big

objects. Moreover, objects are not required to have a copy or

move constructor in C++. Such objects cannot be copied, but

still it should be possible to write a function that returns such

an object.

2. In an expression of form f(g(h())), the function h can

construct an object, which is passed as reference to g. Function

g can decide to further pass the reference to f. This implies

that the result of h has to be preserved all through the

evaluation of f(g(h())), so that an evaluator based on a pure

stack machine, is not possible.

38

Problems with Stack Machines and C++ (2)

const A& max(const A& a1, const A& a2)

{

if(a1 > a2)

return a1;

else

return a2;

}

A sum(const A& a1, const A& a2)

{

A res = a1;

res. add(a2);

return res;

}

39

Problems with Stack Machines and C++ (3)

How to evaluate?

std::cout << max(max(1 + 2, 3 + 4),

max(5 + 6, 7 + 8)) +

max(max(10 + 11, 12 + 3),

max(8 + 9, 12 + 16)) << "\n";

It is clear that we need a more sophisticated evaluation model for

expressions.

The good news is that local variables still can be kept in a

stack-like fashion.

I will assume that the stack always grows downwards, because it

more natural to look forward, than to look backwards. When

arguments of a function are pushed onto the stack in reverse order,

they will be in the right order on the stack.

40

Type System of C/C++

We recursively define the type system of C/C++.

• We assume the primitive types bool, char, int, float. (I know

that there are more primitive types, but I ignore them.)

• We assume the primitive type void.

• We assume the primitive type pointer.

• We assume that every struct or class occurring in the

program has an associated type.

We will not distinguish between class and struct.

41

Type System of C/C++

• If T is a type, then pointer(T) is a type.

• If T is a type, then ref(T) is a type.

• If T is a type, then rvalref(T) is a type.

• If T is a type, and n is a an integer ≥ 0, then array(n, T) is a

type.

We do not distinguish arrays with unknown size from pointers.

(Like char* p and char p[].) As far as I know, they are not

distinguished in C/C++. It they turn out different, then another

type constructor for arrays with unknown size can be added.

ref(T) denotes T&. rvalref(T) denotes T&&.

pointer denotes a pointer to an unknown type. (This would be

called pointer(void) in C/C++.

42

Const

I assume that every (sub)type except void, ref and rvalref can be

marked with a C, which makes it const.

The type const int⋆ is represented as pointer(intC).

The type int ⋆ const is represented as pointerC(int).

43

C/C++-Function Types

A function has type T1 × · · · × Tn ⇒ Um, with n ≥ 0, and

m ∈ {0, 1}.

m = 0 when the function returns void, and m = 1 when the

function returns a result.

If the function is a non-static member function of a class X, then

n > 0 and T1 = ref(X) or ref(XC).

In the previous version, I used the notation func(T1, . . . , Tn; U).

This was harder to read, and added nothing useful.

44

Restrictions on Types

There are couple of restrictions on the possible types:

• One cannot have T1(T2()), where T1 is ref , rvalref ,pointer

or array, and T2 is ref , rvalref or void.

45

Examples of C++-Types

char p[100], *q, **r;

p : array(100,char),

q : pointer(char),

r : pointer(pointer(char))

char r[5][100];

r : array(5, array(100, char))

const int& x;

x : ref(int_C)

const int& f(const int& , int, int*);

f : ref(int_C) * int * pointer(int) -> ref(int_C).

46

Examples of C++-Types (2)

struct X

{

X(int x);

int -> X

X(const X&);

ref(X_C) -> X

// Constructors are always static!

void operator = (const X&);

ref(X) * ref(X_C) -> void

// Non-static, non-const member.

~X();

ref(X) -> void; // Non-static, non-const member.

std::ostream& print(std::ostream&) const;

ref(X_C) * ref(std::ostream) -> ref(std::ostream);

// Non-static, non-const member.

47

Inline/Outline Functions

In the previous version of these slides, we had inline and outline

functions. Outline functions were called, while inline functions were

substituted away.

In addition, inline functions had their parameters passed in local

variables, while outline functions had their parameters passed in

memory.

Since there is no reason why these two choices should be connected,

we will completely separate the way parameters are passed from

the question whether the function is substituted or called.

We few inlining as an operation on intermediate code that can be

performed one every function whose definition is available after the

translation process.

48

Passing of Parameters and the Return Value

We assume that a function has type T1 × · · · × Tn → Um with

n ≥ 0, and m ∈ {0, 1}.

If some Ti has a type that corresponds to a type {B,C, I, F, P} of

the intermediate language, it can be passed as a parameter in the

call statement.

Similarly, if the type of U0 corresponds to a type of the intermediate

language, it can be returned through the return statement.

We call this way of passing values direct.

49

Indirect Parameter Passing

If some Ti is not simple, e.g. a struct or a class, it has to be passed

indirectly. The calling environment stores the object somewhere in

memory, and passes a pointer to the object to the called function.

The same has to done with U0 if it is a struct. The calling

environment creates a position in memory where the struct should

be written and passes a pointer to the function. When the called

function meets a return statement, it writes the result to the

indicated position and returns.

The reasons for this were explained in the example of the stack

machine. Copying user defined objects may be inefficient and/or

impossible.

50

The translation of the fact(n) function used direct parameter

passing. With indirect parameter passing, the translation would be

λp, q : P × P →:

n := memI(p);

goto L1, L2;

L1 {n = 0I}; write q:I, 1I ; return;

L2 {n 6= 0I};

allocate p1, sizeof(I); allocate q1, sizeof(I);

write p1:I, n− 11;

call p1, q1;

write q:I, n ∗memI(q1);

deallocate q1, sizeof(I); deallocate p1, sizeof(I);

return;

51

Parameter Passing (4)

We assume that for each function, each of its parameters Ti and U0

(if it is there) are marked either as direct or indirect. A parameter

Ti, U0 can be marked as direct only when it is of type

bool, char, int or float.

We do not view the direct/indirect distinction as part of the

signature of the function, but as an additional marker. The first

implementation of factorial would be marked as intD → intD. The

second version would be marked as intI → intI .

In the previous version of these slides, I used reg for direct

parameters, and treated the direct/indirect distinction as part of

the source language. This was not a great idea, because it made

type checking harder, gave the resulting conversions a cost in the

source language, and made the resulting trees more complicated.

52

Associated Struct, General Format of Function Calls

Let F be a function with type T1 × · · · × Tn → Um.

If one of the Ti is indirect, we associate to the function a struct

which has a field fi of type Ti for every Ti that is indirect.

The translation f of F in the intermediate language has the

following parameters:

1. For every direct parameter v, the translation has a direct

parameter of corresponding type.

2. If there are indirect parameters, then there is one parameter p

of type P, which points to the associated struct of F.

3. If U0 exists and is indirect, then the translation has a

parameter q of type P which points to the return value.

(If U0 exists and is direct, it will be returned through the return

statement.)

53

Typechecking and Adding Conversions

Before an expression tree can be translated into intermediate

language (lowered), it has to be typechecked by the algorithm in

typechecking.pdf. During type checking, conversions are added,

in order to make sure that references are properly converted to

values, arrays are converted to pointers, and values are properly

converted into references. The following needs to be specified:

1. How the leafs of an expression tree (constants and variables)

are typed.

2. Overloadings of the standard operators and user defined

functions. (User defined functions and built-in operators can be

treated in the same way.)

3. Typing rules for field selection.

4. Available implicit conversion functions, and their types.

54

Typing Rules for Constants

We start at the leafs:

Constants have simple type bool, char, int,float, or generic

pointer type pointer. (The null pointer).

55

Typing Rules for Variables

We give the typing rules for variables, and function parameters

inside the function:

1. Variables and parameters that are declared as X v receive type

ref(X).

2. Variables and parameters that are declared as const X v

receive type ref(XC).

3. Variables and parameters that are declared as X& v receive

type ref(X).

4. Variables and parameters that are declared as const X& v

receive type ref(Xc).

5. Variables and parameters that are declared as X&& v; receive

type ref(X).

56

Typing Rules for Standard Operators

The standard operators have their standard, totally non-surprising

types.

• +,−, ∗, / have type T × T → T for T ∈ char, int,double.

• + and − also have types pointer(X)× T → pointer(X) and

pointer(XC)× T → pointer(XC), where X can be every

type, and T ∈ char, int.

• In addition, − has can have type

pointer(XC)× pointer(XC) → int, where X can be every

type.

• x++ and x−− have type ref(X) → X.

• ++ x and −− x have type ref(X) → ref(X).

57

Standard Operators (2)

• The comparison operators <,>,=, 6=,≤,≥ have type

T × T → bool for

T ∈ bool, char, int,double,pointer(X),pointer(XC).

• The ⋆ operator (pointer dereference) has type

pointer(T) → ref(T) and pointer(TC) → ref(TC), for every

type T that can be used in pointers or references.

• The & operator (address of) has types ref(T) → pointer(T)

and ref(TC) → pointer(TC) for every type T that can be used

in pointers or references.

• (Overwriting) Assignment = has type ref(T)× T → ref(T).

for T ∈ bool, char, int,float,pointer(X). Other assignment

operators can be defined by the user.

58

Standard Operators (3)

• The operator B? E1 : E2 has type bool× T × T → T for every

type T.

• We assume that A||B is replaced by A? 1 : B and that A&&B

is replaced by A? B : 0. Both have type bool× bool → bool.

• We assume that !A is replaced by A? 0 : 1. It has type

bool → bool.

• We assume that p[i] is replaced by ⋆(p+ i), and that p → f is

replaced by (⋆p).f.

(There are some more operators, like + =,− =, whose types should

be clear by now.)

59

Typing Rules for Field Selection

The typing rules for field selection terms of form t.f are very very

complicated. They must be approximately like this: Term t must

have a type of form ref(X), ref(XC) or rvalref(X), and X must

be a struct type. The resulting type depends on the form of the

declaration of field f in struct X.

• If the declaration is just Y f, then the result type will be

ref(Y), ref(YC), rvalref(Y), where the qualifier is inherited

from the type of X.

• If the declaration has form const Y f, then the result type will

as above, but Y will always be const. I have no idea what

happens if X has type rvalref(X).

• If the declaration of f has one of the forms Y& f, const Y& f,

or Y&& f,, then the result will be of type ref(Y), ref(YC), or

rvalref(Y), where the qualifier is taken from the declaration.

60

Conversions: Const and Rvalref

We assume that

X ⇒ XC

ref(X) ⇒ ref(XC)

pointer(X) ⇒ pointer(XC)

rvalref(X) ⇒ ref(XC)

without need to insert a conversion operator.

(It may be that the rules are recursive in reality. I have no wish to

check it now.)

61

Conversions: Copy Constructors

Copy constructors are inserted when a reference is available, but a

value is needed.

Copy constructors have type ref(T) → T, ref(TC) → T, or

rvalref(T) → T.

T can be every type, but not an array type.

If i, j are of type int, then i = j; requires a copy constructor,

because j has type ref(int), and = requires int as right argument.

62

Conversions: The Box Operator

The box operator is inserted when a value is given, but a reference

is needed. Consider

X g();

int f1(X&);

int f2(const X&);

int f3(X&&);

The expressions f2(g()) and f3(g()) are possible. In order to

properly evaluate them, the X constructed by g() needs to be

stored in a local variable, and kept until the expression is

completely evaluated. We say that the value of g() is boxed. The

box operator has type T → rvalref(T).

Inserting the conversion in the expressions above gives

f2(box(g())) and f3(box(g())).

63

Conversions: From Arrays to Pointers

Arrays don’t have copy constructors, but they have something

much better:

ref(T) → pointer(T), and ref(TC) → pointer(TC).

In earlier versions of C, the same conversion was applied to structs.

64

Conversions: Upcasting and User Conversions

There all kinds of additional conversions.

bool ⇒ char ⇒ int ⇒ float.

The conversions are called T2U, where T is the type that we

convert from, and U is the type that we convert into.

65

Translate

We define the function translate(t, U, I), where t is an expression

tree obtained after typechecking, using the rules on the previous

slides. U is the C/C++-type of expression t, and I is either

void, direct(v) with v a variable, or indirect(p), with p a pointer

expression.

• If I = void, then translate will create code that does not

create any result.

• If I = direct(v), then translate will create code that assigns

the result to v.

• If I = indirect(p), then translate will create code that writes

its result into the memory position indicated by p.

66

Preparation for Box

If the expression that we are translating contains box functions, we

assign to each occurrence of box a boolean b and a pointer p. The

boolean b is used for remembering if the box operator was executed.

This is required for expressions of form b? f(box(g())) : e2, in case

when the boxed object has a destructor.

67

Top Level Call

1. In a return statement of a function with direct result, in the

condition of an if,while, etc., we call translate(t, U,direct(v)).

2. If the expression occurs ’free’, we call translate(t, U,void).

3. If the expression occurs in an initialization X x = e or X x(e),

then call translate(e,X, indirect(x));

I first have to check how long temporaries are kept alive !!

We use notation T for type conversion.

68

Translate: Handling Conflicts

We define translate(t, U, I). We first check for conflicts between I

and the way in which expression t constructs its result:

• If I has form void, and t has form f(t1, . . . , tn) for a function f

that has indirect result U 6= void, then let p be a new pointer

variable.

≪ allocate p, sizeof(U);

Call translate(t, U, indirect(p)).

≪ deallocate p, sizeof(U);

(This corresponds to the situation where a function creates a result

in memory, which is ignored.)

69

Translate: Handling Conflicts (2)

• If I has form void, U 6= void, and t is not a functional term,

or it has form f(t1, . . . , tn) with f a function that has a direct

result, then let v be a new variable of type U.

Call translate(t, U,direct(v)).

(This is the situation, where t creates a result in a local variable,

which has to be ignored.)

70

Translate: Handling Conflicts (3)

• If I has form direct(v), and t has form f(t1, . . . , tn) for a

function f that has indirect result U 6= void, then let p be a

new pointer variable.

≪ allocate p, sizeof(U);

Call translate(t, U, indirect(p));

≪ v = mem
U
(p);

≪ deallocate p, sizeof(U);

(This replaces read in the previous compilation algorithm.)

71

Translate: Handling Conflicts (4)

• If I has form indirect(p), while either

1. t is a constant (with type in bool, char, int,float) or the

null pointer,

2. t is a variable or a field selection term, (which implies that

U has form ref(X), ref(XC), or rvalref(X)), or

3. t has form f(t1, . . . , tn) for a function f that has direct

result type U 6= void,

then let v be a new variable of type U.

Call translate(t, U,direct(v));

≪ write p, v:U ;

(This replaces write in the previous compilation algorithm.)

72

Translate: The Box-operator

At this point, we are sure that there is no conflict between the

result of the translation and I.

Consider translate(Box(t), U, I). We know that U has form

rvalref(T) and is direct, so that I has form direct(v).

Let b, p be the variables that were associated to this occurrence of

Box. First call translate(t, T,direct(p));

≪ b := 1B;

≪ v := p:P ;

So we write the result in p, remember that we did this (for the case

that T has a destructor), and make p our result.

73

Translate: Function calls

Consider translate(f(t1, . . . , tn), U, I). If one of the Ti is marked

as indirect, then f has an associated struct. Let Tf be its type. Let

q be an unused variable.

≪ allocate q, sizeofI(Tf);

74

Recursive Calls for f(t1, . . . , tn).

For each parameter ti do the following: (It is usually done in

reverse order.) Assume that ti has type Ti.

• If ti is a direct parameter of f, then let vi:T i be a new variable.

Call

translate(ti, T i,direct(vi)).

The resulting code writes the value of ti into vi.

• If Ti is an indirect parameter of f, then let fi be the field for ti

in associated struct of f (which had type Tf) Call

translate(ti, Ti, indirect(q + fieldI(Tf , fi))).

Variable q is the pointer that was allocated on the previous

slide. The resulting code writes the value of ti into (⋆q).fi.

75

Calling the Function f :

Let t′1, . . . , t
′

n′ with n′ ≥ 0 be the direct parameters of f. On the

previous slide, we have created variables v′1, . . . , v
′

n′ with their

values.

If two slides ago an associated struct was allocated, then let q̂ be

the pointer that was allocated. Otherwise, let q̂ denote nothing.

• If I = direct(v), then ≪ call f ; v′1, . . . , v
′

n′ , q̂; v;

• If I = indirect(p), then ≪ call f ; v′1, . . . , v
′

n′ , q̂, p;

• If I = void, then ≪ call f ; v′1, . . . , v
′

n′ , q̂;

The first case returns the result in v. The second case returns the

result in ⋆p. The third case returns no result.

76

Deallocating the Associated Struct for f(t1, . . . , tn)

If q̂ is not nothing, then we need deallocate q :

≪ deallocate q, sizeofI(Tf);

That is all for function calls.

77

Translation of Constants

We define translate(c, U, I) for constants c. Constants always have

a simple type, so that U has form bool, char, int,double, or a

pointer type.

We are certain that I has form direct(v).

≪ v := c:U ;

78

Translation of Variables

We define translate(w,U, I) for variables w. The type U is always

of form ref(X) or ref(XC).

We are certain that I has form direct(v) and that v has type P.

We assume that the symbol table is able to produce a pointer

expression p that points to the place of variable w in memory.

If w was declared as X w, then

≪ v := p;

If w was declared as X& w, const X& w, or X&& w, then

≪ v := memP (p);

79

Translation of Field Selection

We define translate(t.f, U, I) for field selection terms. Fields are

very similar to variables. Term t passed type checking. This implies

that t has a type of form ref(X), ref(Xc) or rvalref(X), and X is

a struct type that does have a field f. We also know that U is some

reference (or rval reference) to some type Y.

We can be certain that I has form direct(v), and that v is of type

P.

Let p be a new variable of type P. First call

translate(t, U, direct(p)).

If field f was declared in X as Y f, then

≪ v := p+ fieldI(X, f);

If field f was delared in X as Y& f, const Y& f, or Y&& f, then

≪ v := memP (p+ fieldI(X, f));

80

Translation of Boolean ? Expression1 : Expression2

We define translate(b ? e1 : e2, U, I). There is no restriction on

the form of I.

Let v:B be a new variable, and let L1, L2, L3 be new labels. First

call translate(b,bool, direct(v)).

≪ goto L1, L2;

≪ L1 : {b};

Call translate(e1, U, I);

≪ goto L3;

≪ L2 : {¬b};

Call translate(e2, U, I);

≪ L3 :

81

Some Standard Functions

At this point, it is easy to give implementations of some of the

standard functions of C/C++. For each implementation of a

function, one needs the following information:

1. Its possible types in C/C++.

2. Information about how the arguments and the return value are

passed. (direct or indirect)

3. The type(s) of the argument(s) and result(s) in the

intermediate language.

4. Name of the implementation.

5. Parameters and flow graph of the implementation.

82

Copy Constructors

1. Copy constructors have type

ref(T) → T, ref(TC) → T, rvalref(T) → T, where T is a

type that has a copy constructor.

2. For simple types bool, char, int,float and for pointer types,

the argument and the return value are direct.

For user types, there are no conditions on direct/indirectness.

3. The implementation has type P → T .

4. It is called CC(T).

5. For primitive types T, CC(T)) is implemented as

λp:P return mem
T
(p);

For other types, the user decides.

83

Simple Assignment Operators

I describe only the assignment operators on primitive types. There

may be more assignment operators, defined by the user.

1. Assignment operators have type ref(T)× T → ref(T), for

types in bool, char, int,float and pointer(X).

2. The argument and return value are direct.

3. The implementation has type P × T → P.

4. It is called assign(T).

5. It is implemented as

λp, v : write p, v;

84

Simple Arithmetic Operators

Let ⊗ be one of the standard binary arithmetic (or comparison)

operators with type T1 ⊗ T2 → T3.

1. For each of its possible types T1, T2, T3 in bool, char, int or

float, the operator ⊗ has some type of form T1 × T2 → T3.

2. The parameters and return value are always direct.

3. The implementation has type T 1 × T 2 → T 3.

4. It has name ⊗(T1, T2).

5. Its definition is:

λv1, v2 : return v1 ⊗ v2;

85

+ and − on Pointers

1. + and − have types of form pointer(T)× int ⇒ pointer(T)

and pointer(TC)× int ⇒ pointer(TC), where T is any type

that is not a reference type.

2. The argument are return value are direct.

3. The implementations in the intermediate language have types

P × I → P and P × I → P.

4. Implementations are called + :: pntr(T)+ and − :: pntr(T).

5.

λp, i : return p+ sizeofI(T) ∗ i;

λp, i : return p− sizeofI(T) ∗ i;

86

− between Pointers

1. Pointer subtraction has type pointer(T)× pointer(T) ⇒ int,

for every type T that is not a reference type.

2. Arguments and return value are direct.

3. The implementation has type P × P → I.

4. It is called −(pointer(T)).

5. It is implemented as

λp1, p2 : return (p1 − p2)/sizeof(T);

87

⋆ and &

1. Let T be an arbitrary type of C/C++, that is not a reference

type. The ⋆-operator (which dereferences pointers) has types

pointer(T) ⇒ ref(T) and pointer(TC) ⇒ ref(TC).

Its converse & (the address operator) has types

ref(T) ⇒ pointer(T) and ref(TC) ⇒ pointer(TC).

2. Both have direct argument and return value.

3. The implementations have type P → P.

4. the name doesn’t matter much.

5. Both functions are implemented by the trivial function

λp : return p;

88

Increment/Decrement Operators

We discuss only increment. Decrement is similar.

1. The prefix operators have type ref(T) → ref(T). The postfix

operators have type ref(T) → T.

2. Argument and return value are direct.

3. The implementations have type P → P and P → T .

4. They are called x++(T) and + + x(T).

5. When T is not a pointer type, the operators have form

λp : write p, mem
T
(p) + 1

T
; return p;

λp : i := mem
T
(p); j := i+ 1

T
; write p, j; return i;

For pointers, the constant 1
T
must be replaced by sizeof(X).

89

Inlining

Inlining is easy with the new intermediate language. Suppose that

λv1 · · · vn G is a function definition, let

call f ; e1, . . . , en; w1, . . . , wk; be a call of the function. Assume

that variables v1, . . . , vn and the variables in G do not occur in the

calling function. Otherwise, rename the variables.

1. Create a new label L, just after the function call.

2. In the body of the function, replace every statement of form

return e′1, . . . , e
′

k by w1 = e′1; · · · wk = e′k; goto L;

3. Replace the call by v1 = e1; · · · vn = en; G; (G is the body of

the function.)

This is much simpler than before, and we have complete

independence between inlining and the way parameters are passed.

90

Remaining Topics

• I did not say much about inheritance. It doesn’t have impact

on the compilation algorithm, as far as I can see. It makes

method definitions more complicated.

• Of course, it would be nice to verify the correctness of the

translation algorithm, but how? The specification wouldn’t be

much simpler than what I wrote, and the whole idea of

verification is based on the assumption that specifications are

simpler than implementations.

91

