Compiler Construction (List 3)

Hans de Nivelle
16 October 2013

1. (a) Using the translation scheme on the slides, translate the following
regular expression into an NDFA

(alb)* abbe.
(b) Using the subset construction in the slides, transform the NDFA into

a DFA.

(¢) Apply the minimization operation of the slides on the DFA that was
you obtained in the previous exercise.

(d) Same procedure on
(elaalbb)*ec.

(a) Consider the regular expression ¥*(ananas|apple).

(b)

(¢) Transform the NDFA into a DFA, using the algorithm on the slides.
)

(d) Simplify the DFA from the previous task, using the minimization
procedure on the slides.

Transform the regular expression into an NDFA.

3. Let ¥ = {a,b}. Let L,, be the language of words over ¥ that can be written
in the form wi.a.ws, where wy,ws € ¥*, and in addition, we has length
n.

e Show that every DFA recognizing £,, has at least 21! states.
o Show that there exists a DFA with 27! states that recognizes £,,.
e Show that there exists an NDFA recognizing £,, with n + 2 states.

(The idea of this exercise comes from Aho/Ullman, Principles of Compiler
Design.)

4. Consider the following language:
£ ={a'b'|i > 0}.

Is it regular? If yes, give an (automaton/regular expression). If not, give
a proof that shows that £ is not regular.



5. Consider the language
= {a"|n is prime}.

Is it regular? Give either an automaton, or a proof that it is not regular.



