Compiler Construction (List 3)

Hans de Nivelle

16 October 2013

1. (a) Using the translation scheme on the slides, translate the following regular expression into an NDFA

 $(a|b)^*abbc.$

- (b) Using the subset construction in the slides, transform the NDFA into a DFA.
- (c) Apply the minimization operation of the slides on the DFA that was you obtained in the previous exercise.
- (d) Same procedure on

$(\epsilon |aa|bb)^*c.$

- 2. (a) Consider the regular expression $\Sigma^*(ananas|apple)$.
 - (b) Transform the regular expression into an NDFA.
 - (c) Transform the NDFA into a DFA, using the algorithm on the slides.
 - (d) Simplify the DFA from the previous task, using the minimization procedure on the slides.
- 3. Let $\Sigma = \{a, b\}$. Let \mathcal{L}_n be the language of words over Σ that can be written in the form $w_1.a.w_2$, where $w_1, w_2 \in \Sigma^*$, and in addition, w_2 has length n.
 - Show that every DFA recognizing \mathcal{L}_n has at least 2^{n+1} states.
 - Show that there exists a DFA with 2^{n+1} states that recognizes \mathcal{L}_n .
 - Show that there exists an NDFA recognizing \mathcal{L}_n with n+2 states.

(The idea of this exercise comes from Aho/Ullman, Principles of Compiler Design.)

4. Consider the following language:

$$\mathcal{L} = \{a^i b^i | i > 0\}.$$

Is it regular? If yes, give an (automaton/regular expression). If not, give a proof that shows that \mathcal{L} is not regular.

5. Consider the language

$= \{a^n | n \text{ is prime}\}.$

Is it regular? Give either an automaton, or a proof that it is not regular.