Compiler Construction (List 4)

Hans de Nivelle
23 October 2013

1. Consider the language (X, R, S), defined by ¥ = { (")) }, R = {S —
SS, S—(5), S—e

e Give derivations for

(000), (0" "(00)"

Show that the language is ambiguous. (There are words that have
more than one derivation.)

Repair the grammar, so that it is not ambiguous anymore, but still
accepts the same set of words.

Prove that the repaired grammar is equivalent (defines the same lan-
guage) as the original grammar.

In the programming language Lisp, everything is a list. The empty

list has form () or nil. Non-empty lists have form (L;), (L1 Lz2), (L1 L2 Ls),
etc. Give a complete grammar for Lisp. The elements of a list can

be atoms, numbers, or by themselves lists. (You may ignore the
existence of dotted pairs and arrays.)

Give a grammar for the language of Prolog-style lists. Lists have
form

[], [L], [L1,La], [L1, L2, L3], etc.

The elements of the lists can by themselves be lists again.

Consider the language consisting of functional expressions of form c,
and f(t1,...,t,), with n > 0, and t1,...,¢, functional expressions
by themselves. Give a grammar for this language.

Give a attribute functions for the grammars of Task 3. Take into
account that (Lj --- L) denotes cons(Lq,cons(Ls,...nil)). Give a
derivation for the list

(car (quote (1 2 3))).



4. The construction on the slides parsing.pdf, pages 30-31, (creating a
grammar from a set of operators with priorities) is not correct. Can
you find the problem? Can you repair it? What do you think is bet-
ter? Repairing the problem, or adding conditions to the priorities of the
operators?



