
Compiler Construction (List 5)

Hans de Nivelle

6 November 2013

1. Consider the language (Σ, R, S), defined by Σ = { ′(′,′)′ }, R = {S →
SS, S → (S), S → ǫ.

(a) Give a DFA-based grammar for this language. (Use the non-ambiguous
grammar that was constructed in List 4 as a starting point.)

(b) Does the DFA-based grammar have any nullable symbols? Give the
FIRST and FOLLOW sets for each of the non-terminals of the DFA-
based grammar. (This is a trivial task, but it has to be given anyway.)

2. (a) Give a DFA-based grammar for Lisp. The elements of a list can be
atoms, numbers, or lists by themselves. Compute the FIRST and
FOLLOW sets for every non-terminal occurring in the grammar.

(b) Using the top down parser obtained from the DFA-based grammar,
parse some expressions, e.g.

(a b c)

((a) (b) c)

(set a (quote b))

(define (abs x) (if (< x 0) (- x) x))

(c) Are there nullable symbols? Give the FIRST, and FOLLOW sets for
every non-terminal that occurs in the grammar.

(d) Sketch a recursive descent parser for LISP. (I am especially interested
in the attribute computations.)

3. (a) Give a DFA-based grammar for Prolog expressions. You may ignore
the presence of user defined operators, so it is sufficient to define a
grammar for functional expressions of form

f(t1, . . . , fn),

and for lists, which have form

[], [L], [L1, L2], [L1, L2, L3], etc.

1

(b) Are there nullable symbols? Give the FIRST and FOLLOW sets for
every non-terminal of the grammar.

(c) Use the top-down parser derived from the DFA-based grammar to
parse some realistic expressions.

4. (a) Give a DFA-based grammar for the ’Realistic Grammar’ occuring on
slide 11 of parsing.pdf.

(b) Give the FIRST and FOLLOW sets for every non-terminal of the
grammar.

(c) Using the top-down parser derived from the DFA-based grammar,
parse some realistic expressions, e.g.

while (num < ident)

begin

ident := ident + num

end

if(ident < ident)

ident := ident

else

ident := ident

2

