
Compiler Construction (List 6)

Hans de Nivelle

13 November 2013

This is an exercise about top-down parsing using DFA-based grammars.

1. Download top down.tar.gz from the course homepage, and make sure
that it compiles. There is a tokenizer class and a token class. Tokens have
attributes, but you don’t need to worry about them because we will not
be concerned with attributes in this exercise.

In file parser.cpp is a main file that tests the tokenizer.

2. Consider the language (Σ, R, S), defined by Σ = { ′(′,′)′ }, R = {S →
SS, S → (S), S → ǫ. In the previous task list 5, we have constructed
a DFA-based grammar for this language. Write a parser, based on this
grammar.

You can use some of the exising non-terminal symbols, for example tkn Start

instead of S. There is a class parsestack, that corresponds to the state,
defined on slide 36. Methods Read/Return/Descend are already present.
Complete the parser. Use ifs or switches.

3. Also implement a DFA-based grammar for Lisp. Test it on some expres-
sions, e.g.

(a b c)

((a) (b) c)

(set a (quote b))

(define (abs x) (if (< x 0) (- x) x))

Note: This is an exercise about top down parsing, not about hacking. I am
aware that the languages in this exercise are so simple that they can be written
without using any systematic method.

1

