
Exercise Compiler Construction (9)

Hans de Nivelle

Due: 04.12.2013

In the previous List 8, we made a parser for Lisp expressions. In this task, we
will write an evaluator for Lisp expressions. Wikipedia contains an explanation
of Lisp. (http://en.wikipedia.org/wiki/LISP). The evaluator must be in-
teractive: It reads a Lisp expression, evaluates it, and prints the result. After
that, it reads a new expression.

Since in the previous task you wrote two parsers, you can choose the one
that you like most.

The evaluation function needs two varstores, one for global variables and
one for local variables. They must be passed as reference. If you used Maphoon
in your prefered parser, then the easiest solution is to modify the grammar
in such a way that it accepts only a single expression. Since it returns the
result, you can evaluate the expression, and after that call the parser again.
Otherwise you would have to pass the varstores as global parameters which is
more difficult.

If you wrote a recursive descend parser, you have to add local and global as
varstore references by yourself.

list eval(list E, varstore& global, varstore& local):

• If E is an identifier, then first look up E in local, and return the found
value. If there is no value, then look up E in global, and return the value
in global. If there is still no value, then return ’undefined’, or throw an
exception. If you decide to throw exceptions, you have to catch it in main.

• If E is a number, then return E.

• If E has form (if c t1 t2), then evaluate c. If the result equals ’t’, then
return the evaluation of t1, otherwise return the evaluation of t2.

• If E has form (set A t), then evaluate t. Let t′ be the result. Assign A := t′

in global. If A does not exist yet, it needs to be created.

• If E has form (setq A t), then assign A := t without evaluating t.

• If E has form (quit), then quit from the interpreter.

1

• If E has form (define f (V1 · · · Vn) E), then assign f := (lambda (V1 · · ·Vn)E)
in the global varstore.

• If E has form (f t1 · · · tn), with n ≥ 0 and f is a primitive function (listed
below), then first evaluate all ti. Let t′

i
be the results of the evaluation.

Apply the primitive function on the results. Note that Lisp is untyped
(or dynamically typed), and that you sometimes have to check if the ar-
guments are of proper type.

• If E has form (f t1 · · · tn), and f occurs in the global varstore as an
expression of form (lambda(V1 · · ·Vn) E), then

1. evaluate all of the ti. Call the results t′
i
.

2. Create a backtrack point in the local varstore. (It is shown in main.cpp
how to do this.)

3. Add the initializations Vi := ti to the local varstore.

4. Evaluate E with the extended local varstore.

5. Let the backtrack point go out of scope, and return the result of the
evaluation.

Add some nice primitive functions,
plus,times,minus,divides, lessthan, greaterthan, equals, notequals, car,cdr,cons.

Numerical functions have to check that their arguments are indeed numeri-
cal, and create an error message when the arguments are of wrong type.

You can also add or and and, but they have to evaluate lazily, so you would
have to add them as separate cases to the evaluator.

Show that the following functions work:

(define fact (N)

(if (equals N 0) 1

(times N (fact (minus N 1)))));

(fact 6);

--> 720

(set A (fact 5));

--> 120

A;

--> 120

(define append (L M)

(if (equals L nil) M

(const (car L) (append (car L) M))));

2

Note: The first version of list.cpp contained a bug in
std::ostream& operator << (std::ostream& stream, list l) The last

lines of the print function should be as follows:

for(auto p = contents. begin(); p != contents. end(); ++ p)

{

stream << " " << *p;

}

if(l. isstring() && l. getstring() == "nil")

stream << ")";

else

stream << ". " << l << ")";

return stream;

Note2: The lisp datastructure uses simple garbage collection based on reference
counting. This is possible because we don’t allow replacement. The original
Lisp allowed replacement of car and cdr in a cons cell. This was a rather bad
idea, because it simultaneously modifies all lists that contain a reference to the
modified cons cell. In addition, it enables the creation of disconnected cycles
which would keep each other alive, and which are harder to garbage collect.
Since we don’t have that, class list can use reference counting.

3

