
Exercise Compiler Construction (10)

Hans de Nivelle

Due: 15.01.2014

We are going to implement the type checking algorithm in the slides typecheck-
ing.pdf. It is easy to implement a stack machine, and we have essentially done
that in the previous exercises by implementing a LISP interpreter. As soon as
you want a more than just a stack machine, there is a very steep curve: To get
only a little bit more costs very much additional effort. We are going to try any-
way. Download the file intermediate2013.tar.gz from the course homepage.
It contains various classes:

• ctype: A class representing C-types, as described in compilation.pdf,
starting at page 15.

• ctree: A simple tree class that represents trees obtained by parsing. A
tree is either

– Concrete data, represented by a binary string std::vector<char>.

– An identifier, represented by an identifier.

– A functional tree, represented by an identifier (the function) and
its subtrees.

In addition, a ctree has a field ct of type ctype, which can be used for
storing the type of the tree.

• structstore: Stores type definitions of structs. (what fields they have,
and what types the fields have.)

• functionstore: Stores definitions of concrete functions (and possibly of
global variables).

• varstore: Stores types of local variables.

The goal is to implement the type checking algorithm on slides 15, etc. in
typechecking.pdf. The type checking algorithms should check a ctree, using
a varstore, a structstore and a functionstore. It should return a tree, in
which all subtrees have the field ct filled in, and with the implicit conversions
filled in.

1. Add some more functions to the functionstore in intermediate.cpp for
example

1

double dotproduct(const vector& , const vector&);

vector crossproduct(const vector& , const vector &);

double length(const vector&);

int first(const list& l);

int sum(const list& l);

int size(const list& l);

Don’t add copy constructors, assignment operators, etc. Also don’t add
primitive operators on basic datatypes. I think that these need to be hard
coded into the type checking algorithm.

2. Write a simple class conversion that essentially contains a ctree, and an
unsigned int, that represents a conversion of some term, and the cost
that was required to obtain it.

3. Write a class possibleconversions that contains all possible conversions
of a given term, and the cost that was required to obtain them. I wouldn’t
bother to add any indexing, just a simple list or vector of conversions is
enough.

A member of possibleconversions is constructed with a single typed
ctree.

The class must have a method close() that constructs all possible con-
versions (with their associated cost). Function close() should be able to
deal with possible circular conversions.

Method close() must take the following into account:

• Implicit conversion between data types, as in bool → char → int
→ double.

• Copy constructors, box operators, read/write operators.

• Pointer operators & and *. These operators are polymorphic!

4. Write the function

ctree typecheck(ctree t, varstore& local, structstore& st,

functionstore& fs);

Typechecking must take into account field functions, and it must replace
implicit operators on primitive types by their concrete instances.

Grading
Grading will be based on the following aspects:

• completeness of task: Is the algorithm completely implemented? Are all
types and conversions of page 54 (compilation.pdf) present?

2

• general quality of the design: Is there a good class design?

• coding quality? Is the code readable?

3

