Exercise Compiler Construction (10)

Hans de Nivelle
Due: 15.01.2014

We are going to implement the type checking algorithm in the slides typecheck-
ing.pdf. It is easy to implement a stack machine, and we have essentially done
that in the previous exercises by implementing a LISP interpreter. As soon as
you want a more than just a stack machine, there is a very steep curve: To get
only a little bit more costs very much additional effort. We are going to try any-
way. Download the file intermediate2013.tar.gz from the course homepage.
It contains various classes:

e ctype: A class representing C-types, as described in compilation.pdf,
starting at page 15.

e ctree: A simple tree class that represents trees obtained by parsing. A
tree is either

— Concrete data, represented by a binary string std: :vector<char>.
— An identifier, represented by an identifier.
— A functional tree, represented by an identifier (the function) and

its subtrees.

In addition, a ctree has a field ct of type ctype, which can be used for
storing the type of the tree.

e structstore: Stores type definitions of structs. (what fields they have,
and what types the fields have.)

e functionstore: Stores definitions of concrete functions (and possibly of
global variables).

e varstore: Stores types of local variables.

The goal is to implement the type checking algorithm on slides 15, etc. in
typechecking.pdf. The type checking algorithms should check a ctree, using
a varstore, a structstore and a functionstore. It should return a tree, in
which all subtrees have the field ct filled in, and with the implicit conversions
filled in.

1. Add some more functions to the functionstore in intermediate.cpp for
example

double dotproduct(const vector& , const vector&);
vector crossproduct(const vector& , const vector &);
double length(const vector&);

int first(const list& 1);
int sum(const list& 1);
int size(const list& 1);

Don’t add copy constructors, assignment operators, etc. Also don’t add
primitive operators on basic datatypes. I think that these need to be hard
coded into the type checking algorithm.

2. Write a simple class conversion that essentially contains a ctree, and an
unsigned int, that represents a conversion of some term, and the cost
that was required to obtain it.

3. Write a class possibleconversions that contains all possible conversions
of a given term, and the cost that was required to obtain them. I wouldn’t
bother to add any indexing, just a simple list or vector of conversions is
enough.

A member of possibleconversions is constructed with a single typed
ctree.

The class must have a method close() that constructs all possible con-
versions (with their associated cost). Function close() should be able to
deal with possible circular conversions.

Method close() must take the following into account:
e Implicit conversion between data types, as in bool — char — int
— double.
e Copy constructors, box operators, read/write operators.

e Pointer operators & and *. These operators are polymorphic!

4. Write the function

ctree typecheck(ctree t, varstore& local, structstore& st,
functionstore& fs);

Typechecking must take into account field functions, and it must replace
implicit operators on primitive types by their concrete instances.

Grading
Grading will be based on the following aspects:

e completeness of task: Is the algorithm completely implemented? Are all
types and conversions of page 54 (compilation.pdf) present?

e general quality of the design: Is there a good class design?

e coding quality? Is the code readable?

