Exercise Compiler Construction (List 11)

Due: 16.02.2014

Complete the following tasks. They are not programming tasks! They are about
the compilation algorithm in slides compilation.pdf. If you don’t understand
the material or what should be done, then ask me by email. Don’t wait until
the last moment if you have problems. If you are ready to show your tasks to
me, contact me some time (a few days) in advance.

1. Consider the following implementation of fact: (It is not an inline func-
tion.)

int fact(int i)

{

}

int res = 1;
while(i '= 0)

res = res * ij;
i=1i-1;

return res;

()
(b)

Give for each of the statements in this function (there are 4, if you
don’t count the return statement) the syntax tree.

Now apply the type checking algorithm in typechecking.pdf, slides
18-20 on the syntax trees. Give for each of the four statements the
output of the type checking algorithm. The algorithm modifies the
syntax tree (I want to see the new trees), and it assigns types to each
subtree (which I also want to see).

At the bottom of this task list is a list of inline functions that you can
use. (I think that the list is complete. If you think that something
is missing, then mail me.)

Give the output of the compilation algorithm in compilation.pdf
on the trees given under (b). Use the list of inline functions at the
bottom of the task list. Don’t try to optimize the resulting code,
because I want to be able to see that you applied the algorithm
correctly.

2. Do the same as in the previous task (give the syntax trees, apply type
checking on them, construct the translations) on the following modified
fact function:

int fact(int i)
{
int res = 1;
while(i != 0)
res *x= (1 -——);
return res;

3. Same for the sum function below. There are 4 statements (not count-
ing the return statement.) Assume that p[i++] is an abbreviation of
*(p+ (1++)).

int sum(int* p, int len)
{

int sum = O;

int i = 0;

while(i != len)

{

sum += p[i ++];
}
return sum;

}

4. (a) Consider the following struct definition:

struct list
{
int val;
list* rest;
};
Define the field functions list_val and list_rest for list as inline func-
tions. Because they are inline functions, they should have types

list_val: func(reg(ref(int)); reg(ref(list)))
list_rest: func(reg(ref(pointer(list)));
reg(ref(list)))

Follow the lay out of the inline functions at the bottom of the task
list.

(b) Do the same as in task 1 for the following function that prints the
integers in a linked list. (Give the syntax trees, the typechecked trees,
and the compilations of the three statements.)

int sum(list* 1)

{
while(1 != 0)
{
print(1 -> val);
1=(1->rest);
}
return res;
}

Assume that 1->val is an abbreviation of (*¥1) .val, and that 1 -> rest
is an abbreviation of (*1).rest. Assume that print is an outline
function with type print: func(void; int). Use the field func-
tions that you gave in task 4a.

Available Inline Functions

Arithmetic Operators

operator + : func(reg(int); reg(int), reg(int))
out: @J
in: @I1, @I2

@J = @I1 + @I2;

operator * : func(reg(int); reg(int), reg(int))
out: @J
in: @I1, @I2

@J = @I1 * @I2;

operator - : func(reg(int); reg(int), reg(int))
out: @J
in: @I1, @I2

@J = @I1 - @I2;

operator + : func(reg(pointer(int)); reg(pointer(int)), reg(int))
out: $Q;
in: $P, @I;
local: @J;
@J = @I * sizeof(int); $Q = $P + @J;

operator == : func(reg(bool); reg(int), reg(int))
out ©B;
in @I1, QI2;

@B = (@I1 == QI2);

operator != : func(reg(bool); reg(int), reg(int))
out OB;

in @I1, Q@I2;
@B = (@I1 != QI2);

operator == : func(reg(bool); reg(pointer(int)), reg(pointer(int)))
out ©B;
in $P1, $P2;

@B = ($P1 == $P2);

operator != : func(reg(bool); reg(pointer(int)), reg(pointer(int)))
out ©B;
in $P1, $P2;

@B = ($P1 != $P2);

Assignment Operators

operator = : func(reg(ref(int)); reg(ref(int)), reg(int))
out: $Q
in: $P, @I;

[$P] = ©I; $Q = $P;

operator = : func(reg(ref(pointer(int)));

reg(ref (pointer(int))), reg(pointer(int)))
out: $R
in: $P, $Q;

[$P 1 = $Q; $R = $P;

operator += : func(reg(ref(int)); reg(ref(int)), reg(int))
out: $Q;
in: $P, @I;
local: @J;
@3 = [$P]; @3 =0J +0@I; [$P] = @J; $Q = $P;

operator *= : func(reg(ref(int)); reg(ref(int)), reg(int))
out: $Q;
in: $P, @I;
local: @J;
@3 = [$P]; @J =@J x @I; [$P 1 = @J; $Q = $P;

operator X++ : func(reg(int); reg(ref(int)))
out: @I;
in: $P;
local @J;
@ =[$P]; @I =@J; @J =@J +1; [$P 1 = @J;

operator X-- : func(reg(int); reg(ref(int)))
out: @I;

in: $P;
local @J;
@ =[$P]; @I =@J; @J =@J - 1; [$P] = @J;

operator ++X : func(reg(ref(int)); reg(ref(int)))
out: $Q;
in: $P;
local @I;
@I = [$P]; @I = @I + 1; [@P] = @I; $Q = $P;

operator --X : func(reg(ref(int)); reg(ref(int)))
out: $Q;
in: $P;
local @I;
@I = [$P]; @I = @I - 1; [@P]

0I; $Q = $P;
Read/Write

read : func(reg(int); int)
out: @I;
in: $P;

@I = [$P 1;

write : func(int; reg(int))

out: $P;
in: @I;
[$p 1 = @I;

read: func(reg(pointer(int)); pointer(int))
out: $Q;
in: $P;

$Q = [$P 1;

write: func(pointer(int); reg(pointer(int)))
out: $Q;
in: $P;

[$Q 1 = $P;

// I think that no other Read/Write operators are needed.

Inline Copy Constructors

inline-copy: func(reg(int); reg(ref(int)))
out: @I;
in: $P;

@I = [$P 1;

inline-copy: func(reg(pointer(int)); reg(ref(pointer(int))))
out: $Q;
in: $P;

$Q = [$P 1;

inline-copy: func(reg(pointer(list)); reg(ref (pointer(list))))
out: $Q;
in: $P;

$Q = [$P 1;

Prefix x (Used for Pointer Lookup)

*X: func(reg(ref(int)); reg(pointer(int)))
out: $Q;
in: $P;

$Q = $P;

*X: func(reg(ref(list)); reg(pointer(list)))
out: $Q;
in: $P;

$Q = $P;

