
Parsing

1

Tasks of the Parser

The output of the tokenizer is the input of the parser.

The tokenizer has converted the input (which was a sequence of

characters) into a sequence of tokens. (which are pairs, consisting

of a tag and an attribute)

The main task of the parser is to decompose the input and to

determine its structure.

Type checking, and checking whether variables are declared, does

not belong to the tasks of the parser.

2

Output of the Parser

Dependent on the complexity of the language being compiled, the

parser can output either

1. An abstract syntax tree (AST).

2. Executable code. (Only for very simple languages.)

3. A value. (e.g. for non-programmable calculators.)

3

Why are Parsers and Tokenizers Separated

• DFA’s are very efficient, one should use them whenever

possible.

• Irrelevance of comments would be very hard to express using a

grammar.

• Some decisions can be only made at the end of a token (double

vs. int), which would lead to decision conflicts that standard

parsing formalisms cannot decide.

4

Building a Parser

As with tokenizers, there are essentially two ways to build a parser:

• Write it by hand.

• Use a parser generator (Yacc, Bison).

GCC used to use a parser based on Bison, nowadays it has a

hand-written parser. I don’t know why.

5

Grammars

Definition A grammar is a structure of form G = (Σ, R, S), in which

• Σ is an alphabet. (Set of possible tokens)

• R is a set of rewrite rules. Each element of R has form σ → w,

where σ ∈ Σ, and w ∈ Σ∗.

• S ∈ Σ is the start symbol.

6

Terminal vs. Non-Terminal Symbols

Symbols that occur in Σ, but which are never constructed by the

tokenizer, are called non-terminal symbols. They are important for

defining the language, but they do not occur in the language.

The definition on the previous slide actually defined context-free

grammars. In a non context-free grammar, the rules in R can have

form w1 → w2, where both w1, w2 ∈ Σ∗. Membership in non

context-free languages is undecidable.

7

The Rewrite Relation

Definition: Given a grammar G = (Σ, R, S), the one step rewrite

relation ⇒ is defined as follows:

• If α1, α2 ∈ Σ∗, and (σ → w) ∈ R, then α1σα2 ⇒ α1wα2.

Definition: The multi step rewrite relation ⇒∗ is the smallest

relation that has the following properties:

• For all words w ∈ Σ∗, w ⇒∗ w,

• If w1 ⇒∗ w2 and w2 ⇒ w3, then w1 ⇒∗ w3.

8

Accepted Words

Definition: Let G = (Σ, R, S) be a grammar. G is said to accept a

word w ∈ Σ∗ if S ⇒∗ w.

If S ⇒∗ w, then a sequence of form

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn = w

is called a derivation of w. A derivation of w can be done in two

directions:

1. Start with S and replace the left hand side of a rule by the

corresponding right hand side, until w is reached.

2. Start with w and replace the right hand side of a rule by the

corresponding left hand side, until S is reached.

Direction (1) is called top down. Direction (2) is called bottom up.

9

Example

Let G be defined by G = ({a, b, c, d}, R, a) with R consisting of the

rules

{ a → abc, a → bac, a → d }.

The following sequences are correct derivations:

a ⇒ abc ⇒ (bac)bc ⇒ b(d)cbc,

a ⇒ abc ⇒ (abc)bc ⇒ (abc)bcbc,

a ⇒ bac ⇒ babcc,

a ⇒ d.

10

A Realistic Grammar

S → if E then S, S → if E then S else S.

S → while E do S, S → ident := E.

S → begin L end, L → S, L → L;S.

E → E + E, E → E − E, E → E ∗E, E → E/E.

E → −E, E → +E, E → (E).

E → ident, E → num, E → true, E → false.

E → E = E, E → E 6= E.

E → E < E, E → E > E, E → E ≤ E, E → E ≥ E.

E → E ∧ E, E → E ∨ E, E → ¬E.

11

The grammar on the previous slide does not handle operators in a

realistic way, because it does not take priorities into account.

For example, ident− ident+ ident can be parsed as

(ident− ident) + ident, or ident− (ident+ ident).

Priorities can be introduced either by separating E into different

symbols for different levels of priority, or by handling the operator

priorities in another way.

Anyway, I hope that you see how easy it is to define grammars for

realistic programming languages.

12

Tokens with Attributes

Like in the tokenizer, we want to attach attributes to the tokens.

This means that tokens will have form (t, n), where t is a tag that

identifies the token, and n is an attribute whose type depends on t.

Let Σ be the set of all possible tokens. Let A1, . . . , An be the set of

all possible attributes, e.g. N ,R, strings, etc.

We could define the set of tokens with attributes as the elements of

Σ× (A1 ∪ · · · ∪An), but in this way, we would allow tokens (t, a),

where a is of a meaningless type.

In order to avoid this problem, we will define the dependent

product on the next slide.

13

The Dependent Product

Definition: Let S1 be a set, and let S2 be a function from S1 to sets.

(This means that for every s ∈ S1, S2(s) is a set.) The dependent

product of S1 and S2, written as S1 ⊗ S2, is defined as the set

{(s1, s2) | s1 ∈ S1, and s2 ∈ S2(s1)}.

14

Dependent Product (2)

Using the dependent product, any type of tokens with attributes

can be adequately typed.

One can take Σ = {int, real, ident}, and

A(int) = N , A(real) = R, and A(ident) = (the set of strings).

Then the set of tokens can be defined as Σ⊗A.

15

Dependent Product (3)

There is a formal difficulty when defining tokens without attribute,

like for example reserved words.

It is not possible to take A(while) = ∅, because then no tokens of

form (while, e) are possible.

Instead, one has to put A(while) = {⊤}, where ⊤ is some object

that is very easy to construct.

Then the token for the reserved word while can have form

(while,⊤).

16

Attribute Grammars

Attribute grammars are obtained when one adds attributes to Σ in

the definition of a grammar.

To each rule σ → w1 · . . . ·wn, we add a function f with arity n, that

specifies how the attribute of σ will be obtained from the attributes

of w1, . . . , wn when the rule is applied (in bottom up direction).

If one has a derivation S ⇒ · · · ⇒ w, then it is possible to compute

the attribute of S from the attributes in w using the functions that

are attached to the rules.

The attributes of w are constructed by the tokenizer.

17

Attribute Grammars (2)

Definition: An attribute grammar is a structure of form

G = (Σ, A,R, S), in which

• Σ is an alphabet. (Set of tags of possible tokens.)

• A is a function from Σ to sets.

• R is a set of rules with attribute functions. Each r ∈ R has

form (σ → w) : f, where σ ∈ Σ, w ∈ Σ∗, and f is a function

from T (w1)× · · · × T (wn) to T (σ).

• S ∈ Σ is the start symbol.

18

Rewrite Relation for Attribute Grammars

Definition: For an attribute grammar G = (Σ, A,R, S), the one step

rewrite relation ⇒ is defined as follows:

• If (σ → w1 · . . . · wn) : f ∈ R, and α1, α2 ∈ (Σ⊗A)∗, then

α1 · (σ, f(a1, . . . , an)) · α2 ⇒ α1 · (w1, a1) · . . . · (wn, an) · αn.

Definition: For an attribute grammar G = (Σ, A,R, S), the

multistep rewrite relation ⇒∗ is defined in the same way as for

usual grammars, i.e. as the smallest relation that has the following

properties:

• For all words w ∈ Σ∗, w ⇒∗ w,

• If w1 ⇒∗ w2 and w2 ⇒ w3, then w1 ⇒∗ w3.

19

Attribute Grammar for a Pocket Calculator

S → T, f(x) = x.

f copies the attribute of T without change.

S → S + T, f(x, y, z) = x+ z.

The attribute of S on the lhs is obtained by adding the attributes

of S and T on the right hand side. The attribute of + is ignored.

S → S − T, f(x, y, z) = x− z.

20

T → U, f(x) = x.

T → T × U, f(x, y, z) = x.z.

T → T/U, f(x, y, z) = x/z.

21

U → V, f(x) = x.

U → −U, f(x, y) = −y.

The attribute of U on the left hand side will be minus the attribute

of U on the right hand side. The attribute of − is ignored.

V → (S), f(x, y, z) = y.

The attribute of V is copied from the attribute of S. The attributes

of (and) are ignored.

22

V → num, f(x) = x.

The attribute of V is copied from the attribute of num. The

attribute of num orginates from the tokenizer.

V → ident, f(x),

where f(x) is the result of looking up x in the symbol table. I

assume that ident has a string attribute that is constructed by the

tokenizer.

23

Translating Functional Expressions into a Stack Machine

The attribute of S is a a code fragment that pushes a single

number on the stack.

S → ident, f(x) = (push a),

where a is the address of variable x, as found in the symbol table.

S → num, f(x) = (push #x).

S → ident(L), f(x, y, z, t) =

the code fragment consisting of L.code, combined with a primitive

instruction or subroutine for f. It has to take take L.arity numbers

from the stack, and put back a single number.

24

Translating Functional Expressions into Stack Machine
(2)

The attribute of L is a pair (n,C), where n is a natural number

and C is a fragment of code that pushes n numbers on the stack.

We treat the pair like a struct, we call the first element arity, and

the second element code. Using this, we can describe the rest of

the grammar:

L → S, f(x) = (1, x).

This is correct because the attribute of S is code that pushes one

number on the stack.

L → L, S, f(x, y, z) = (x.arity + 1, x.code; z).

The arity of L on the left hand side is one more than the arity of L

on the right hand side, and the code of L on the left hand side is

obtained by concatenating the codes of L on the right hand side

and the code of S.

25

Dealing with Operators

Operators are a convenient way of writing binary or unary

functions. Operators can be classified into three types, dependent

on their arity, and the place where they are written:

infix: An infix operator is a binary operator that is written

between its operands. Examples are

a + b > 4 && (c <= d) || (d > d).

prefix: A prefix operator is a unary operator that is written in

front of its operand. Examples are

! (++ b), - 4, & p.

postfix: A postfix operator is a unary operator that is written

behind its operand.

a ++, b -- .

26

Usage of Operators (2)

If one wants to parse a language that has operators, the main

question is: Is it required to add new operators while the program

is running? For example, in Prolog, it is possible to define new

operators interactively. In most programming languages, the set of

operators is fixed.

When the set of operators is fixed, it is possible to encode the

priorities into the definition of the context free grammar.

If the set of operators is extendable, then one has to use an

ambiguous grammar, and use other methods to decide operator

priorities.

27

Possible Conflicts between Operators

There are four types of conflicts possible:

• Between infix and infix:

A + B * C.

• Between prefix and infix:

- A + B.

• Between infix and postfix:

A + B ! .

• Between prefix and postfix:

+ A ! .

28

Using Priority and Associativity

In order to avoid ambiguity, one can assign a priority and an

associativity to each operator.

In case of a conflict

· · · op1 E op2 · · · ,

the operator with highest priority wins.

If both operators have the same priority (or are the same) and both

are left associative, then parse as

(· · · op1 E) op2 · · · .

If both are right associative, then parse as

· · · op1 (E op2 · · ·).

If the operators have different associativities, or no associativity,

then the expression is syntactically incorrect.

29

Expressing Priorities in the Grammar

Assume that the possible priorities are 1, . . . , n, where n is the

highest priority (strongest attraction).

Create a sequence of symbols E1, . . . , En+1.

For each i, 1 ≤ i ≤ n, add a rule Ei → Ei+1.

Add rules En+1 → (E1), En+1 → num, En+1 → ident.

30

Expressing Priorities in the Grammar (2)

For an infix operator op with priority i,

• if op is left associative, then add a rule Ei → Ei op Ei+1,

• if op is right associative, then add a rule Ei → Ei+1 op Ei,

• if op has no associativity, then add a rule Ei → Ei+1 op Ei+1.

For a prefix operator op with priority i,

• if op is left associative, then add a rule Ei → op Ei+1,

• if op is right associative, or not associative, then add a rule

Ei → op Ei.

For a postfix operator op with priority i,

• if op is right associative, then add a rule Ei → Ei+1 op,

• if op is left associative, or not associative, then add a rule

Ei → Ei op.

31

Top-Down Parsing

Top Down Parsing starts with the start symbol S and tries to

rewrite it into the input word w. Although this is natural from the

mathematical point of view, there are several problems with it:

• Attribute computation is easier with bottom up parsing.

• Bottom up parsing cannot deal with left recursion (rules of

form A → Aw, or rules with shared prefixes (rules of form

A → ww1, A → ww2) Because of this, one nearly always has to

change the grammar. This makes the computation of the

meaning harder.

The big advantage of top down parsing is that it is easy to

understand, and that it can be implemented by hand.

32

Grammars based on Deterministic Finite Automata

In order to solve the problems with left recursion and shared

prefixes, I will assume that the right hand sides of the grammar

rules are DFA’s. (Deterministic Finite Automata.)

This is a very natural representation, because syntactic rules are

often drawn in diagrams anyway. In addition, automata are usually

easier to code by hand than grammar rules.

Most standard books (e.g. Aho/Ullman) do not use automata.

Instead, they apply transformations on the grammar to avoid the

problematic cases. It amounts to the same.

33

Grammars based on Deterministic Finite Automata

Definition: A DFA-based grammar is a triple (Σ, G, S), where Σ is

an alphabet, G is a partial function G from Σ to deterministic

finite automata over Σ, and S is the start symbol.

If G(A) is defined, then we write G(A) = (QA,Σ, QA
s , Q

A
a , δ

A), and

call A a non-terminal symbol, otherwise a terminal symbol.

We assume that the automata have no useless states: Every state

in QA is reachable from the starting state in QA
s , and from every

state in QA, it is possible to reach an accepting state in QA
a .

We define w1.A.w2 ⇒ w1.w.w2 as: w1, w2 ∈ Σ∗, G(A) is defined,

and G(A) accepts the word w.

⇒∗ is defined from ⇒ as usual.

34

Top-Down Parsing

Let (Σ, G, S) be a DFA-based grammar. We assume that there

exists a special symbol # ∈ S denoting the end of the input. It

occurs only (and always) at the end of an input word.

A state of the parser (S,w) consists of two components:

• A stack S ∈ (Σ, q)∗, where for each pair (A, q) occurring on the

stack, Ai is a non-terminal, and q ∈ QA. (Using ⊗, we can

write: S ∈ (Σ⊗Q)∗).

• a word w ∈ Σ∗. The word w has exactly one occurrence of # at

the end. The word w denotes the input that is not yet read.

The initial state of the parser is ((S,QS
s), w.#), where S is the

start symbol of (Σ, G, S), and w ∈ (Σ\{#})∗ is the word that we

want to parse.

35

Transition Relation

We define the transition relation ⊢ between states of the parser:

Read: If s ∈ Σ\{#} is a terminal, and (q, s, q′) ∈ δA, then

(S.(A, q), s.w) ⊢ (S.(A, q′), w). (The parser reads the symbol

s.)

Return: If q ∈ QA
a , then (S.(A, q), w) ⊢ (S, w). (If the automaton

on the top of the stack is in an accepting state, it can be

removed.)

Descend: If G(B) is defined, and (q, B, q′) ∈ δA, then

(S.(A, q), w) ⊢ (S.(A, q′).(B,QB
s), w). (If the automaton on

top allows a transition for a non-terminal symbol B, we can

start an automaton for this symbol B, in the hope that it will

be able to reach an accepting state.)

36

Acceptance Conditions

The parser accepts the input w ∈ (Σ\{#})∗ if

((S,QS

s), w.#) ⊢∗ (ǫ, #).

(This implies that it reached an accepting state of

(QS ,Σ, QS
s , Q

S
a , δ

S).)

37

Selecting the Transitions

Although the automata are deterministic, there is non-determinism

in the parser:

There may be conflicts between descend and read, between different

descends, between read and return, and between read and descend.

We need to find ways of making the decisions.

In order to do this, one needs to look at the first symbol of w. This

symbol is called the lookahead symbol.

38

The Nullable Symbols

Definition: Let (Σ, G, S) be a DFA-based grammar. We call A ∈ Σ

nullable if A ⇒∗ ǫ.

The set of nullable symbols can be easily computed from the

following condition:

The set of nullable symbols is the smallest set N ⊆ Σ, s.t. if G(A)

is defined, and G(A) accepts a word w1. · · · .wn with each wi ∈ N,

then A ∈ N.

(Checking reachability in a DFA is easy.)

39

The FIRST Sets

Let (Σ, G, S) be a DFA-based grammar. If G(A) is defined, then

FIRST(A) is the set {σ | A ⇒∗ σ.w}.

(The set of possible first symbols of a word w, that can be obtained

from A.)

The sets FIRST(A) must be computed simultaneously for all

symbols A ∈ Σ by the following closure condition:

If G(A) exists, and s1.s2. · · · .sn.w with n ≥ 0, s1, . . . , sn ∈ Σ are

nullable, w ∈ Σ∗ is a word accepted by G(A), then

• if w is not ǫ, and w1 is a terminal, then wi ∈ FIRST(A).

• if w is not ǫ, and w1 is a non-terminal, then

FIRST(wi) ⊆ FIRST(A).

40

The FOLLOW Sets

Let (Σ, G, S) be a DFA-based grammar. If G(A) is defined, then

FOLLOW(A) is the set

{σ ∈ Σ | ∃w1, w2 ∈ Σ∗, s.t. S ⇒∗ w1.A.σ.w2}.

(The set of possible symbols that come after something derived

from A in words of the language.)

41

Computation of the FOLLOW Sets

The sets FOLLOW(A) can be simultaneously computed from the

following condition:

If A is a non-terminal, and there is some B, for which G(B) is

defined and accepts a word of form v.A.s1. · · · .sn.w, with

v, w ∈ Σ∗, n ≥ 0, s1, . . . , sn ∈ Σ, and all of s1, . . . , sn are

non-terminals that are nullable, then

• If w is nonempty, and the first symbol w1 of w is a terminal,

then w1 ∈ FOLLOW(A).

• If w is nonempty, and the first symbol w1 of w is a

non-terminal, then FIRST(w1) ⊆ FOLLOW(A).

• If w = ǫ, then FOLLOW(B) ⊆ FOLLOW(A).

42

Making the Decisions

Now we have the tools to make the decisions:

In order to apply Return, it must be the case that

w1 ∈ FOLLOW(A), for the lookahead symbol w1.

In order to apply Descend, it must be the case that

w1 ∈ FIRST(B), or B is nullable and w1 ∈ FOLLOW(B).

(The condition that w1 ∈ FOLLOW(B) can be replaced by a more

precise analysis, taking into account that B will be followed by the

first letter in the continuation of (A, q′). It would be complicated.)

43

Recursive Descent Parsing

A parser that is obtained by direct implementation of the top-down

parser is called recursive descent parser.

For every non-terminal A, one writes a procedure of form

parse_A(inputsource& lookahead, std::istream& input),

that is based on the automaton G(A). For most languages, this is

doable in practice. GCC uses recursive descent for C and C++.

Earlier versions used Bison.

The procedures parse_A() can either return a value, (the

computed attribute), or produce output in some other way.

44

Errors

Errors should be taken very seriously, and included in the design

from the beginning. Designing good error messages is difficult,

because they are often automatically composed from different

parts. (Line numbers, subtask, general task.)

Giving up after an error, is acceptable only for very simple

programs. Realistic programs need to continue as good as possible,

in order to collect as much information as possible in one run. This

is called error recovery.

45

Recovery

The ability to recover from errors is an important feature for the

usefulness of a parser.

Unfortunately, the requirements of a good recovery strategy are not

formalizable.

(This is a situation that happens more often than theoreticians like

to admit. Most logicians believe that if all programs will meet their

specifications, then all problems of computer science will be solved.

In reality, many tasks don’t have clear specifications, or the

specification would be harder to understand than a program.)

46

A proposed solution:

Introduce a new kind of transitions to the automata, called

error-transitions. Error transitions must be marked by a

σ ∈ Σ ∪ {ǫ}. After an error has occurred:

1. Look for possible error transitions on the stack. If an error

transition is possible, then make the transition.

2. If no error transition is possible, then throw away the

lookahead symbol, read a new token, and try again until either

EOF is reached, or an error transition is possible.

3. If a new error occurs within 3 tokens after a recovery, then

assume that this is not a new error, but a wrong recovery. In

that case, don’t report the second error.

Finding a good error recovery strategy is a challenging task. Use

your creativity and experiment a lot. One could try to give

preferences to error transitions.

47

