
Tokenizing

1



Tasks of the Tokenizer

• Group the input (which is just a stream/string of characters)

into tokens. (Numbers, operators, special words, strings)

• Eliminate comments.

• In C : Deal with #include, #if #else #endif and the like.

Tokenizers are also called scanners.

2



Tokens

Definition: A token type is a pair (Λ, T ), in which Λ is a finite set of

tokens labels, and T is a function s.t. for each λ ∈ Λ, T (λ) is a set.

A token (with attribute) is a pair (λ, x), s.t. λ ∈ Λ and x ∈ T (λ).

Example: If one puts Λ = {int, real}, with

T (int) = Z , T (real) = R, then

(real, 3), (real, 3.141526535), (int, 2), (int,−1) are tokens.

(int, 2.718271828) is not a token.

3



Tokens without Attribute

Not all tokens have an attribute. For example reserved words

while,do, if , then, else usually don’t.

For those, one needs a trivial type ⊤ = {( )}. Then

T (while) = T (do) = T (if) = T (then) = T (then) = ⊤.

4



Implementation Issues

I usually use C++. A token is a struct containing an enum type,

and a list for each possible type of attribute. The list has length 1

when the attribute has the type of the list, and 0 otherwise.

In C, one could use a struct containing an enum and a pointer to

the heap, or an enum with a union type.

In Java, one could use a struct containing an enum and an Object.

Whatever implemention you choose, you should use an

object-oriented approach. Make sure that there is a token class,

make sure that it can be printed, that it can be passed to

procedures, and put in containers.

5



Implementation (2)

It is a good idea to add information about where it comes from to a

token. This makes it more easy to generate error messages.

A tokenizer is a function with signature

token readtoken( reader& ); When called, it reads characters

from reader until it has enough information to build a token.

The reader has a field char nextchar; and a method

void moveforward( ); which replaces nextchar by the next

char.

6



Building a Tokenizer

There are basically two ways of building a tokenizer.

• Hacking (sometimes also called ’careful coding by hand.’) If

the tokenizer is not big, you can follow this approach.

• Using a scanner generator. (Lex)

7



Writing a Tokenizer by Hand

If the tokens are not too many, you can follow this approach.

Draw an NDFA for each non-trivial token.

Stare at the NDFAs and the tokens for which you didn’t draw an

NDFA and find all overlaps.

Find ways of dealing with the overlaps. (Combine NDFAs with

overlaps into one. First read one token, if NDFA gets stuck, read as

another token. Do postprocessing of read tokens)

8



Overlaps

Sometimes, different tokens have shared prefixes.

An example is int and real. One can decide only at the end that

1234533434343433434.5 is a real, and not an int.

Similarly, identifiers and reserved words overlap, like while, do,

whilethegrasskeepsgrowing, which.

Operators +, ++ and -, ->, -- overlap.

-, -- overlap with integer -1

If you write a tokenizer by hand, you have to worry about overlaps.

(which means that you loose modularity)

9



Usage of a scanner generator

Nearly all tokens can be defined by regular expressions. The

scanner generator constructs an NDFA, and translates this into an

equivalent DFA. The resulting DFA is very efficient (optimal). The

DFA reads the input only once. When defining the tokens, the user

doesn’t need to worry about overlaps.

Disadvantages are that the user has to spend time learning to use

the tool, and that the resulting scanner does not give much help

when computing the attribute, (DFAs are only good at saying ’yes’

or ’no’) and that the resulting scanners are not flexible.

10



Non-flexibility

In general, tokenizers tend to be not as clean as parsers, and

sometimes one has to use tricks.

For example in Prolog, it is important whether there is a space

between an identifier and a ’(’.

In some languages, a . terminates the input, but inside ( ), or

[ ], it is just a usual operator.

In C++ − 11, a >> can denote the >>-operator, or two separate

occurrences of >, as in std::list< std::list< int >>.

11



Non-Deterministic Finite Automata

Definition: An NDFA is a structure of form (Σ, Q,Qs, Qa, δ), in

which

• Σ is the alphabet,

• Q is the set of states (finite),

• Qs ⊆ Q is the set of starting states,

• Qa ⊆ Q is the set of accepting states,

• δ ⊆ Q× Σ∗ ×Q is the transition relation.

We have been drawing NDFAs in the lecture and in the exercises.

In a drawing, states are anonymous. If you want to represent an

NDFA in a computer, you need some set Q.

12



NDFAs (2)

An NDFA accepts a word w iff there exist a finite sequence of

words w1, . . . , wn, and a sequence of states q1, q2, . . . , qn+1, s.t.

• w = w1 · . . . · wn,

• q1 ∈ Qs, Qn+1 ∈ Qa,

• Each (qi, wi, qi+1) ∈ δ.

13



Non-Determinism

It would be nice if one could use use a program of form

state = Qs;

nextstate = delta( state, r. lookahead );

while( nextstate != undefined )

{

r. moveforward( ); // Reads new r. lookahead

state = nextstate;

nextstate = delta( state, r. lookahead );

}

// Determine the type of token, based on

// the state in which we got stuck.

14



Non-Determinism (2)

Unfortunately, this is not possible, because (1) δ is not a function,

but a relation, and (2) Qs is not a single state, but a set of states.

In practice, (1) is never a problem, but (2) usually is. Problem (2)

is caused by the fact that in the beginning one does not know what

token will come, so one has to start with the initial states for all of

them.

15



Remarks

NDFAs can be programmed by hand using gotos, or by keeping an

explicit state variable or a set of state variables.

Tokenizers are usually greedy. This means that they try to read the

longest possible token. Doing something else would be problematic.

16



Regular Expressions (1)

(’Regular’ means ’according to rules’, which is actually a quite

meaningless word.)

Let Σ be an alphabet.

• Every word s ∈ Σ∗ is a regular expression.

• If e is a regular expression then e∗ is also a regular expression.

• If e1, e2 are regular expressions then e1 · e2 is a regular

expression.

• If e1, e2 are regular expressions then e1 | e2 is a regular

expression.

17



Regular Expressions (2)

Other constructs can be added as well:

• If e is a regular expressions, n ≥ 0, then en is a regular

expression.

• If e is a regular expression, then e? is a regular expression.

• If e is a regular expression, then e+ is a regular expression.

• If the alphabet Σ is ordered by a total order <, and σ1, σ2 ∈ Σ

σ1 ≤ σ2, then σ1 · · ·σ2 is a regular expression.

All these constructions are definable, but the definitions can be

quite long. For example, e20 = e · . . . · e.

σi · · ·σk = σi | σi+1 | σi+2 | · · · | σk−1 | σk.

(This is only possible if Σ is finite, and not too big.)

18



Regular Expressions (3)

Examples:

digit := ’0’ .. ’9’

letter := ’a’ .. ’z’ | ’A’ .. ’Z’

ident := letter ( letter | digit | ’_’ ) +

float := ( "" | "+" | "-" )

digit +

( ’.’ digit + ) ?

(( ’e’ | ’E’ ) ( ’-’ | ’+’ | "" ) digit + ) ?

What do you find more readable? NDFAs or regular expressions?

19



Regular Expressions (4)

We define recursively when a word w in Σ∗ satisfies a regular

expression:

• If s is a regular expression consisting of a single word, and

w = s, then w satisfies s.

• If w is a word, then w satisfies e∗ if there exist n ≥ 0 words

w1, . . . , wn, s.t. w = w1 · w2 · . . . · wn, and each wi (1 ≤ i ≤ n)

satisfies e.

• If w is a word, then w satisfies e1 · e2 if there exist w1, w2, s.t.

w = w1 · w2, w1 satisfies e1, and w2 satisfies e2.

• If w is a word, then w satisfies e1 | e2 if either w satisfies e1 or

w satisfies e2.

20



Structure of a Scanner Generator

A scanner generator proceeds as follows:

1. Translate the regular expressions belonging to the tokens into

NDFAs.

2. Combine the NDFAs for the tokens into a single NDFA.

3. Translate the NDFA into a DFA.

4. Minimize the DFA.

5. Compress the DFA and generate tables.

21



Translating a Regular Expression into an NDFA

Translating regular expressions into NDFAs is surprisingly easy.

For a regular expression e, the translation A(e) = (Σ, Q,Qs, Qa, δ)

will be defined on the following slides.

Σ will be always the same.

A is defined by recursion on the structure of e.

22



Translating a Regular Expression into an NDFA

Assume that e is built from a single word s. The translation A(e) is

the automaton (Σ, {qs, qa}, {qs}, {qa}, {(qs, s, qa)}).

23



Translating a Regular Expression into an NDFA

Asume that e has form e = e1 · e2. Let

A1 = A(a1) = (Σ, Q1, Q1,s, Q1,a, δ1),

and let

A2 = A(a2) = (Σ, Q2, Q2,s, Q2,a, δ2).

Assume that Q1 and Q2 have no states in common. Otherwise,

rename the states in A1.

A(e1 · e2) = (Σ, Q,Qs, Qa, δ) is obtained as follows:

• Q = Q1 ∪Q2,

• Qs = Q1,s, Qa = Q2,a,

• δ = δ1 ∪ δ2 ∪ {(q, ǫ, q′) | q ∈ Q1,a, q′ ∈ Q2,s}.

24



Translating a Regular Expression into an NDFA

For a regular expression e of form e = e1 | e2, let

A1 = A(e1) = (Σ, Q1, Q1,s, Q1,a, δ1),

and let

A2 = A(e2) = (Σ, Q2, Q2,s, Q2,a, δ2).

Assume that A1 and A2 have no states in common. If they have,

then rename the states in A1. Then A(e1 | e2) = (Σ, Q,Qs, Qa, δ) is

obtained as follows:

• Q = Q1 ∪Q2,

• Qs = Q1,s ∪Q2,s, Qa = Q1,a ∪Q2,a.

• δ = δ1 ∪ δ2.

25



Translating a Regular Expression into an NDFA

For a regular expression e of form e = e∗1, let

A1 = A(e1) = (Σ, Q1, Q1,s, Q1,a, δ1).

Then A(e∗1) = (Σ, Q,Qs, Qa, δ) is obtained as follows:

• Q = Q1 ∪ {q̂}

• Qs = {q̂}, Qa = {q̂},

• δ = δ1 ∪ {(q̂, ǫ, q) | q ∈ Q1,s} ∪ {(q, ǫ, q̂) | q ∈ Q1,a}.

26



Translating a Regular Expression into an NDFA

Theorem Let e be regular expression. Then w satisfies e iff A(e)

accepts w.

27



Deterministic Finite Automata

Definition: An NDFA A = (Σ, Q,Qs, Qa, δ) is called deterministic if

1. Qs contains at most one element,

2. (q, s, q′) ∈ δ ⇒ s has length 1.

3. (q, s, q1), (q, s, q2) ∈ δ ⇒ q1 = q2.

In summary, a DFA always knows which transition to make when it

sees the next token.

28



Determinization

In the slides that follow, we present a procedure that transforms an

NDFA into an equivalent DFA.

29



Simplification of δ

In our definition of NDFA, it is allowed to have transitions of form

(q, w, q′) in δ, where |w| ≥ 2.

The first step is to eliminate these transitions. Let

A = (Σ, Q,Qs, Qa, δ) be an NDFA.

• As long as δ contains a transition (q, w, q′) with |w| ≥ 2, do the

following: Write n = |w|. Let q1, . . . , qn−1 a sequence of new

states, not in Q. Put

Q := Q ∪ {q1, . . . , qn−1},

and put

δ := δ\{(q, w, q′)} ∪ {(q, w1, q1), (q1, w2, q2), . . . , (qn−1, wn, q
′)}.

30



Outline (1)

If you have a non-deterministic automaton A = (Σ, Q,Qs, Qa, δ),

then for every word w ∈ Σ∗, there exists a set of reachable states

Q′ ⊆ Q, which is obtained as follows:

A state q is reachable under w if there exists a finite sequence of

words w1, . . . , wn, and a sequence of states q1, q2, . . . , qn+1, s.t.

• w = w1 · . . . · wn,

• q1 ∈ Qs, qn+1 = q,

• Each (qi, wi, qi+1) ∈ δ.

(Intuitively, the state q is reachable under w if the automaton can

start in a starting state, eat the word w, and end up in state q)

31



Outline (2)

The algorithm explores all sets of reachable states R ⊆ Q and

constructs the graph of them.

Since there are only finitely many subsets of Q, this exploration

will eventually end, and the resulting graph will be a deterministic

finite automaton.

32



Epsilon Closure

Let S ⊆ Q a set of states belonging to an NDFA

A = (Σ, Q,Qs, Qa, δ). The ǫ-closure of S is the smallest set S′, s.t.

• S ⊆ S′,

• If q ∈ S′ and (q, ǫ, q′) ∈ δ, then q′ ∈ S′.

CLOS(S) can be computed as follows:

• S′ := S,

• As long as there exist q ∈ S′ and (q, ǫ, q′) ∈ δ, s.t. q′ 6∈ S′ do

S′ := S′ ∪ {q′},

• Now S′ = CLOS(S).

33



Step Function

Let S ⊆ Q be a set of states belonging to an NDFA

A = (Σ, Q,Qs, Qa, δ). Let σ ∈ Σ. Then STEP(S, σ) is defined as

the set

{q′ | there is a q ∈ S, s.t. (q, σ, q′) ∈ δ}.

34



Let A = (Σ, Q,Qs, Qa, δ) be an NDFA. The determinization of A is

the automaton A′ = (Σ, Q′, Q′

s, Q
′

a, δ
′), which is the result of the

following algorithm:

• Start with A′ := (Σ, {CLOS(Qs)}, CLOS(Qs), ∅, ∅).

• As long as there exist an S ∈ Q′, and a σ ∈ Σ, s.t.

S′ = CLOS(STEP(S, σ)) 6∈ Q′, put

Q′ := Q′ ∪ {S′}, δ′ := δ′ ∪ {(S, σ, S′)}.

• As long as there exist S, S′ ∈ Q′, and a σ ∈ Σ, such that

S′ = CLOS(STEP(S, σ)) and (S, σ, S′) 6∈ δ′, put

δ′ := δ′ ∪ {(S, σ, S′)}.

• At the end, put

Q′

a := {S ∈ Q′ | S ∩Qa 6= ∅}.

35



Minimalization of a DFA

It can happen that the DFA that was obtained by the previous

construction, is not minimal. Such a DFA will appear if one

determinizes the NDFA resulting from the following regular

expression: (ab|(ab)∗)∗.

On the following slides we will give a procedure for detecting states

with the same observational behaviour. Once these states are

found, they can be unified, which results in an automaton with less

states.

36



Definition: Let (Σ, Q,Qs, Qa, δ) be a DFA. A state partition Π is a

set of sets of states with the following properties:

• For every q in Q, there is an S ∈ Π, s.t. q ∈ S.

• For every q ∈ Q, if there are S1, S2 ∈ Π, s.t. q ∈ S1 and q ∈ S2,

then S1 = S2.

So Π separates Q into different groups. Each q ∈ Q occurs in

exacty one group.

37



The aim is to construct Π in such a way that states that ’behave in

the same way’ go into the same group.

Initially, all states are put in a single group. Then all groups are

inspected for states that behave different in some way. If such

states are found, the group is separated into two new groups. The

procedure stops when no more separations are possible.

Two states have different behaviour if

1. One of them is an accepting state, while the other is not

2. There is a letter s ∈ Σ, such that the transitions from the

states end up in states that are in different partitions.

3. There is a letter s ∈ Σ, such that from one of the states a

transition is possible, while from the other it is not.

38



Minimalization Algorithm (Initial Partition)

• The algorithm starts with the partition

Π := {Q\Qa, Qa}.

If different elements in Qa accept different tokens, one has to

further partition Qa according to the tokens that are being

accepted.

For example if Qa consists of three states q1, q2, q3, where q1 accepts

real, and q2, q3 accept int, then one has to start with the partition

Π := { Q\{q1, q2, q3}, {q1}, {q2, q3} }.

39



Minimalization Algorithm (Refining the Partition)

• As long as there exist S, S′ ∈ Π, states q1, q2 ∈ S, and a σ ∈ Σ,

and a state q′1 ∈ S′, s.t.

(q1, σ, q
′

1) ∈ δ,

while at the same time there is no state q′2 ∈ S′, s.t.

(q′2, σ, q
′

2) ∈ δ,

replace S in Π by two sets as follows:

{q ∈ S | there is a q′ ∈ S′, s.t. (q, σ, q′) ∈ δ},

and

{q ∈ S | there is no q′ ∈ S′, s.t. (q, σ, q′) ∈ δ}.

40



Minimalization Algorithm (Reading Of the Result)

Let A = (Σ, Q,Qs, Qa, δ) be a DFA. Let Π be the partition

constructed by the determinization algorithm. Then the simplified

automaton A′ = (Σ, Q′, Q′

s, Q
′

a, δ
′) can be constructed as follows:

• Q′ = Π,

• Q′

s = {S ∈ Π | Qs ∈ S},

• Q′

a = {S ∈ Π | Qa ∈ S},

• δ′ = {(S, s, S′) | there are q, q′ ∈ S, S′, s.t. (q, s, q′) ∈ δ}.

41



Pruning the DFA

Let (Σ, Q,Qs, Qa, δ) a (N)DFA. If Q contains states that

1. are not reachable from Qs, or

2. from which there exists no path to a state in Qa,

then remove these states, and all the transitions in δ in which these

states occur.

42



Large Character Types

Originally, (up to 1995?), characters were 8 bits long.

Since there were at most 256 characters, it was possible to

implement δ as an array of type unsigned int [ ] [ 256 ].

With modern character sets (unicode), this is not possible anymore.

Also, other representations (for example using

std::map< state, uchar > ) are not practical.

43



Large Character Types (2)

We assume that:

1. Σ is totally ordered by a relation < .

2. Every σ ∈ Σ has a next character, with property: σ < next(σ)

and there is no character σ′, s.t. σ < σ′ < next(σ).

(So the set of reals R wouldn’t work.)

A letter σ is in the interval [σ1;σ2) if σ1 ≤ σ and σ < σ2.

The main idea is to partition Σ into intervals

[b1; b2), [b2; b3), . . . , [bn−1; bn), whose elements are not

distinguished by the regular expressions. After that, the intervals

can be used to construct the NDFA and the DFA in the same way

as before. In practical cases, n ≪ |Σ|.

44



Partitioning the Character Set

We start with a set of regular expressions e1, . . . , em, which

possibly contains intervals.

1. Replace all subexpressions of form w = (w1, w2, . . . , wm) with

m > 1 by w1 · w2 · . . . · wm.

2. Replace all subexpressions of form a where a is a single letter,

by [ a; next(a) ).

3. If there is a subexpression consisting of a closed interval

[σ1;σ2], then replace it by [ σ1; next(σ2) ).

At this point, the regular expression is completely built-up from

intervals of form [σ1;σ2).

45



Partitioning the Character Set

Let b1, . . . , bn be all the interval borders occurring in e1, . . . , em,

sorted by < .

As long as there is a subexpression of form [σ1;σ2), where σ1 = bi

and σ2 = bj with j > i+ 1, partition [σ1;σ2) into

[σ1; bi+1) | [bi+1; bi+2) | · · · | [bj−1;σ2).

After this, proceed as before, treating the intervals [bi, bi+1) as

single letters.

46



FLEX

The FLEX tool reads a list of regular expressions and associated

actions.

It constructs the minimal DFA as described on the previous slides.

It constructs C code that can run the DFA.

It can be installed on Ubuntu through apt-get.

47



Usage of FLEX tool (my impression)

• It is really very easy to write a complex scanner with FLEX.

• FLEX gives no support in the computation of the attributes.

One still has to use atoi, atof . This means that one still uses

an NDFA that somebody wrote by hand. (But you have seen

in the exercises that the main problem is in the combination of

different tokens. At least this problem was solved by FLEX)

• The C++ interface is not good. C++ is more than a few plusses

on C. Flex runs under C++, because C ⊆ C++, but I think

that this is not enough.

48



In my experience, the question whether a scanner generator should

be used is always borderline.

I made some implementations of logic systems (theorem provers),

and I never used a scanner generator tool. I do use parser

generators.

There are always additional conditions that interfere with the

scanner. (Like the >> in C++-11, or the no-space condition in

Prolog.)

C++ also has a problem with typenames, because declarations can

be mixed with statements.

49



Summary

The tokenizer must:

Deal with the input source.

Group the input into tokens, and compute the attributes.

Possibly look up identifiers.

take context into account, (unfortunately often) because not all

tokens can occur in all contexts.

attach information about the origin to the token. (File, line

number, position) This information must be preserved through the

compilation process, until is certain that no errors will occur.

(GCC does not follow this rule, because the linker can still generate

errors.)

50


