
Type Checking

1

Output of Parsing

We now understand pretty well how parsing works. We have seen

that it is possible to attach program fragments (actions) to

grammar rules, that are carried out when the rule is reduced.

We have also seen that it is possible to make reductions emit

statements, so that the total output of the parser will be an

executable programme.

Unfortunately, this method works only for very simple

programming languages, (simple type checking rules, not too many

forward references), and it makes optimization very difficult.

In the rest of these slides, we will assume that the parser outputs a

tree (usually this tree is called abstract syntax tree), which can be

further processed.

2

Abstract Syntax Trees

The abstract syntax tree (AST) is a simple tree representation of

the parse tree. For example

sum = 0;

for(unsigned int i = 0; i < n; ++ i)

{

sum += i * i;

}

can be represented by

statementlist(

assign(sum, 0),

for(init(i, 0), <(i, n), pref++(i),

+=(sum, *(i, i)))

)

3

4

Abstract Syntax Trees

In most cases, the AST is more or less equal to the parse tree, but

with some of the obvious junk removed.

(1) S → S + T

(2) S → T

(3) T → T ∗ U

(4) T → U

(5) U → num

(6) U → ident

(7) U → (S)

Only rules 1,3 and possibly also rules 5,6, need to be represented in

the AST.

5

Type Systems

Humans have the annoying habit of giving the same name to

different operators.

• For example, + has different definitions on int, real, complex,

etc.

• In class hierarchies, a method with the same name can be

defined at many points in the class hierarchy.

The poor compiler has to find out:

1. which version of the operator was meant, and

2. whether there exists an applicable operator under the given

name at all.

An ambiguous name that will be resolved at compile time, is called

overloaded. When the name will be resolved at run time, it is

called polymorphic.

6

Type Systems

Why is it acceptable to give the same name to different operators?

Probably because the different operators have very much in

common. This formally means that they satisfy a common axiom

system. (share an important set of properties that can be

considered as defining the operator.)

For example, all instantiations of + are commutative and

associative and distribute over multiplication. (when we ignore

rounding errors.)

Overwritten methods in class hierarchies should have so much in

common with their ancestors that it justified to give them the same

name.

7

Run Time versus Compile Time Type Resolution

• If we are lucky, we can guarantee at compile time that an

operator exists, and we can decide at compile time, which

operator will be called. This means that the compiler can tell

the user immediately, when no proper operator exists, and that

no further checks are necessary at run time.

• If we are a little bit less lucky, we can still guarantee at compile

time that a proper operator exists, (and give an error message

when no operator exists), but we cannot decide anymore

which operator will be called at run time. This situation

usually occurs with virtual functions in C++, or overloaded

methods in Java.

• If we are totally unlucky, we can say nothing useful at compile

time. This is the case for some interpreted languages, like Perl

and Python.

8

Run Time Selection

If type selection has to be postponed until run time, then every

object need a field (of some enum type) that indicates its type.

When a polymorphic function is called, one must use switch(), or

a chain of ifs to select the proper function.

This makes execution of the code less efficient.

9

Recursive Definition of Types

In most programming languages, the set of possible types can be

given by a recursive definition. This means that we have a set of

rules of form

1. T is a type.

2. If T1, . . . , Tn are types, then φ(T1, . . . , Tn) is also a type.

The types that are obtained by a rule of the first form are called

primitive types.

The types that are obtained by a rule of the second form, are called

derived or compound types.

Often, primitive types correspond to the types that are built-in into

the processor, but this is not necessarily the case.

We see that a type is simply some kind of tree.

10

Primitive Types

Primitive types typically include bool, char, int, unsigned int,

float, double and maybe some others.

Are structs and classes primitive or compound?

They may appear compound at first, but:

11

Intentional/Extensional Type Equivalence

struct type1

{

int a1; int a2;

};

struct type2

{

int a1; int a2;

};

type1 v1;

v1. a1 = 4;

v1. a2 = 5;

type2 v2 = v1; // Do we allow this?

12

Intensional/Extensional Type Equivalence

Extensional Type Equivalence Types are considered equal if

they are built-up in the same way. Extensional type

equivalence would allow the assignment on the previous slide.

Extensional type equivalence can be easily implemented by

always expanding the type definitions.

Intensial Type Equivalence Types are considered equal only if

they have the same name. The modern view prefers intensial

type equivalence, because it allows the construction of richer

type systems, and it is consistent with hiding of

implementation.

13

Non-Recursiveness of Struct

If one would have a type constructor for struct, then the definition

of some structs would be not well-founded anymore:

struct list

{

int elem;

struct list* next;

};

If one would have a constructor structE,N (t1, t2), then one would

have L = structE,N (int, pointer(L)).

This, in combination with the fact that in most programming

languages, struct-equivalence is intensional, suggest that struct

types should be treated as primitive, user-defined types. I will later

explain how it is done.

14

Type Checking

A type checker in a compiler must do the following:

1. For polymorphic operators, the type checker should check that

an instance can be selected at run time. (Not all languages

require this, but C++ and Java do)

2. Decide, for overloaded functions, which version must be used.

3. Decide if implicit conversions are necessary. (For example,

converting int to double, or changing references into objects

by copy constructors.) If conversions are necessary, they must

be inserted.

15

Type Checking

For most languages, bottom up type checking is sufficient:

In a term of form f(t1, . . . , tn), first compute all possible types of

all ti. Then select then compute all possible types of f(t1, . . . , tn).

16

Type Checking Algorithm

Definition A type judgement is an object of form t:T , where t is a

term, and T a type. The meaning of t:T is that t has type T.

If the type checking algorithm typecheck(t) can find a type for t,

then it returns a judgement t′:T , where t′ is obtained from t by

inserting conversions.

17

Type Checking Algorithm

typejudgement typecheck(term t)

if t is a primitive object (number, bool, etc.) then

return t:T , where T is the standard type of T.

if t is an identifier and t is declared, then

return t:T , where T is the type with which t is declared.

(In C/C++, this will be always a reference type.)

if t is an undeclared identifier, then

generate an error. (and possibly return t: int.)

18

Otherwise, t must have form f(t1, . . . , tn).

For each i, let Si := conversions(typecheck(ti)).

Try to find a function declaration f ′:T1 × · · · × Tn → T ,

such that for each i, there is a type judgement of form

t′i:Ti ∈ Si, and f ′ has name f.

If no f ′ exists, then report ’could not find definition of f’.

If more than one f ′ exists, and no f ′ is strictly

more specific than all other possible functions, then

report ’ambiguous overload of f’.

Let f ′ := the most specific applicable function.

return f ′(t′1, . . . , t
′

n):T .

(Note that we have replaced

f(t1, . . . , tn) by f ′(t′1, . . . , t
′

n).

19

Type Checking Algorithm

setoftypejudgements conversions(typejudgement t:T)

{

setoftypejudgements S := {t:T}.

As long as there exist a type judgement u:U ∈ S, and a

conversion function c:U → V , s.t. either

no judgement with type V occurs in S, or

there is a judgement v:V in S, but term v is

more complex then c(u), then

add c(u):V to S (and possibly remove

v:V from S.)

If no more conversions can be added, then return S

}

20

Higher-Order Types

In the typechecking algorithm, we assumed that functions have

types of form T1 × · · · × Tn → T.

In reality, function types may contain universally quantified type

variables:

Π U1 · · ·Um T1 × · · · × Tn → T.

Such types are called higher-order types.

Before f can be applied, the variables U1, . . . , Um must be

instantiated with concrete types.

Examples of higher-order types are:

∗:ΠX pointer(X) → ref(X), &:ΠX ref(X) → pointer(X),

and

[]:ΠX pointer(X)× int → ref(X).

21

Remarks

The typechecking algorithm requires that among the applicable

functions, there is one that is most specific. This is how C++ is

defined. The ADA language would be more liberal.

constness cannot be handled by conversion functions, because of a

combinatorial explosion. I will come to this topic later.

In C++, not all possible conversions would be added, because user

defined conversions cannot be chained. The exact rules are quite

complicated.

22

Let’s try an example:

fA:A×A → A

fB:B ×B → B

fC:C × C → C

convAB: (A → B)

convBC: (B → C)

Check f(f(a, b), c), f(f(f(a, a), b), c)

Typecheck (i + j) * 4.0 in C, with declarations

int i, j;

Typecheck f(1,2), with declarations:

double f(int, double);

int f(double, int);

23

An example that ADA would accept, while C++ rejects it:

fA:A → B

fB:B → A

a:A

a:B

p:A → C

Check p(f(a)), p(f2(a)), or p(f3(a)).

At the final stage, p will only accept A, so that in all terms of form

p(f i(a), the types can be uniquely determined.

C++ would reject it, because it requires that every term has a fixed

type, independent of its context.

(In ADA, typechecking can be viewed as running a

non-deterministic tree automaton. Conversion functions are ǫ

transitions.)

24

Most Specific Functions

In case, more than one function is applicable, the type checking

algorithm (for C++) selects the most specific. Suppose that we

have functions:

int f(int, int);

int f(double, double);

and expression f(1,2). In that case, the first version of f should be

preferred, because it is the most specific.

If we would have

int f(int, double);

int f(double, int);

then neither of the versions of f is more specific than the other, so

that the compiler cannot decide.

25

Most Specific Functions

Definition We write T1 ≺ T2 if type T1 is strictly more specific than

T2.

If T1 ≺ T2, then T1 is implictly convertible into T2, but the converse

need not be the case. For example, in C++, the types char and int

can be freely converted into each other, but at the same time,

char ≺ int, and int 6≺ char.

For function types, we define

(S1 × · · · × Sn → U) ≺ (T1 × · · · × Tn → V) if

1. For each i, either Si = Ti or Si ≺ Ti, and

2. there is one i, for which Si ≺ Ti.

If we have a set F of applicable functions, and there is one f ∈ F,

s.t. for all f ′ 6= f, we have f ≺ f ′, then we can select f as most

specific function.

26

Constness and Subtyping without Conversion

Consider:

int prod1(const int& x1, const int& x2)

{

return x1 * x2;

}

int prod2(int& x1, int& x2)

{

return x1 * x2;

}

27

int apply(int f(const int&, int&), int a, int b)

{

return f(a,b);

}

apply(prod1, 3, 4); // Should be forbidden.

apply(prod2, 4, 5); // Should be possible.

If one thinks about it, only the first should be forbidden, and the

second should be fine. In practice, the compiler (gcc) forbids both.

I don’t know if this is the C++-standard, or if the implementation

is incomplete.

28

Subtyping without Conversions (Inheritance, Constness)

Let us write A ⊑ B if type A is a subtype of B, and no conversion

is necessary.

This means that any function that requires a B, can be given an A

without any conversion.

If A inherits from B, then pointer(A) ⊑ pointer(B), and

ref(A) ⊑ ref(B).

In Java, one would also have A ⊑ B, (because in Java, every

Object is a pointer.)

For const, we have A ⊑ const(A).

This is a bit surprising, because const looks like an adjective, but in

reality is a modifier.

29

Subtyping without Conversions (2)

In addition, one has the following rules:

If A ⊑ B, then pointer(A) ⊑ pointer(B), and ref(A) ⊑ ref(B).

If B1 ⊑ A1, . . . , Bm ⊑ Am, and A ⊑ B, then

A1 × · · · ×Am → A ⊑ B1 × · · · ×Bm → B.

(It seems that gcc doesn’t apply this last rule. I am not sure what

is the standard.)

Disclaimer: I am not completely certain if const and inheritance

can be handled by the same relation ⊑ . It seems to be the case.

30

