
Course C++

Exercise List 3

Deadline: 14.03.2013

Topic of this task are the life cycle methods.

1. Define (in a file stack.h) a class

class stack

{

unsigned int current_size;

unsigned int current_capacity;

double* tab;

// class invariant is that tab is always

// allocated with a block with current_capacity.

void ensure_capacity( unsigned int c );

// Ensure that stack has capacity of at least c.

public:

stack( ); // Constructs empty stack.

stack( const stack& s ); // These are the 3 life cycle methods:

~stack( );

void operator = ( const stack& s );

void push( double d ); // Use ensure_capacity, so that

// pushing is always possible, as

// long as memory is not full.

reset( unsigned int s ); // Resets the stack to length of

// s < size( ).

double operator [ ] ( unsigned int i ) const;

double& operator [ ] ( unsigned int i );

// Be careful, s[0] is equal to top of stack.

// s[ s. size( ) - 1 ] is the deepest element.

double top( ) const;

1



double& top( );

void pop( );

// Remove one element from the stack. It’s OK to write

// code that crashes, as long as you write clearly what are

// your preconditions, so:

// PRECONDITION: The stack is not empty.

unsigned int size( ) const { return current_size; }

bool nonempty( ) const { return current_size; }

};

This is the definition of ensure_capacity(). Write the other methods by
yourself (in a file stack.cpp)

stack::ensure_capacity( unsigned int c )

{

if( current_capacity < c )

{

// New capacity will be the greater of c and

// 2 * current_capacity.

if( c < 2 * current_capacity )

c = 2 * current_capacity;

double* newtab = new double[ c ];

for( unsigned int i = 0; i < c; ++ i )

newtab[i] = tab[i];

current_capacity = c;

delete[] tab;

tab = newtab;

}

}

2. If you wrote the copy constructor, the assignment operator, and the de-
structor correctly, then your class has object semantics. This means that
your class is as easy to handle as any primitive type, that it can be put in
a standard container, that it can be passed as parameter, and returned by
a function without restriction. Always make sure that your classes have
object semantics, unless there is a very good reason not to do so. Lazyness
is not a good reason.

2



It is time to check that your implementation of stack has no memory leaks.
The easiest way to test this, is by implementing the following program:

for( unsigned int i = 0; i < 1000000; ++ i )

{

stack s1;

s1. push_back(45); s1. push_back(45); s1. push_back(46);

stack s2 = s1;

stack s2. push_back( 2000 ); s2. push_back(100);

s1 = s2;

}

Use the top command in Linux, to ensure that the memory use of your
program is not increasing.

3. Write

std::ostream& operator << ( std::ostream& , const stack& s );

Make it a friend of class stack, or use size( ) and operator[].

4. Write some tests, that show that you understand the difference between
operator[ ] ( unsigned int ) and operator[ ] ( unsigned int ) const .

3


