
Collision Detection

1

Half Spaces

A half space H is characterized by a pair H = (n, d), where n is the

normal vector, and d is the displacement.

If x is a point, and H = (x, d) is a half space, then the distance of x

from H, written as ∆(x,H), is defined as

∆(x,H) = x · n− d.

2

Half Spaces

Alternatively, a half space can be defined by its (outside pointing)

normal vector n, and a point b on the border. Then

H = (n, n · b)

has ∆(b,H) = 0, so that b is on really the border.

If n is a unit vector and b a point, then ∆(x, (n, n · b)) is the

distance between x and the border of the halfspace defined by

normal vector n and some border point b.

We say that x is inside the half space H if ∆(x,H) ≤ 0.

3

Other Forms

One could consider using other forms as well, for example spheres

or cylinders.

A sphere could be defined by a center point c and a distance d.

For a sphere S = (c, d), the distance ∆(x, S) would be defined as

‖x− c‖ − d.

This may be a good idea, but we will not further follow this.

4

Boolean Expressions

Using halfspaces (and possible other basic components), we can

define shapes as arbitrary (positive) Boolean expressions over half

spaces.

• A halfspace H is a shape.

• ⊥ is a shape.

• ⊤ is a shape.

• If S1, . . . , Sn are shapes, then S1 ∪ · · · ∪ Sn and S1 ∩ · · · ∩ Sn

are shapes.

(It seems OK to assume that shapes can be three-dimensional in

English language.)

5

House

Consider a (very simple) house defined by points

(3, 4, 0), (−3, 4, 0), (−3,−4, 0), (−3, 4, 0), (0, 4, 7), (0,−4, 7).

Its shape can be defined by:

S =
⋂



















































H((0,−1, 0), 4) wall at Y = −4

H((0, 1, 0), 4) wall at Y = 4

H((1, 0, 0), 3) wall at X = 3

H((−1, 0, 0), 3) wall at X = −3

H((1, 0, 1), 7) roof

H((−1, 0, 1), 7) roof

Some of the normal vectors are not of unit length, but this is not

important.

6

Checking whether a point is inside a shape S is easy:

• x ∈ (n, d) if ∆(x, S) ≤ 0.

• x ∈
⋃

Hi if there is an i, s.t. x ∈ Hi.

• x ∈
⋂

Hi if for all i, we have x ∈ Hi.

• Always x ∈ ⊤.

• Never x ∈ ⊥.

7

But nearly always, the real problem that one wants to solve is the

question of collisions:

Given two points (x1, x2), find smallest λ ∈ [0, 1], for which

x1 + λ(x2 − x1) in S.

8

Definition: Let S be a shape, let x1 and x2 be points. Let λ1 ≤ λ2

be in R. The entry point Φ(x1, x2, λ1, λ2, S) is defined as follows:

• If there exists a λ ∈ [λ1, λ2], s.t. x1 + λ(x2 − x1) ∈ S, then

choose λ in such a way that there is no λ′ ∈ [λ1, λ〉 with

x1 + λ′(x2 − x1) ∈ S.

– If x1 + λ(x2 − x1) lies on a border (n, d) of S, then

Φ(x1, x2, λ1, λ2, S) = (λ, n).

– Otherwise,

Φ(x1, x2, λ1, λ2, S) = (λ, 0).

• If no such λ exists, then

Φ(x1, x2, λ1, λ2, S) = (λ′, 0), for some λ′ > λ2.

9

Algorithm for Φ(x1, x2, λ1, λ2, S)

• If S is a halfspace H = (n, d), then first compute






µ1 = ∆(x1 + λ1(x2 − x1), H)

µ2 = ∆(x1 + λ2(x2 − x1), H)

If µ1 < 0, then Φ(x1, x2, λ1, λ2, H) = (λ1, 0).

If µ1 = 0, then Φ(x1, x2, λ1, λ2, H) = (λ1, n).

If µ1 > 0, and µ2 ≤ 0, then

Φ(x1, x2, λ1, λ2, H) = (λ1 − µ1
λ2 − λ1

µ2 − µ1
, n).

If µ1 > 0 and µ2 > 0, then Φ(x1, x2, λ1, λ2, H) = (λ2 + 1000, 0).

10

Algorithm for Φ(x1, x2, λ1, λ2, S) (2)

• If S has form
⋃n

i=1 Si, then start by setting

(λ, n) = (λ2 + 1000, 0).

For each i with 1 ≤ i ≤ n, do the following:

– If Φ(x1, x2, λ1,min(λ, λ2), Si) = (λ′, n′) and λ′ < λ, then

replace (λ, n) by (λ′, n′).

When the loop is complete, (λ, n) equals

Φ(x1, x2, λ1, λ2, S).

11

Algorithm for Φ(x1, x2, λ1, λ2, S) (3)

• If S has form
⋂n

i=1 Si, then start by setting (λ, n) = (λ1, 0).

As long as λ ≤ λ2 and there exists an Si with 1 ≤ i ≤ n, for

which Φ(x1, x2, λ, λ2, Si) = (λ′, n′), and either

1. λ′ > λ or

2. λ′ = λ, ‖n′‖ 6= 0 and ‖n‖ = 0,

replace (λ, n) by (λ′, n′).

When no further replacements are possible, we have computed

Φ(x1, x2, λ1, λ2, S) = (λ, n).

In case each Si is a halfspace, it is sufficient to use a single for loop.

12

Algorithm for Φ(x1, x2, λ1, λ2, S) (4)

• If S = ⊥, then Φ(x1, x2, λ1, λ2, S) = (λ2 + 1000, 0).

• If S = ⊤, then Φ(x1, x2, λ1, λ2, S) = (λ1, 0).

13

Material Properties

We now whether we are touching (or colliding with something), but

we also need to know the material properties of what we are

touching. It seems reasonable to remember the following properties:

• A static friction coefficient µs.

• A dynamic friction coefficient µk.

• Maximum force Fm. This is the maximal force that the

material can withstand before it breaks or gives way. For

water, it would be 0, for sand or grass it would be some low

number. For concrete, it should be a number that is high

enough to carry the plane.

14

Adding Material Properties

It is not clear where material properties should be stored. I can

think of the following possibilities:

1. Store properties in every halfspace H.

2. Introduce a material operator M(P, S) (in addition to the

Boolean operators) denoting: Every halfspace in S is made of

material P.

3. In addition to (2), add a modification operator to the Boolean

expressions: M(S1, P, S2) denoting: Whenever the contact

point in inside S1 (but not necessarily on the border of S1), it

is made of P. Otherwise, its material is termined by S2.

Operator (3) makes it possible to ‘paint’ on the surface of S2. For

example S1 specifies a road pattern, S2 specifies the landscape.

15

Modeling Wheels

16

Friction

Friction coefficients are defined by the two materials that touch

each other. Since we cannot store friction coefficients for all

possible combinations of materials, we store them only for the

rubber that our wheels are made of. We could also store friction

coefficients for metal. (In case we want to model very rough

landings, or landings with broken gear.)

Here are some reasonable values:

• Wet runway/wheels: 0.1

• Dry runway/wheels: 0.4.

• Icy runway/wheels: 0.001.

• Dirty runway/wheels: 0.3?

(Published numbers vary quite a lot. Use your intuition and hope

for the best.)

17

A wheel can be in three states:

1. Not in contact with the ground. There is no friction.

2. In contact and slipping (or rolling). In this case, friction causes

resistance. The force does not depend on the surface area, or

the amount of speed. Direction of force is opposite to the

direction of speed, which must be parallel to the contact

surface. Strength of force depends on the force that presses the

wheels against the ground (called normal force). If there is no

force pressing the wheels against the ground, we are in state 1.

Otherwise, the force equals µk times the normal force.

3. In contact and not slipping. In that case, the friction force

magically has exactly the right strength to stop every

movement. The normal force must press the objects together,

and the parallel force must be less than µs times the normal

force.

18

The transition between state 2 and state 3 is subtle. If the wheel is

in state 3 and the friction becomes more than µsFn, then it goes

into state 2. It stays in state 2 until the friction F = µkFn is able

to stop the movement, after which it enters state 3 again.

State 3 is difficult to model, because you first need first to know the

total force from other sources, in order to be able to annihilate the

force.

If the plane has more than one wheel, there is a circular

dependency, which requires to solve a system of equations.

It may be difficult to determine how the different wheels share the

force. This may be important to know in certain situations, in

order to determine which wheel starts slipping first.

19

Pebble-and-Spring Model

As soon as first contact appears, we enter state 3 by putting a

pebble on the surface. We assume that the wheel frame is

connected to this pebble by springs. We try to keep the pebble on

the same place as long as possible. As soon as we have to move the

pebble, we are in state 2.

20

Wheel Frame Coordinates

We assume that the wheel frame, on the point where it is connected

to the plane has its own coordinate system, defined by b and q.

The quaternion q takes steering into account. The axes are defined

as follows:

X: Forward in the rolling direction of the wheel.

Y: To the right, in the direction of the axis of the wheel.

Z: Down.

We assume that we are always able to compute b and q from the

airplane position, and steering input.

In addition, we sometimes use v, speed of the origin of the wheel

frame.

21

Pebble Border

The pebble border is defined as the area around the origin of the

XY-plane that characterizes the forces in the XY-plane that the

pebble can resist without slipping or rolling. We always assume

that our normal direction of rolling is along the X-axis. The pebble

border consists of the intersection of two patterns:

1. A circle with radius µFz, where Fz is the normal force, and µ is

the static or dynamic friction coefficient of the surface and the

tyre.

2. A band of points (x, y, z) determined by −B ≤ x ≤ B, where B

is the braking strength, which is input by the user.

If we are braking very hard, then the pebble border is completely

determined by case 1, which depends on the friction of the tyre.

If we are not braking at all, then the border is a line segment on

the Y-axis, between (0,−µFz, 0) to (0, µFz, 0).

22

Contact of Wheel on Surface

We need to determine our orientation of the surface. If the user is

not braking too hard, then the orientation determines the direction

in which the wheel will roll.

We define a function Q(n) that defines a quaternion q with the

following properties:

• Its rotation fq maps (1, 0, 0) into the rolling direction of the

wheel over the surface. fq(1, 0, 0) defines the X-axis of the

pebble border.

• fq maps (0, 1, 0) into the surface, into the direction that is

orthogonal to fq(1, 0, 0). It corresponds to the Y-axis of the

pebble border.

• fq maps (0, 0, 1) to a vector that is orthogonal to the surface

(It will be parallel to n.)

23

Orientation on the Surface (2)

The normal vector n must be in wheel frame coordinates. The

result of Q(n) is also in wheel frame coordinates. Q(n) is not

meaningful if −nz
√

n2
x + n2

y

is negative or small.

Define:

φx = arctan(ny,

√

n2
x + n2

z), φy = arctan(−nx,−nz).

Further define:

qx = q(1,0,0),−φx
, qy = q(0,1,0),−φy

.

(qx is the rotation around (1, 0, 0) over angle −φx, and qy is the

rotation around (0, 1, 0) over angle −φy. Finally, Q(n) = qy.qx.

24

Force from Pebble Position and Speed

We define a function F (p, w), which computes the force that the

pebble imposes on the wheel frame, assuming that it has position p

and speed w in wheel frame coordinates.

The resulting force is also in wheel frame coordinates.

If pz ≥ zmax, then the wheel is not in contact, and the force is

(0, 0, 0). (Remember that positive Z is downwards.)

If pz ≤ zmin, then the wheel is too much compressed, and it breaks,

in that case, one can either throw an exception, or change the

wheel by some other model of a slipping plane.

(This would happen when the plane is overloaded, or after a hard

landing.)

25

Force from Pebble Position and Speed (2)

We use the following parameters, which are all negative:

• kxy is the horizontal spring coefficient, kz is the vertical spring

coefficient.

• dxy is the horizontal damping coefficient, dz is the vertical

damping coefficient.

• zzero is the zero position of the wheel, in which there is no

vertical force.

F (p, w) =







kxy(px, py, 0) + kz(0, 0, pz − zzero) +

dxy(wx, wy, 0) + dz(0, 0, wz).

The force consists of the sum of the damping force and the elastic

force.

26

Choice of Parameters

The values of the parameters must be chosen carefully. In physical

reality, kxy and dxy are probably very high. Realistic values would

probably result in numerical instability, so you will have to make

them lower.

kz and dz probably can be given realistic values.

27

Clipping Force against Pebble Border

F cl(F , µ, n) determines the maximal force that the pebble could

impose on the wheel frame without slipping. Both F and n are in

wheel frame coordinates. The result is also in wheel frame

coordinates.

Define q = Q(n), and define F
′

= fq−1(F). (This is F , converted

into coordinates based on the pebble border.) Let

F
′

xy = (F
′

x, F
′

y, 0) be the horizontal components of F
′

.

If |F x| ≤ B, and
‖F

′

xy‖

F ′

z

≤ µ, then F is inside the pebble border, so

that F cl(F , µ, n) = F .

Otherwise, we are slipping or rolling, and F
′

has to be clipped

against the pebble border. In that case, F cl = fq(Hx, Hy, F
′

z),

where H is the horizontal force defined on the next slide, and

q = Q(n).

28

Clipping Force against Pebble Border (2)

Given a normal force F
′

z , and horizontal force F
′

xy which is outside

the pebble border, we define the clipped horizontal force H :

1. If B < µ|F ′

z| and |F
′

y| ≤
√

µ2(F ′)2z −B2, then

H = (±B,F
′

y, 0), where ±B takes its polarity from F
′

x.

2. If B < µ|F ′

z|, |F
′

y| >
√

µ2(F ′)2z − B2, and

B|F
′

y| ≤ |F
′

x|
√

µ2(F ′)2z − B2, then

H = (±B,±
√

µ2(F ′)2z −B2, 0), where ±B takes the polarity

from F
′

x, and ±
√

µ2(F ′)2z −B2 takes the polarity from F
′

y.

3. In the remaining case, H = µF ′

z

F
′

xy

‖F
′

xy‖
.

29

Complete Wheel Model

It seems that we now have collected everything needed to define a

wheel model.

We have previous state St. If St is (2) or (3), we also have the

following parameters:

• pebble position pt and pebble speed wt at time t (both in

wheel coordinates).

• A contact surface defined by a normal nt and its friction

coefficient µt.

We are considering time t+ h. We have to compute a force, and

determine St+h. If St+h 6= (1), we also have to determine pt+h and

wt+h.

30

State 1

We assume that (in wheel frame coordinates), the wheel runs from

(0, 0, zmin) to (0, 0, zmax). Let b, q be its position and orientation.

Let xmin = T
b,q

(0, 0, zmin), xmax = T
b,q

(0, 0, zmax).

Get (λ, n) = Φ(xmin, xmax, 0, 1, S) from the scenery solid S.

If λ ≥ 1, we stay out of contact, so St+h = (1), and force is zero.

Otherwise, set state St+h = (3). (I think the state doesn’t matter

at this moment.) Set


























pt+h = xmin + λ(xmax − xmin)

vt+h = 0

nt+h = n

µt+h static friction coefficient of contact surface

We assume that force stays zero. (It will be correct the next time.)

31

State 2,3

Let (b, q) be the current position and orientation of the wheel

frame, let v be its current speed.

Convert pt and vt into wheel frame coordinates:






p = T−1

b,q
(pt)

w = fq−1(wt − v)

Let F = F (p, w), let F cl = F cl(F , µt, n).

If F cl = F, then the next state will be State 3 (standing), so that

St+h = (3), pt+h = pt, wt+h = 0, nt+h = nt, µt+h = µs.

Wheel force is equal to fq(F). (Force from pebble, transformed into

world coordinates.)

32

State 2,3, Slipping

If F cl 6= F, then next state will be State 2 (slipping). Convert pt
and vt into wheel frame coordinates:







p = T−1

b,q
(pt)

w = fq−1(wt − v)

We would like to move the pebble to a position p′ where the force

equals exactly F cl. This is not easy, because distance from surface

(and with it the normal force) may be different at the new point, we

may be in contact with another surface, and we would have to take

the speed w′ into account. Solving the system of equations seems

unrealistic. Iterating to the right point is possible, but expensive.

33

State 2,3, Slipping

In slipping state, we expect the pebble to move more or less at the

same time as the wheel frame, so that we probably can neglect the

speed. This gives:

(x, y, 0) =
F cl,xy

kxy
,

where F cl,xy is the horizontal component of F cl.

Let xmin = T
b,q

(x, y, zmin), xmax = T
b,q

(x, y, zmax). Let

(λ, n) = Φ(xmin, xmax, 0, 1, S).

If λ ≥ 1, we fell over the border or managed to take off, and

St+h = (1).

34

State 2,3, Slipping







































St+h = (2)

pt+h = xmin + λ(xmax − xmin)

wt+h =
pt+h − pt

h

nt+h = n

µt+h = dynamic friction coefficient of contact surface

Finally, the force equals fq(F cl). (The clipped force transformed

into world coordinates.)

Disclaimer: All of this has to be implemented, in order to see if the

results are realistic. Don’t trust any theory that was not

implemented and tested!

35

