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1 Introduction

This text is part of the course ‘Flight Simulation’, WS 2014-2015.

2 Need for Rigid Objects

Until now, we have simulated only point masses. The state of a point mass is
characterized by its mass, its position, and its speed. In order to simulate it, it
is sufficient to compute all forces on it, and apply Newton’s law, F' = m.a.

Modeling objects as point masses is adequate for many applications, for
example for predicting the orbits of planets or predicting the performance and
trajectory of rockets. It is not adequate for simulations where the orientation
of the object matters. This is obviously the case in flight simulation, because
aerodynamic and mechanic forces depend very much on the orientation of the
airplane. In addition, the orientation of the plane is needed to compute the the
pilot’s or passenger’s view.

So we need to find a way of modeling three dimensional objects. It is im-
portant to understand that three dimensional objects are nothing magical. A
three dimensional object can be viewed as a collection of point masses that are
connected by forces that keep the point masses in their relative position.

In reality, all three dimensional objects are somewhat elastic. If you put a
force on one point of the object, at first only this point will move. After a short
time, elastic forces will also move the points nearby, until, after some more time,
the complete object has started moving.

This effect is usually invisible on small objects, but it is quite visible on
bigger objects. For example, the wings of big airplanes distort visibly during
flight through turbulence.

A rigid object can be viewed as a of point masses, combined with a collection
of forces that behave in such a way that they conserve the relative orientation
of the point masses.

A rigid object can be simulated as a group of point masses, if one models the
elastic forces explicity. This is not terribly difficult to implement, but it will be
very inefficient for big objects, because the number of connections between point
masses is quadratic in the number of point masses. The number of connections



can be reduced by only considering connections between close neighbours, but
its total number will still be high.

The situation is made worse by the fact that one has to take a very small
step size. In the simulation, the point masses will oscillate relative to each other.
This is good in principle, because it corresponds to physical reality, but it causes
instability in the numerical methods. In order to avoid this instability, one has
to use a very small step size.

Because of these efficiency problems, we need to derive more efficient meth-
ods based on the mass distribution of the object.

1. Like all rigid objects, airplanes use elastic forces to keep their form. This
implies that airplanes are not completely rigid.

There are different solutions for this problem. First of all, one can ignore
it. This will give practically useful results in many cases. Secondly, one
can model the airplane as a small collection of rigid objects connected by
springs. This has the advantage that one can show the bending of the
wings to the user, and use the bending of the wings to compute aerody-
namic forces more accurately. Using 3 or 5 rigid objects will be still much
more efficient than modeling the aircraft as a collection of point masses.

2. Rigid objects only remain rigid if you treat them nice. This means that
one have to estimate the internal forces, and check that they are within
limits. If not, one has to inform the user that the plane is damaged.

3. Airplanes can have rotating parts. WW1 planes and some jet planes have
engines which large rotating parts. This may cause significant gyroscopic
forces, that make the handling of the plane difficult. In order to be useful,
these forces have to be modeled.

This problem can be solved by using a relaxed notion of rigid object,
which allows for gyroscopic effects. This is done in (Aircraft Control and
Simulation, Brian Stevens and Frank Lewis, John Wiley and Sons Inc.,
1992) and we follow this approach.

In the rest of this text, we will derive the standard method for modeling
rigid objects through its inertial matrix. First we derive some properties of
collections of point masses, which are inherited by rigid objects. After that,
we analyze what it actually means 'to conserve relative orientation’. Once we
understand this, the resulting condition can be used to derive equations with
which rigid objects (possibly enhanced with spinning parts) can be modeled.

3 Collections of Point Masses

As said before, we start by studying collections of point masses:

Definition 3.1 We define an object O = (W, T,T) as a collection of point
masses. Let n > 0 be the number of point masses in the object.



e (my,...,my,) are the masses.
e (T1,...,T,) are the current positions of the masses.
e (T1,...,U,) are the current speeds of the masses.

Strictly seen, T and T are functions of time, but we usually write T; and T;
instead of T;(t) and v;(t).

Force is a thing that always happens between two point masses. If both of the
point masses are outside the object O, then they are not our problem, and we
don’t care about the force. If both of the point masses are inside O, we call the
force internal. If one of the point masses is inside the object and the other is
outside, we call the force external.

Definition 3.2 Let O = (T, T,T) be an object consisting of n point masses.

An internal force matriz I is an n-dimensional matriz of vectors, where I; ;
denotes the force that point mass i receives from point mass j. The matriz I has
the following properties:

1. No point mass puts a force on itself: For alli, 1 <i<mn, I;; =(0,0,0).

2. The force between one point mass and another point mass is always di-
rected towards or away from the other point mass: For all i,j with i # j
and 1 < i,5 <n, there exists a A € R, s.t.

Ii)j = )\(f] — fl)

8. If one point mass feels a force from another point mass, then the other
point mass feels the same force in the opposite direction: For all i,j with
1<4,5 <n,

An external force function E is an n-dimensional vector of vectors, where E;
denotes the external force on the i-th pointmass.

Similar to T and v, the internal force matriz I and the external force vector
E can change over time, but we usually don’t write the dependency on t.

If we know E and I, then we have all information that is required to numerically
compute the behaviour of the the object. The object O has to fulfill the following
differential equation:

— T
, Fl + Zj Ti)j (1)
my;

In order to numerically solve this system of differential equations, one can use
Euler’s method or a Runge-Kutta method.



3.1 Linear Properties of General Objects

We will call an object that is not rigid a general object. A general object can
be anything from an elastic object that somewhat keeps its shape, to an object
that is connected so loosely that no permanent shape can be recognized. (For
example our solar system.)

Definition 3.3 Let O = (m,T,0) be an object.
The total mass me is defined as

n
mop = E m;.
i=1

The center of mass Co of O is defined as

Co = &=100,
mo

The average speed Vo of O is defined as

Vo = &=t 77
mo

Let E be an external force vector. The total force F(E) of E on O is defined
as

F(E) = ZE
=1

If one has a general object, with external force vector E working on it, then its
center of mass of moves as if it were a single point mass, with all external forces
working on this single point mass:

Theorem 3.4 Let O = (M, T,0) be an object. Let E be an external force vector.
Then

T 7 I

F(B) =mg(Vo)'.

Proof
The main insight is to see that internal forces cancel each other. This is a
consequence of the fact that I; ; is always zero, and that for ¢ # j, the forces are

always symmetric: I; ; = —1;;. It follows that:
> I;=0. (2)

1j5=1

3

For each individual point mass, we have:

— —/
Fl' = m;a; = Mm;v;.



F; is the sum of internal and external forces on the i-th mass:
Summation results in

Z i ZEz'FZZTi,j:Zmiﬁ;.

=1 =1 =1 j=1 =1

Using (2), we obtain

The right hand side can be multiplied and divided by me. In addition, one can
use the fact that vectors can be differentiated component wise. The result is

n —
- S M —
F(E)=me==t =mp (Vo).

mo

Theorem 3.4 can be used to integrate the mass center of an object O without
knowing anything about the internal forces of O. The mass center responds to
the forces as it were a single point mass with the total mass of object.

The center of mass is often called center of gravity. In Section 3.3, I will
explain why this makes sense.

3.2 Angular Properties of General Objects: Torque and
Angular Momentum

We will now define the angular counterparts of average speed and total force.

Definition 3.5 Let € be an arbitrary position. (Called the reference position)
Let M = (m, =T, D) be a single point mass. The angular momentum Ly (¢) of M
around ¢ is defined as

Ly () =m(z —¢) x .

Let O = (T;,%;,0;) be an object. The angular momentum Lo (¢) of O around
T is defined as
Z m’L T; — X Uy

Definition 3.6 Let F be a force working on a point mass (m,Z,v). Let ¢ be

some reference point. The torque 7as(F) of F on M around (or relative to) ¢,
1s defined as

71 (F) = (T; —¢) x .



Let I E be an external force vector for O. Let € be a reference position. The torque
of E around ¢ is defined as

7(F)=> (@i —7) x E.

=1

Like F itself, the torque 7. is time dependent, but we omit the time parameter
t.

We now come to an an extremely important property, namely that the torques
caused by internal forces in an object always cancel each other. We have seen
already in the proof of Theorem 3.4 that internal forces always cancel each other
as linear forces. We will now see that they also cancel each other as angular
forces.

Theorem 3.7 Let O be an object. Let I be an internal force matriz for O. Let
¢ be an arbitrary reference point. Let T be the total torque caused by I around
C, so

FE(T) = Z (fl — E) X T@j.
i=1 j=1
Then 3
TE(I) = 6
Proof

The essential point is the following: We already know that i # j implies I, ; =
N j- We will show that in addition to that, also the torques caused by 1; ; and
1;,; cancel each other. This is a consequence of the fact that the internal force
between ¢ and j is aligned along the vector T; — T;. Because of this alignment,
there exists a real number ), ;, s.t. I; ; can be written in the form \; ;(Z; — 7;).
We know that A;; = 0, and that for ¢ # j, A ; = Aj;. (The — disappears
because \;; is based on T; — 7;.)

The summation for 7; can be reorganized as

E E )\iﬁj(TiXTj—TiXTi—EXEj—FEXfi + ijTi—TjXTj—EXEi—FEXTj).
i=1 j=1

Because T; X T; =T; x T; = 0, and T; X T; = —T; X T;, we see that the result
is 0. This completes the proof.



Because of the fact that internal torques always cancel each other, the total
external torque on an object is equal to the total torque on all points of the
object.

Theorem 3.8 Let O be an object. Let E be an external force vector for O. Let
€ be a reference point, and let FE(E) be the total torque caused by E around ¢.
For each point mass i of O, let F; be the total force working on m;. Then

Proof
‘We have

1=1 i=1 i=1 i=1 j=1

In the last step, we used F; = F; + Z?Zl Tiyj. Because of Theorem 3.7, this is
equal to

Theorem 3.9 Lel ¢ be a position that does not change through time. Let O =
(m,Z,v) be a general object. Let E be the external force vector on O, at some
moment t. Let I be the internal force matriz for O at moment t. Then

7=(E) =[Lo(@) ],
independent of the internal force matriz 1.

Proof
Newton’s law holds for each point mass in O :

Fi = mga; = mv;,
where F; is the total force on the i-th point mass. Left-multiplying with Z; — ¢
results in

(T, —¢) x Fi = my(T; — ¢) X 1.
Summation results in
Y @—-t)xFi=> mi(F —72) X7, (3)
i=1 i=1
It follows from Theorem 3.8 that the left hand side is equal to 7z(E), so that
it is sufficient to show that the right hand side is equal to [Lo(2)]’. In order to
show this, we compute
[Zo@ ) =Y mi(@—0) xT ] =Y mi( (0 x W) +mi(T —¢) x T, ).

i=1 i=1



Since 7; xT; = 0, we have proven that the right hand side of (3 ) equals [ Lo (¢) ]

It follows from Theorem 3.9 that any group of point masses on which no
external force works, conserves angular momentum around every non-moving
position.

3.3 Torque relative to the Center of Gravity

The center of mass is often called the center of gravity. The reason is the fact
that gravitation never causes a torque around the center of mass.

Theorem 3.10 Let O = (M, 7,7) be a general object. Let E be an esternal
force vector that is caused by gravity. Then E has form (mag,...,m,g). (All
forces are in the same direction, and proportional to the mass m;.)

Let € be the center of mass of O. Then 7=(E) = 0.

Proof
Using the definition of 7z(E), we have

72(E) = Z (Ti — ) x m;J

Using the distributive property, this is equal to

n n
Z miT; X J) Z (m; X g).
=1

i=1

On the left hand side, we have

n
Zmlexg mezxg—m@C@xg
i=1 i=1

On the right hand side, we have

n

Z mi€x g) = (D> mi)(€xg) =mo(@x7) =mo(Co x 7).

=1

Note that theorem 3.10 can be generalized to every point on the line Cp + Ag.
If one assumes that 'above’ and ’below’ are defined by the vector g, then gravity
does not cause any torque in object O on every point that is exactly above or
below the center of mass.

4 Modelling Rigid Objects

A rigid object is an object that is able to organize its internal forces in such a way
that its point masses do not change their relative positions. This means that the
positions of the point masses can be described by a proper rigid transformation



(a single position and a quaternion), also called roto-translation. and that the
speed of its point masses can be described by a rigid speed function. (a single
linear speed and an angular speed.)

Rigid objects do not exist in physical reality, but close approximations are
all around us. Physical objects slightly change form, when a force is applied on
them. This change in form causes elastic forces, which more or less manage to
conserve the original shape of the object.

4.1 Angular Speed and Rigidity

Since the point masses in a rigid object cannot not change their relative posi-
tions, their relative speeds and relative positions are strongly restricted.

Definition 4.1 A rigid speed function has form V(T) =7+ T x Z.
An object O = (m,=,v) is rigid (at time t) if there exists a rigid speed function
V, s.t. for each of its point masses (m;,T;,0;), T; = V(T;).

7 and @ are parameters that may change over time. The intuitive meaning
of the rigid speed function is tricky: At moment ¢, if there happens to be a point
mass at position Z, it moves with speed T(t) + w(t) x T.

The parameter T is not the speed of the rigid object, but the speed that a
point mass present at position (0,0,0) would have.

The acceleration of a point mass at position Z (at time ¢) cannot be obtained
by simply differentiating the speed function. Assume that at time ¢ a point mass
is at position Z. Let h be a small amount of time. At time t + h, the speed at
position T will be approximately T(t) + h.7'(t) + (@(t) + h.@'(t) ) X T.

This is not the speed of the point mass because the point mass has moved
from T to T+ h.V(T) =T + ho(t) + h.o(t) x T.

In order to get the new speed of the point mass, the new speed function has
to be applied on the new position. The result is:

B(t) + h' (t) + (wEt) +h@'(t) ) x (T+ ho(t) + ha(t) x T ).

We will write W (t + h) for this expression in order to distinguish it from V().
Our aim is to find the acceleration of the point mass, so we want to determine
the value of

alt) = ,?L% W(t+ h;b— Vt(i)'

In W(t + h), we can apply the distributive law on x, and remove all terms
that are quadratic in h, becasue they will not contribute to the limit. We get
W(t+h)=

v(t) + h'(t) +W(t) x T+ hw(t) x 0(t) + hw(t) x (W(t) X T )+ ho'(t) x T.
v(t) +hV (1) + (W) + h@' (t) ) x T+ ho(t) x v(t) + ho(t
We see that

~—
X
—~
3
=
~—
X
8
~—



4.2 Predicting the Trajectories of Rigid Objects

Since rigid objects are still general objects, all results of Sections 3.1 and 3.2
apply to rigid objects. This means that we already know how to compute
the movement of the center of mass of a rigid object. It can be predicted by
Theorem 3.4.

We can also predict, for every reference point ¢, how the angular momentum
around this point will change under a known torque around ¢. This is predicted
by Theorem 3.9.

The only thing that is missing at this point, is a connection between the
change in rigid speed function and the change in momentum. Once we have
this connection, we can use it to obtain an explicit expression for change in
rigid speed function.

In order to connect change in the rigid speed function to change in momentum
and speed, we use Equation 4, which can be applied to every point mass of the
rigid object.

G =0 +W XT;+wx (V+WXT; ).
All variables are functions in the time ¢, but we omitted the time argument,
because we will be only considering a single time moment in the rest of this
section.
Multiplying with the mass m; and remembering that F; = m;a; results in

Fi=mv +mi xTi+mi o X (0+wxXT; ). (5)
e Since we are interested in connecting torque to momentum, we left-multiply
(5) with the position T;.
Tix Fy =mi T x0 +mp T x (@ XT) +mi T x (@x (T+@xT; ).

At this point, the equations (for the different point masses) can be summed,
and one can use Theorem 3.8 to eliminate the internal torques. The result
is:

7(E) = Z mifixﬁl—i-z miT; ¥ (w'xfi)—i—z miTi X (@ X (T4wXT; ).
=1 =1 =1

Since Y_i, m;T; = mpCo, we can write T(E) =
n n
moCoxT'+Y | miFix (@ xT;)+moCox (@xT)+»_ miFx (@x (@xT;)).
i=1 i=1
The expression
Mm;T; X (wl X Tz)

is linear in @’. This implies that it can be written in the form I;(@’),
where I; is a matrix. The matrix I; is called the inertia matriz (or inertial
matriz) of the point mass m; at position T;. We will give the precise form
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in Section 4.3. The sum I» of the matrices Z?:l I; is called the inertia
matriz of the object.

Using the fact that for all vectors 7 and w,
X (Wx (Wx0)=-wx (v x (Vxw)),
and the definition of inertia matrix, this expression can be simplified into

T(E) =meCo x (V +w x0) + Io(w) + @ x Io(@). (6)

e In order to get an expression for the linear behavior of the rigid object,
we start with (5) again:

F(E) = zn: m;T +zn: m;w X T; +zn: m@w X (T+T X T;).
=1 =1

=1

Using >, m; = mo, and >, m;T; = moCo, we get

F(E)=mo(7 +@ xCo+wx (T+wxCop)). (7)

4.3 Numerical Integration of Rigid Objects

Equations (6) and (7) are almost usable for the modelling of rigid objects, but
some adaptations are necessary, that we will now describe. When we start
computing the derivatives @ and o', the values of T,@, mo, lo, and Co are
known. The linear force F(E) and the torque 7(E) have to be determined from
the state of the object, i.e. from (¢, T,7,w), and possible other state variables.
This leaves us with two equations containing two unknowns, so that in principle
7' and @’ can be determined.

It is possible to find 7’ and @’ using Gauss elimination, but it is much easier
to switch to a coordinate system with origin in Cp. In that case, we have
Co = (0,0,0), so that the equations can be replaced by

W = Ip'(F(E)-wxIow))
s - PE (8)
mo

The reason why this equation is different from Theorem 3.4 is the fact that
7’ does not denote acceleration of the mass center of the rigid object, but the
acceleration of the rigid speed function at (0,0, 0). This is the speed of the part
of the rigid object that happens to be present at (0,0,0).

Equations 8 have two problems:

11



1.

It is a problem to represent a moving object by a rigid speed function,
using a fixed point of reference. This is the same problem that we already
saw in two dimensions. At a given moment ¢, one defines the rigid speed
function using the linear speed at the mass center, and the angular speed
of the object. At t + h, integration would produce a rigid speed function
that still uses the linear speed at the mass center of time ¢.

In order to continue using the position of the mass center, the rigid speed
function has to be corrected at every iteration. The effect of this correction
will be that the term @w x ¥ disappears.

The inertial matrix depends on the orientation of the object. Recomputing
the inertial matrix at each iteration of the integration procedure is possi-
ble, but inefficient. This problem can be solved by making the coordinate
system not only move, but also rotate with the object.

The complete procedure is:

1.
2.

5.

Fix a coordinate system at the mass center of the object.

Collect all forces and their acting points. Compute total force and total
torque, relative to the current position of the mass center, and orientation
of the object.

Compute angular acceleration, using Equations 8.

Compute new position, new orientation, new rigid speed function at time
t+ h.

Correct the rigid speed function for the new position of mass center.

Let I be the total force, let T be the total torque, expressed in the coordinate
system that is defined by the current position and orientation of the object.

th:wt—l—I_l(T—wt Xl(wt))

— — F —
Fun =T E o)
N .
G+n = ([|@e]| cos 5 [[@e]|h; @y sin 5 [[we[|72).q
YtJrh =X;+hV,

The term @; x V; is boxed, because it disappears when the reference position
is changed. The quaternion (||@,|| cos %|[@,||h; @, sin §||@||h) is the effect of
angular speed w; over a time h.

The force F' and torque T must be expressed in internal coordinates of the
object.

Note that, altough the inertial matrix usually doesn’t change much, it still
may change in certain situations: Rockets burn their fuel very quickly, military
planes and fire extinguishing planes may dump half of their mass in a few
seconds. Even passenger planes may burn one third of their mass on a long
flight. Concord pumped fuel between different tanks in order to move the mass
center.
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