Introduction to Flight Simulation (List 1)

Deadline: 19.10.2016

- 1. Consider the second order differential equation y'' + y = 0.
 - (a) Prove that the function $y = \sin(x)$ and $y = \cos(x)$ are solutions of this differential equation.
 - (b) Prove that if some function y = f(x) is a solution of the differential equation, then the function $y = \lambda f(x)$ is also a solution, for arbitrary $\lambda \in \mathcal{R}$.
 - (c) Prove that if two functions $y = f_1(x)$ and $y = f_2(x)$ are solutions of the differential equation, then the function $y = f_1(x) + f_2(x)$ is also a solution.
 - (d) At this point, you can combine **a**,**b**,**c** to characterize all solutions.
 - (e) Which solution has y(0) = 0, y'(0) = 1?
- 2. Consider a general second order, linear differential equation $c_2y'' + c_1y' + c_0y = 0$, where c_0, c_1, c_2 are constants.
 - (a) Show that if a is a zero of the polynomial $c_2x^2 + c_1x + c_0 = 0$, then $y = e^{ax}$ is a solution of the differential equation. The polynomial is called *the characteristic polynomial* of the differential equation.
 - (b) Show that if the characteristic polynomial has has form $c_2x^2 + c_1x + c_0 = c_2(x-d)^2$, that then both $y = e^{dx}$ and $y = xe^{dx}$ are solutions.
 - (c) Show that if the differential equation has two solutions $f_1(x)$ and $f_2(x)$, then $\lambda_1 f_1(x) + \lambda_2 f_2(x)$ is also a solution, for arbitrary $\lambda_1, \lambda_2 \in \mathcal{R}$.

(The differential equation in Task 1 had form y'' + y = 0, which means that its characteristic polynomial has form $x^2 + 1 = 0$. This polynomial has two zeros, namely *i* and -i. As a consequence, there are two solutions

$$y = e^{ix}, \quad y = e^{-ix}.$$

We have $e^{ix} = \cos x + i \sin x$, and $e^{-ix} = \cos x - i \sin x$. These two solutions can be combined using $\lambda_1 = \lambda_2 = \frac{1}{2}$, and $\lambda_1 = -\frac{i}{2}$, $\lambda_2 = \frac{i}{2}$. This gives the solutions that were given in Task 1a)

3. Find all solutions of

$$y'' + y' - 6y = 0.$$

4. Find all real valued solutions of

$$y'' - 2y' + 2y = 0.$$