Introduction to Flight Simulation (List 1)

Deadline: 19.10.2016

1. Consider the second order differential equation $y^{\prime \prime}+y=0$.
(a) Prove that the function $y=\sin (x)$ and $y=\cos (x)$ are solutions of this differential equation.
(b) Prove that if some function $y=f(x)$ is a solution of the differential equation, then the function $y=\lambda f(x)$ is also a solution, for arbitrary $\lambda \in \mathcal{R}$.
(c) Prove that if two functions $y=f_{1}(x)$ and $y=f_{2}(x)$ are solutions of the differential equation, then the function $y=f_{1}(x)+f_{2}(x)$ is also a solution.
(d) At this point, you can combine $\mathbf{a}, \mathbf{b}, \mathbf{c}$ to characterize all solutions.
(e) Which solution has $y(0)=0, y^{\prime}(0)=1$?
2. Consider a general second order, linear differential equation $c_{2} y^{\prime \prime}+c_{1} y^{\prime}+$ $c_{0} y=0$, where c_{0}, c_{1}, c_{2} are constants.
(a) Show that if a is a zero of the polynomial $c_{2} x^{2}+c_{1} x+c_{0}=0$, then $y=e^{a x}$ is a solution of the differential equation. The polynomial is called the characteristic polynomial of the differential equation.
(b) Show that if the characteristic polynomial has has form $c_{2} x^{2}+c_{1} x+$ $c_{0}=c_{2}(x-d)^{2}$, that then both $y=e^{d x}$ and $y=x e^{d x}$ are solutions.
(c) Show that if the differential equation has two solutions $f_{1}(x)$ and $f_{2}(x)$, then $\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)$ is also a solution, for arbitrary $\lambda_{1}, \lambda_{2} \in$ \mathcal{R}.
(The differential equation in Task 1 had form $y^{\prime \prime}+y=0$, which means that its characteristic polynomial has form $x^{2}+1=0$. This polynomial has two zeros, namely i and $-i$. As a consequence, there are two solutions

$$
y=e^{i x}, \quad y=e^{-i x} .
$$

We have $e^{i x}=\cos x+i \sin x$, and $e^{-i x}=\cos x-i \sin x$, These two solutions can be combined using $\lambda_{1}=\lambda_{2}=\frac{1}{2}$, and $\lambda_{1}=-\frac{i}{2}, \lambda_{2}=\frac{i}{2}$. This gives the solutions that were given in Task 1a)
3. Find all solutions of

$$
y^{\prime \prime}+y^{\prime}-6 y=0 \text {. }
$$

4. Find all real valued solutions of

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0 .
$$

