Flight Simulation (List 5)

Due: 30.11.2016

1. (a) Let \mathcal{O} be a (two dimensional) rigid object, that consists of the following point masses:

mass (kg)	position (m)	speed $(\mathrm{m} / \mathrm{s})$
1	$(3,-7)$	$(19,3)$
2	$(0,2)$	$(1,-3)$
3	$(1,3)$	$(-1,-1)$
4	$(2,4)$	$(-3,1)$
2	$(-1,1)$	$(3,-5)$

What is the mass center of this object? What is the average speed? What is ω ? What is the rigid speed function?
Is there a point that is not moving? What is this point?
(b) Assuming that \bar{c} is the mass center, as obtained in (a), what is $I_{\bar{c}}$?
(c) Now assume that on the first point mass with mass 2 kg , there works a force $(1,1)$. At the point mass with mass 3 kg , there works a force $(-2,1)$.
What is the total torque (using center of mass \bar{c}) resulting from these forces?
(d) What are \bar{V}^{\prime} (average acceleration), and ω^{\prime} angular acceleration, caused by these forces?
2. Answer the questions (a),(b),(c),(d),(e) at page 417 of Mechanics of Flight, A.C.Kermode. $C_{M . L E}$ is the moment coefficient around the leading edge. It is a bit strange that question (b) comes before (a). It is better to make (b) first. The value $C_{L}^{\frac{3}{2}} / C_{D}$ is important for the efficiency of the air foil. A higher value means more efficiency.
For $\alpha=0^{\circ}, 4^{\circ}$ and 8°, compute $C P$ from $C_{M, L E}$, and check whether it agrees with the value given in the table.

