Flight Simulation (List 5)

Due: 30.11.2016

 (a) Let O be a (two dimensional) rigid object, that consists of the following point masses:

mass (kg)	position (m)	speed (m/s)
1	(3, -7)	(19, 3)
2	(0, 2)	(1, -3)
3	(1, 3)	(-1, -1)
4	(2, 4)	(-3, 1)
2	(-1, 1)	(3, -5)

What is the mass center of this object? What is the average speed? What is ω ? What is the rigid speed function?

Is there a point that is not moving? What is this point?

- (b) Assuming that \overline{c} is the mass center, as obtained in (a), what is $I_{\overline{c}}$?
- (c) Now assume that on the first point mass with mass 2 kg, there works a force (1, 1). At the point mass with mass 3 kg, there works a force (-2, 1).

What is the total torque (using center of mass \overline{c}) resulting from these forces?

- (d) What are \overline{V}' (average acceleration), and ω' angular acceleration, caused by these forces?
- 2. Answer the questions (a),(b),(c),(d),(e) at page 417 of Mechanics of Flight, A.C.Kermode. $C_{M.LE}$ is the moment coefficient around the leading edge. It is a bit strange that question (b) comes before (a). It is better to make

(b) first. The value $C_L^{\frac{3}{2}}/C_D$ is important for the efficiency of the air foil. A higher value means more efficiency.

For $\alpha = 0^{\circ}$, 4° and 8° , compute *CP* from $C_{M,LE}$, and check whether it agrees with the value given in the table.