
Planets and Rockets
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Planets

Simulating planets is surprisingly easy:

1. Planets can be treated as point masses.

2. Gravity is the only force that plays a role. Is this true? (At

least not for the earth and the moon. Solar wind may play a

role as well.)
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Newton Axioms

1. Forces always act between two point masses at different

positions. The direction of the force is always along the line

through the two points, and the forces on the two points are

opposite in direction, but equal in strength.

2. Forces between more than two point masses can be computed

pairwise. (It is not completely clear to me if this is a Newton

axiom. It is rather subtle.)

3. For individual point masses, we have:

F = ma.
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Gravity

Gravity is governed by the following equation:

F =
Gm1m2

r2
,

where

1. G is the gravitational constant, which equals

G = 6.67384 × 10−11m3kg−1s−2.

(The accurracy is 1.2 × 10−4, which means that the last two

decimals are already unreliable.)

2. r is the distance between the objects.
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Gravity in Vectors

Suppose that we have two point objects: The first object has mass

m1 on position x1 and the second object has mass m2 on position

x2.

Then the gravity force on the first object, caused by the second

object, is defined by:

F =
Gm1m2(x2 − x1)

|x1 − x2|3
.
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Orbit Calculation

We have

F = ma,

where

v =
dx

dt
, and a =

dv

dt
.
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Orbit Calcululation (2)

We have a group of planets with masses m1, . . . ,mn. They are on

positions x1(t), . . . , xn(t). Their speeds are v1(t), . . . , vn(t).

We already know how to compute the forces: For each i with

1 ≤ i ≤ n, we have

F i =
n
∑

j=1







j = i (0, 0, 0)

j 6= i
Gmimj(xj−xi)

|xj−xi|3
.

For each i with 1 ≤ i ≤ n, we have ai(t) = Fi(t)
mi

. One can

approximate:






vi(t + h) = vi(t) + hai(t),

xi(t + h) = xi(t) + hvi(t).
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The algorithm on the previous slide makes it possible to obtain

accurate calculations about the solar system.

Think about this for a minute. 2000 years of human thinking can

be summarized in 130 lines of C++ code, and checked on every

cheap computer.

But the algorithm is not suitable for more complicated, derived

orbits. For those, you need Runge Kutta methods. We discuss

them next week.
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Rocket Science

The dictionary says that

’rocket science’ = ’coś bardzo skomplikanowanego, trudnego do

zrozumienia’,

but we will see that understanding rocket trajectories is not

difficult at all: It is much easier than understanding airplanes.
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Rocket Science (2)

Suppose that we have a method of throwing away half of something

at a speed of 1000m.s−1.

We start with 1000kg.

How much mass can reach 1000m.s−1, 2000m.s−1, 11000m.s−1?

(escape velocity.)

(Theoretical computer science does not have a monopoly on

exponential cost. Moreover, rocket scientists can prove exponential

cost, where computer scientists can only conjecture.)
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Rocket Science (3).

In reality, the throwing of mass is continuous and the complexity is

even worse:

• b(t) rate of fuel burn (in kg.s−1 ).

• m(t) mass at time t in kg.

• v(t) speed at time t in m.s−1.

• e(t) exhaust speed in m.s−1. (It will be constant most of the

time.)
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We use the law of preservation of impulse (m.v). In a time interval

h, we burn h.b(t) fuel. The fuel is thrown away with a speed of

e(t). This results in an added impulse of h.b(t).e(t).

The rest of the rocket has to compensate this:

−m(t).(v(t + h) − v(t)) = h.b(t).e(t).

We divide by h, and assume that h is very small:

lim
h→0

−m(t).
v(t + h) − v(t)

h
= b(t).e(t) ⇒

−m(t).a(t) = b(t).e(t).

Since m′(t) = b(t), we obtain

a(t) = −m′(t)

m(t)
.e(t)
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We want to know how much fuel should be burnt in order to obtain

a certain change in speed. We assume that we burn fuel from t0 to

t1 at a rate e(t). Then

∫ t1

t0

a(t).dt = −e

∫ t1

t0

m′(t)

m(t)
.dt ⇒

v(t1) − v(t0) = −e

∫ t1

t0

−m′(t)

m(t)
.dt.

In order to compute the second integral, one could guess that we

will have exponential decay of mass, because that is what we had in

the discrete case.

We have

d log(m(t))

dt
=

d log(m(t))

dm(t)

dm(t)

dt
=

m′(t)

m(t)
.
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It follows that

−e

∫ t1

t0

m′(t)

m(t)
.dt = −e.( logm(t1) − logm(t0) ) =

e. log
m(t0)

m(t1)
.

The result is the Tsiolkowsky (Ció lkowski) Rocket Equation:

∆v = e. log
m(t0)

m(t1)
.
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Chain Rule

The rule that I used when differentiating log(m(t)) is called the

chain rule. If f and g are one-place functions, then

(fg)′(x) = f ′(g(x)).g′(x).

In practice, people use the following notation, which is formally

meaningless, but practically convenient:

df(g(x))

dx
=

df(g(x))

dg(x)

dg(x)

dx
= f ′(g(x)).g′(x).

This is the notation that I used two slides back.
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The effective exhaust velocity e can be 3500 m.s−1 for a liquid

oxygen/kerosene engine, and 4500 m.s−1 for a liquid oxygen/liquid

hydrogen mixture.

The Space Shuttle weighed 74 745 kg empty. It had a payload of 29

445 kg.

Its external tank had an empty weight of 35 379 kg and contained

615 627 kg of liquid O2, and 102 378 kg of liquid H2, which was

burned in 8 minutes.

Its two solid rocket boosters weighed 83 805 kg empty each. Each

of the solid rocket boosters contained 498 300 kg fuel. They burned

out in 87 seconds.

Total launch weight was 2 000 000 kg. Of this weight, 1 714 605 kg

was fuel, and 104 000 kg reached orbit.

As a comparison, the maximum takeoff weight of an A380 is

569 000 kg.
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The Oberth Effect

The Oberth effect applies when we (our rocket) flies through a

gravity field, and we have to choose where to burn our engine, at

low or high altitude.

This situation applies to launches from the ground, because we have

choice of burning at lower altitude, or burning at higher altitude.

Suppose that there are two places to choose from, and that

between them is a difference of d.g.

e : Effective exhaust velocity.

m0 mass that we start with.

m1 mass that we end with.

v0 initial speed.
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We relate the effect of passing against gravity g over distance d.

Let m be the mass of an object. Let v0 be the starting speed. We

want to know the end speed v1.

We start (at the low end) with kinetic energy E = 1
2mv20 .

At the higher end, our kinetic energy equals 1
2mv21 . The difference

is dmg, the energy that was needed to pass against gravity.

So we obtain
1

2
mv20 =

1

2
mv21 + dmg.

It follows that

v1 =
√

v20 − 2dg.

If v20 − 2dg < 0, this means that our initial speed was not high

enough to make it all the way up.
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When to Burn?

First burning, then increasing the potential energy results in:

v := v0 + e. log(m0

m1

).

v1 :=

√

(v0 + e. log(
m0

m1
))2 − 2dg.

First increasing potential energy, then burning results in:

v :=
√

v20 − 2dg.

v1 :=
√

v20 − 2dg + e. log(
m0

m1
).

In order to compare the terms, note that they are very similar.

Both contain an expresssion of form
√
X2 − S. If S = 0, the terms

are equal. Otherwise, the effect of subtracting S is smaller when X

is bigger. This implies that one should first accelerate, than pass

through the gravity field.
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The fact that subtracting S has less effect when X is bigger can be

seen from the Taylor expansion:

√

X2 − S = X

√

1 − S

X2
= X(1 − S

2X2
+

S2

8X4
− S3

16X6
...).

The Oberth-effect can be intuitively explained as follows: It is a

waste of energy to take fuel up, in order to burn it at high altitude,

if you can burn it at a lower altitude.
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Differential Equations

An equation of form y′ = F (x, y) is called differential equation.

A solution for the equation above is a function y of type R to R,

s.t. for all x ∈ R,

y′(x) = F (y(x)).

For example:

y′(t) = c.y(t)

(Money on the bank, if everything goes well.)

An artificial example:

y′(x) =
√

c.y(x).
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Systems of Differential Equations

In this course, we are mostly modelling physical processes, so we

assume that y(t) depends on time t.

In most cases, y(t) will be vector valued, i.e. of type R → Rk for

some n > 1.

So, the equation gets form

y(t) = F ( t, y(t) ),

and F is of type R×Rk → Rk.
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Order of a Differential Equation

On the previous slides, the highest derivative of y that occurred in

the equations, was y′. This makes the equations first-order.

In general, the order of a differential equation is defined by the

highest derivative that occurs in it. E.g. y′′ = F (y, y′) is second

order.

Example:

y′′(x) = c.
√

1 + (y′(x))2.

This is the definition of a catenary, the shape that a freely hanging

chain assumes.

Note that Most Grunwaldzki is not a catenary! This is because the

weight per distance does not depend on the steepness.

(MG can be characterized by y′′(x) = c.)
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A higher-order differential equation can be made first-order, by

increasing its dimension:

Suppose that we have the (n + 1)-th order equation:

y(n+1)(t) = F ( y(t), y(1)(t), . . . , y(n)(t) ).

Define w0(t) = y(t), w1(t) = y(1)(t), . . . , wn(t) = y(n)(t). Then the

equation can be replaced by the system






































w′
0(t) = w1(t)

w′
1(t) = w2(t)

· · · = · · ·
w′

n−1(t) = wn−1(t)

w′
n(t) = F ( w0(t), w1(t), . . . , wn(t) )

If the original equation had dimension k, then the new equation

has dimension k.(n + 1).
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Autonous vs. Non-Autonomous

A differential equation of form y(t) = F (y(t)) is called autonomous.

If it has form y(t) = F ( t, y(t) ), then it is non-autonomous.

A non-autonomous equation y(t) = F ( t, y(t) ) can be made

autonomous by adding an extra parameter x as follows:






x′ = 1

y′(t) = F ( x, y(t) )

If the old equation has dimension k, then the new equation has

dimension k + 1.
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In general, differential equations can be very hard to understand.

Typically, one tries to answer the following questions:

• Is there a closed form for y(t)?

(In general, a differential equation can have infinitely many

solutions. Some of the solutions may be closed, while others are

not.)

• Is the differential equation invariant under certain operations?

(For example, rotation, mirroring, reflecting, scaling).

• Do the solutions have certain invariants?

An invariant is a function f, s.t. for all solutions y, for all

t1, t2 ∈ R,

f(y(t1)) = f(y(t2)).
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Some More Orbit Calculations

Consider the differential equation:

a = − x

‖x‖3 .

It is autonomous, vector valued, and second-order. In order to

make it first-order, it can be replaced by:






x′ = v

v′ = − x
‖x‖3
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The vector notation can be replaced by:










































x′
1 = v1

x′
2 = v2

v′1 = − x1
√

(x2
1 + x2

2)3

v′2 = − x2
√

(x2
1 + x2

2)3

Remember that x1(t), x2(t), v1(t), v2(t) are functions of time.
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It can be shown that x× v is an invariant of the equation. It

represents Kepler’s area law.

It can also be shown that 1
2‖v‖2 − 1

‖x‖ is an invariant. It represents

preservation of energy.

Assuming that ω =

√

1

r3
, it can be shown that



























x1 = r. cosωt

x2 = r. sinωt

v1 = −r.ω. sinωt

v2 = r.ω. cosωt

is a solution of the differential equation.
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Let A be a matrix that preserves length. (This means that always

‖Ax‖ = ‖x‖.)
If (x, v) is a solution, then (Ax,Av) is a solution.

Operations that preserve length are mirorrings and rotations, and

their combinations.
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