
Quaternions
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Vector Products

Definition: Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors.

The dot product (also called scalar product or inner product) of x

and y is defined as

x · y = x1y1 + x2y2 + x3y3.

It is a real number.

The dot product can be interpreted as

|x|.|y|. cosϕ,

where ϕ is the angle between the vectors. (Note that y. cosϕ is the

length of the projection of y onto x.) (Show that both · and its

interpretation are linear in both of their arguments, and that the

interpretation makes sense for parallel and orthogonal vectors.)
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Vector Products

Definition: Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors.

The cross product is defined as








x2y3 − y2x3

x3y1 − y3x1

x1y2 − y1x2









It is written as x× y.

Intuitively, it denotes a vector whose length equals the surface area

of the parallelogram that is formed by the vectors |x|.|y|. sinϕ.

Its direction is orthogonal to both vectors, and determined by the

screw driver rule.

(Show that for unit vectors, the formal definition coincides with the

intuition, and that the operation is linear in both arguments.)
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Quaternions

Definition A quaternion is a quadruple (r; x1, x2, x3), where

r, x1, x2, x3 ∈ R.

The quaternion can be viewed as a quadruple of real numbers.

(This is how I defined it.) In that case, the components are called

1, i, j, and k.

It can be also viewed as a pair, consisting of a real number and a

vector. In that case, we call r the real or scalar part and

(x1, x2, x3) the vector part.
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Quaternions

For r ∈ R, we identify r and (r; 0, 0, 0).

For v ∈ R3, we identify v and (0; v).

Definition: Addition, subtraction and multiplication by a real

number, are defined member wise.
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Multiplication

Multiplication is defined from

i2 = j2 = k2 = ijk = −1.

(Hamilton wrote these equations into Brougham Bridge in Dublin

on 16.10.1843.)

It can be easily checked that the following matrix follows from the

equation above:

· i j k

i −1 k −j

j −k −1 i

k j −i −1
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Multiplication Using Dot and Cross Product

Using dot product and cross product, the product of (r1; x1) and

(r2; x2) can be written as

(r1r2 − x1 · x2; r1x2 + r2x1 + x1 × x2).

Quaternion multiplication is associative:

q1.(q2.q3) = (q1.q2).q3.

It is also distributive:

q1.(q2 + q3) = q1.q2 + q1.q3.

It is not commutative.
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Norm of a Quaternion

Let q = (r; x1, x2, x3) be a quaternion. The norm of q, written as

‖q‖, is defined as
√

r2 + x2
1 + x2

2 + x2
3.

It is easily checked that, for any two quaternions q1 and q2, one has

‖q1.q2‖ = ‖q1‖.‖q2‖.
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Conjugate of a Quaternion

Definition: For a quaternion q = (r; x1, x2, x3), define the

conjugate q as (r; −x1,−x2,−x3).

It can be checked that q.q = ‖q‖2 and that q1q2 = q2 q1.

Using the first property, one can define q−1 =
q

‖q‖2
.

From the second property follows that (q1q2)
−1 = q−1

2 q−1
1 .
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Quaternions and Rotations

We are interested in quaternions because they are the most natural

way to represent rotations in three dimensional space.

A rotation can also be represented by a matrix, but:

1. A quaternion is a bit more compact, and multiplying

quaternions is a bit cheaper than multiplying matrices. (But

the difference is not significant.)

2. It is easy to read of the rotation axis and the angle from a

quaternion. Doing this for a matrix is harder.

3. A quaternion is always a well-formed rotation. A matrix may

get polluted by floating point rounding, and may need

correction.

4. In all cases, the simplest way to construct a rotation matrix is

through the quaternion, so there is no way around them.
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Quaternions and Rotations

Definition: Let x be a vector, and let ϕ be a real number. We define

qx,ϕ = (‖x‖ cos
1

2
ϕ; x sin

1

2
ϕ).

Definition: For a quaternion q, the function fq is defined as follows:

λv : fq(v) = q.v.q−1.

Theorem: The function fq
x,ϕ

defines a rotation around axis x over

angle ϕ.

In order to determine the direction of rotation, use the screwdriver

rule or corkscrew rule. (lefty-loosey, righty-tighty)

We prove this important theorem on the next slides.
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• First observe that fq does not depend on ‖q‖, as long as it is

not zero.

• It can be easily checked that fq is always a linear function. This

means that fq(λv) = λfq(v) and fq(v + w) = fq(v) + fq(w). As

a consequence, fq can be represented by a matrix.

• For two quaternions q1 and q2 and a vector v, we have

fq1q2(v) = fq1(fq2(v)). This implies that the functions can be

composed by multiplying the quaternions.

• If one writes q = (r;x), then fq = q.v.q−1 has form

(r;x)(0; v)(r;−x)

r2 + ‖x‖2
=

(−x · v; rv + x× v)(r;−x)

r2 + ‖x‖2
=

(0; r2v + 2r(x× v) + (x · v)x− (x× v)× x )

r2 + ‖x‖2
. (1)
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Defining Rotations

We first give a direct expression for rotations. After that, we show

that it is equal to the expression on the previous slide.

Assume that we want to rotate with angle ϕ around axis e. We

assume that e is a unit vector. Let v be the factor that we want to

rotate: Define the following vectors:

1. Projection of v onto e : V z = e(e · v).

2. Direction in which rotation would start moving, if it would be

carried out gradually: V y = e× v.

3. The arm of the rotation, when it starts: V x = (e× v)× e.

We have v = V x + V z .

Rotation of v over angle ϕ results in V z + V x cosϕ+ V y sinϕ =

(e.v)e+ ((e× v)× e) cosϕ+ (e× v) sinϕ. (2)
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Comparing the Expressions

We replace r := cos 1
2ϕ, and x := e sin 1

2ϕ in (1). The result is

v cos2 1
2ϕ+ 2(e× v) cos 1

2ϕ sin 1
2ϕ+ (e · v)e sin2 1

2ϕ− ((e× v)× e) sin2 1
2ϕ

cos2 1
2ϕ+ ‖e‖2 sin2 1

2ϕ
.

Note that ‖e‖ = 1, so that the denominator equals 1, and

sinϕ = 2. sin 1
2ϕ cos 1

2ϕ. We get:

v cos2
1

2
ϕ+ (e× v) sinϕ+ (e · v)e sin2

1

2
ϕ− ((e× v)× e) sin2

1

2
ϕ.

Using v cos2 1
2φ = (V x + V z) cos

2 1
2φ and cosϕ = cos2 1

2ϕ− sin2 1
2ϕ,

we obtain the same as (2):

(e · v)e+ (e× v) sinϕ+ ((e× v)× e) cosϕ.
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Matrix Representation

Since fq is always a linear function, it is possible to give a matrix

representation. Here it is, assuming that q = (r; x) :









r2 + x2
1 − x2

2 − x2
3 2(x1x2 − rx3) 2(x1x3 + rx2)

2(x1x2 + rx3) r2 − x2
1 + x2

2 − x2
3 2(x2x3 − rx1)

2(x1x3 − rx2) 2(x2x3 + rx1) r2 − x2
1 − x2

2 + x2
3









r2 + ‖x‖2
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Remarks

Although the correctness proof was not so easy, quaternions are

easy to use. Use them!
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Coordinate Systems

Coordinate systems are always right handed, which means that

Z = X × Y.

In order to define a new coordinate system C′ in terms of an

existing coordinate system C, one needs to define its origin b and

orientation q.

The following transformation transforms C′-coordinates to C

coordinates:

T (x) = b+ fq(x).

In order to transform C-coordinates to C′-coordinates, use

T−1(x) = −fq−1(b) + fq−1(x).
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Coordinate Systems

Earth Centered Earth Fixed (ECEF) coordinates are defined as

follows:

Origine is the center of mass of the earth.

X: From the center of the earth towards the point where the

equator intersects with the 0 meridian.

Y: From the center of the earth towards the point where the

equator intersects with the 90 deg meridian.

Z: From the center of the earth towards the north pole.

The institute is on position N 51 deg 6min 39.9 sec and E

17 deg 3min 13.4 sec . The position in ECEF is

(3835996.227, 1176715.805, 4941310.474).
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Local East North Up (LENU) is defined as follows:

Origin is the point where you stand, at sea level.

X: East.

Y: North.

Z: Up.

In order to transform LENU to ECEF, relative to the institute, use

b from the previous slide, and

q = (0.560541377; 0.197886954, 0.267691243, 0.758271400).
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Eye or camera coordinates are defined as follows:

The origin is the position of the camera.

X: To the right, relative to the camera’s orientation.

Y: Up, relative to the camera’s orientation.

Z: Behind the camera.

In order to make the perspective computation, first transform into

eye coordinates using T−1. After that, use:

(x′, y′) =







(−x

z
,− y

z
), if z ≤ −1

undefined, otherwise

Of course, some additional scaling and clipping may be necessary.

In computer graphics, all transformations are represented by

homogeneous or projective transformations. The result is the same.
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Airplane coordinates are defined as follows:

X: Pointing forward along the frame, in flying direction, when the

plane flies straight.

Y: Pointing to the right. (Starboard side.)

Z: Pointing downward.

The origin could be set in the center of mass of the plane, but this

is not practical. The position of the center of mass depends on load

and on fuel, and is likely to change during flight.
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In addition to the previous, there may be more coordinate systems:

For example for nose wheel steering, or for movable aerodynamic

surfaces.
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The view of the pilot is determined by

b = (14, 0,−1), q = (1;−1,−1, 1).

The view of a passenger in seat 27A (left looking, somewhat in the

back of the plane) is determined by

b = (−10,−2,−1), q = (1;−1, 0, 0).

If an airplane flies west at an altitude of 5000 meter over the origin

of a LENU coordinate system, then the coordinate system of the

plane is determined by

b = (0, 0, 5000), q = (0; 0, 1, 0).
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How to Obtain Coordinate Transformations

It is sometimes difficult to understand what the transformation

T (x) = b+ fq(x)

means.

It has two meanings:

1. The position of a rigid object or a camera.

2. A change of coordinate system from internal coordinates of the

object or camera to outside coordinates.
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Assume that the rigid object or camera has an internal coordinate

system C2. We want to express its position in some other

coordinate system C1.

Start by positioning the object in such a way that its origin equals

the origin of C1, and the XYZ-axes of C2 are aligned with C1.

In this position, we have we have T (x) = (0, 0, 0) + f(1;0,0,0)(x) and

the two coordinate systems are the same.

Now we first move the object to the position where we want it to

stand, and then rotate it around its origin (after movement) into its

proper orientation.

The pair (b, q) represents the position of the object. At the same

time, the function T (x) = b+ fq(x) is a function that transforms

coordinates: If x is the position of a point expressed in coordinate

system C2, then T (x) is the position of the same point expressed in

coordinate system C1.
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Composition of Movements

A lot of confusion appears if one wants to make two or more

movements with the object. We first move over (b1, q1), and after

that over (b2, q2).

1. If the second movement is still expressed in the original

coordinate system C1, one can easily build the transformation

T (x) = (b1 + b2) + fq2.q1(x).

2. If the second movement is expressed in the internal coordinate

system of the object after its first move, one obtains:

T (x) = T1(T2(x)) = b1 + fq1(b2) + fq1.q2(x).

The correctness can be seen from the second meaning of T (x).

Let C2 be the coordinate system of the object after its first

move. Let C3 be the position after the second move. Then T2

transforms C3 to C2, and T1 transforms from C2 to C1. It follows

that T1 ◦ T2 transforms C3 to C1.
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It often happens that one knows the orientation q, and one knows

that T (x0) = y0.

In that case, b can be solved from y0 = b+ fq(x0).

The result b = y0 − fq(x0).

This happens when one knows the position of the center of mass of

the plane, and its orientation.
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