Solving Differential

FEquations Numerically

Solving DE’s

We have seen in earlier slides, that the only type of differential

equations that we need to consider, are differential equations of

form:

These are first-order, autonomous differential equations.

One may call it ‘system of differential equations’ or a vector-valued

differential equation.

Euler’s Method

vector y = yO0; // Initial value.
double h = (t1 - t0) / 1000;

double t = tO0;
while(t + h < t1)
{
y += h * F(y);
t += h;
}
y += (t1 -t) * F(y);
t = t1;

What is the accurracy of this method?

Heun’s Method
First define

vector H(vector y, double h)

{
vector y_star =y + h * F(y);

return (h/2) * (F(y) + F(y_star);

The function H(y, h) first makes a guess for y(t + h) using Euler’s
method.

It uses the average of F' in the guessed value for y(¢ + h) and F' in

the present y(t), to obtain the final estimation for y(t 4 h).

Heun’s Method (2)

vector y = yO0; // Initial value.
double h = (t1 - t0) / 1000;

double t = tO0;
while(t + h < t1)
{

y = HC y, h);

t += h;

HCy, t1 -t);
= t1;
// Now y is the (approximated) solution y1l.

What is the accurracy of this method?

Runge-Kutta Methods

The general form of a Runge-Kutta method is as follows: Assume
that we already know 7(¢) and that we want to compute an

approximation for (¢t + h).

We first compute a sequence of values k1, ..., k,, where each k; is

an approximation for y(t + cxh), for some ¢ € R.

For each k;1, the previous estimations ki, ..., k; can be used in

the computation of k.

The sequence starts with
ki =F(y(t)).

Then, for each ¢ (1 <17 < n), we compute

kiv1=F(y(t)+h (Az'+1,1E1 + Az'—l—l,QEQ + Ai—l—l,iEi)).

Runge-Kutta Methods (2)

At the end, we compute:

Y(t+h) =7(t) + h.(brky + boka + -+ + by k).
It is easily seen that ¢; = 0, and
Civ1 = Ajr11+ -+ Aigr

Also,

(In order to see this, replace k; by F(3(t))

Butcher Tableaux
A Runge-Kutta method with n stages is determined by the

coefficients A; ;, the positions ¢;, and the final weights by,.. ., b,.

The coefficients are usually written in a tableau as follows, which is
called Butcher Tableau (after J.C. Butcher).

C1

Order 1
The simplest Runge-Kutta method (the Euler Method) is defined

o

by the following tableau:

It corresponds to the computation:

El ‘= F(g(t))7

RK21 (Heun’s Method)
Heun’s method is defined by the following tableau:

0
1

It corresponds to the computation:

F(5(t)),

%2 = F(g(t) —+ hk’l),

gt +h) = g(t) + b + Sha).

The order (for a single step) is 3.

RK41

The best-known method, which is usually called the Runge-Kutta
method, is defined by the following tableau:

0
1
2
1
2
1

o= O O N

Its order (for a single step) is 5.

Above order 5, the number of stages grows quicker than the order.

RK5

The following method has order (in a single step) 6. It has 6 stages,
two more than RK41.

-

—
|
ol

0

111

i | 12
111 1
| 8 8
1

5| O

31 3

4

1

gl ©

(@l BN ([oe
S| [N ooleo pol=

Proving Order Properties of Runge-Kutta Methods

Obtaining suitable numbers for a Butcher tableau is kind of magic.
The idea of the proof is not hard:
. Approximate F' in 7(t) by a Taylor polynomial.

. Using the Taylor polynomial for F', also express (¢t + h) as
Taylor polynomial.

. Using an abstract Butcher tableau, give a Taylor polynomial
for the estimation y*(t + h).

. Try to make as many coefficients of 7(t + h) and 5*(t + h)
equal, by finding proper values in the Butcher tableau. The
more coefficients become equal, the better the order.

Proving Order Properties of Runge-Kutta Methods

The previous plan works fine for orders 1,2,3. For higher orders, it

results in serious disaster.

The polynomials get so big that no computer algebra system can
handle them.

Martin Kutta (1867-1944, born in Pitschen, now Byczyna) and
John.C. Butcher (1933-) used symmetries (and combinatorics) to
derive the order conditions. They checked in how many ways each
chain of partial derivatives can be realized in the expressions. Even

then, the order conditions become too big to solve.

For higher-orders, no optimal (stage as low as possible) methods

are known.

Examples

I give an example, using the catenary. Its differential equation is:

y'(2) = A1+ (v (2))2

Its exact solution is defined by

1 Az — AT
y(x) = 3 cosh(Ax) = ‘ ;}\6 :

It can easily shown that

cosh?(z) — sinh®(z) = 1,

and that

sinh’(z) = cosh(z), cosh’(x) = sinh(z).

We first have to make the different equation first-order. Use pairs
over R x R. Call the first component u and the second component

v. Define p(Z) = (y(z), v’ (x)). The differential equation becomes

Dp(z) = Dyl(x)
Do) = Ay/1+ (P,(2))2

It is first-order and autonomous. The exact solutions have form

D, (1) T cosh(Ax)

Doy (T) sinh(A\x)

In order to use Runge-Kutta methods, implement

class pair

{

double v;

double w;

+;

and the operators

pair operator + (pair, pair);

pair operator * (double, pair);

Problems with Runge Kutta Methods

RK methods are very useful for static analysis, performance
analysis, orbit computations etc. Unfortunately, they are not

always suitable for real time simulation:

1. F has to be sufficiently often differentiable. (Otherwise, it the
Taylor approximation does not approach the function fast
enough, and the RK method is not as accurate as it should be.)
Many systems in real life involve state changes which makes

them not differentiable often enough.

. In practice, one does not have access to all state variables. One

needs to be able to compute F(Z) for many different, guessed

values of =. In practice, the state T may be spread through
different objects, partially inside private variables of these
objects and therefore not accessible. From the point of software
engineering, it is probably impossible to use higher-order RK

methods on realistic objects.

. On many systems, passing from ¢ to t + A may involve a state
change that is hard to reverse. Using an RK method involves

evaluating F' repeatedly at different positions.

. User input is usually erratic and tends to be not reproducable.
I think that the notion of order of precision is meaningless in

the presence of a user.

For planets, involving derived orbits (e.g. horse shoe orbits), RK is

essential.

