
Stability Analysis
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Stable Flight

We will study the behaviour of the airplane during stable flight.

A plane in stable flight is in equilibrium. We are interested in what

happens, when this equilibrium is disturbed.

The techniques that we are explain, are general. They apply to all

systems that can be described by differential equations on their

state.

The techniques can also be used for the design of autopilots

(systems that automatically keep a given speed, altitude, or

attitude.)
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State Vector

We consider only the two-dimensional flight model.

In the two-dimensional model, the state S has the following form:

• Position vector x.

• Speed vector v.

• Orientation (pitch) angle θ.

• Pitch rate ω.

S is a 2 + 2 + 1 + 1 = 6-dimensional vector.

In three dimensions, state would be 12-dimensional. (It depends on

which dimension you attach to the quaternion.)
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The airplane model (or the simulation) defines a function F that

maps S to its derivative S′. The derivative S′ consists of the

following components:

• Linear speed vector v,

• linear acceleration vector a,

• rotation vector ω,

• angular acceleration α.

The differential equation has form S′ = F (S).
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Equilibrium

A airplane in stable flight is in equilibrium. There exist three types

of equilibrium:

stable: As long as the disturbance is not too big, the system will

return to the equilibrium, usually after some swinging.

Examples: A weight hanging on a rope, a floating ship.

unstable: Instable equilibrium. When disturbed, the system will

start moving away from the equilibrium. Example: A pencil

standing on its point, a submarine under the water.

Unstable systems need active control to be kept in the

equilibrium.

neutral: When disturbed, the system is in a new equilibrium.

Example: A ball on a flat floor.
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Equilibrium State

In equilibrium, the derivatives must be zero.

If we have a state vector of form (x, 0, θ, 0), then F (x, 0, θ, 0), must

be equal to (0, 0, 0, 0).
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Equilibrium?

Note that the definition on the previous page does not capture all

flights that might be considered equilibrium.

For example (in 3-dimensional case), a horizontal turn is a kind of

equilibrium. During a turn, ω is a constant vector of form (0, 0, r),

and the Z-coordinates of x and v are constant.
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Stability

Instead of using equilibrium, one can use stability of solutions:

Let F be a transition function. We call a function s a solution of F,

starting at t0, if

∀t ≥ t0, s′(t) = F (s(t)).

If for a given solution s1 and a time point t0, there exists a real

number d, s.t. for every solution s2 with ‖s1(t0)− s2(t0)‖ ≤ d, for

every d′ there exists a t ≥ t0, s.t. for every t
′ ≥ t, we have

‖s1(t′)− s2(t
′)‖ ≤ d′, then we call s1 stable at time t0.
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Stability (2)

You change a little bit in the state of the system, and you tell how

small you want the difference to become.

After that, if you wait long enough, the difference will be as small

as you wanted, and stay so small forever after.

Famous examples of non-stable systems are the weather, and the

three-body problem.
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Linear Approximation

We will consider only equilibrium states, solutions s(t) that are

mostly constant.

Let s be such a solution, we know that at every moment t, we have

s′(t) = F (s(t)).

We are interested in solutions close to s(t), so we express them in

form s(t) + y(t), where y(t) is the difference between the

equilibrium and the concrete state.

We have

s′(t) + y′(t) = F ( s(t) + y(t) ). (1)
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We develop F () in a multivariate Taylor series relative to s(t) :

F ( s(t) + y(t) ) = F ( s(t) ) +
∑


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Using s′(t) = F (s(t)) in Equation 1, we obtain:
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In general, because we are looking at stable states. the ∂F
∂i

are

constant.

Moreover, if we manage to keep ‖y(t)‖ small enough, we can ignore

the quadratic and further terms.

(There may be a better argument, but this is how engineers reason.)
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Homogeneous, Linear Systems with Constant Coefficients

We have obtained a differential equation of form

y(t) =










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∂1
· · · ∂F1

∂6
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· · ·
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· · · ∂F6
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y(t).

∂Fi

∂j
specifies how the i-th component of the result of F reacts to

changes in the j-th component of its input, near s(t).

A differential equation of this form ( y′(t) = Ay(t) ) is called a

homogeneous, linear system with constant coefficients.

(It would be non-homogeneous if it would be of form

y′(t) = Ay(t) +B )

Solving such differential equations is easier than it seems.
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We want to solve s′(t) = A( s(t) ). We assume that solutions have

form s(t) = c.eλt, where c is a vector, λ is a complex number.

Substitution in the equation gives

λc.eλt = A( c.eλt ).

Since eλt is a non-zero (complex) number, we can divide it out of

the equation:

λc = A(c).

Vectors with this property are called eigenvectors of the matrix A.

The corresponding (complex) numbers are called the eigenvalues of

the matrix.

Eigenvalue solvers are available in Matlab, or on the internet.
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Understanding Eigenvectors

As said before, complex solutions of the differential equation have

form y(t) = µ.e.eλt, for µ ∈ C, and λ, e an eigenvalue with

corresponding eigenvector.

In order to obtain solutions that are real at every moment t, one

has to combine pairs of conjugate eigenvectors.
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Combining Conjugate Pairs

Let λ1, λ2 be a conjugate eigenvalue pair. Let e1, e2 be the

corresponding eigenvectors.

Solutions of the differential equation have form

y(t) = µ1.e1.e
λ1t + µ2.e2.e

λ2t, µ1, µ2 ∈ C.
Because λ1 is conjugate to λ2, and e1 is conjugate to e2, also e1e

λ1t

is conjugate to e2e
λ2t.

It can be easily checked that, in order to be a real-valued function,

µ1 must be conjugate to µ2.

The complex components will cancel each other, and the resulting

function will be

y(t) = 2Re( µ1.e1.e
λ1t ).

Re(c) denotes the real part of c.
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Polar Coordinates

We will represent complex numbers in polar coordinates. The pair

(r, φ) ∈ R×R represents the complex number r. cosφ+ i.r sinφ.

Multiplication of complex numbers in polar coordinates is easy:

(r1, φ1).(r2, φ2) = (r1.r2, φ1 + φ2).

If λ1 has form a+ bi (not in polar coordinates), then ea+bi = (ea, b)

(in polar coordinates).

If e1 = ( (r1, φ1), . . . , (rn, φn) ) and µ = (s, ψ) in polar coordinates,

then

y(t) = 2 ea t sRe( (r1, φ1 + ψ + b t), . . . , (rn, φn + ψ + b t) )

= 2 ea t s (r1 cos(φ1 + ψ + b t), . . . , rn cos(φn + ψ + b t) ).
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Understanding the Components

The eigenvalue a+ bi consists of two parts: a represents the

damping. If a < 0, then the oscillation is damped. If a > 0, the

oscillation diverges. If a = 0, the oscillation stays the same.

We usually want a < 0, and not too close to 0.

When expressed in polar coordinates, the eigenvector represents the

oscillation of the system connected to a+ bi.

(r1, . . . , rn) represent the relative amplitudes in the oscillation, and

the (φ1, . . . , φn) the relative phases.
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Example

We try a simple, second order differential equation:

y′′(t) = −3y(t)− y′(t). (2)

It is clear from itse form that its solutions are damped oscillations.

The characteristic polynomial is x2 + x+ 3 = 0. The zeroes of the

polynomial are −1±i.
√
11

2
.

This means that complex solutions of the differential equations

have form

y(t) = µ1e
s1t + µ2e

s2t,

where s1, s2 are the solutions above.
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Example (2)

In order to be real valued everywhere, µ1 and µ2 have to be

conjugates.

The real valued solutions of Equation 2 have form:

y(t) = e−
1

2
t( A cos

t

2

√
11 +B sin

t

2

√
11 ).
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Example (3)

Equation 2 is second order. In order to make it first-order, we use a

vector (y1, y2), where y2 is the derivative of y1.

We obtain






y′1 = y2

y′2 = −3y1 − y2

In matrix notation

y′ =





0 1

−3 −1



 y(t).
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Example (4)

http://www.bluebit.gr/matrix-calculator/ gives the following

eigenvalue/vector pairs:

−0.5 + 1.658312i (−0.144337567− 0.478713554i, 0.866025404)

−0.5− 1.658312i (−0.144337567 + 0.478713554i, 0.866025404)

The numbers −0.5± 1.658312i are the same as before −1±i.
√
11

2
.

We express the first eigenvector in polar coordinates:

( (0.5,−106.779 deg), (0.866025, 0 deg) ).

We see that y2(t) has an amplitude that is
√
3 times bigger than

the amplitude of y1(t), and that it is 106.779 deg ahead of y1(t).

One can can verify this by taking the derivative of

y(t) = e−
1

2
t( A cos

t

2

√
11 +B sin

t

2

√
11 ).

22



Application two Aircraft Model

The two-dimensional airplane model, that is used in Exercise 8, has

a stable state at v = (105.468, 0.816, )m.s−1, θ = 0.145 deg .

I collected the matrix A by making small changes in the speed of

1 m.s−1 and in the angles θ, ω, of 10−3 deg .

The resulting matrix of partial derivatives is on the next slide.
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
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




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
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




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





















0 0 1 0 0 0

0 0 0 1 0 0

0 0 −0.005941 −0.07019 −1.51203 0.042445

0 0 0.195168 −1.09076 112.686 3.64708

0 0 0 0 0 1

0 0 −0.0008299 0.0638056 −6.69163 −1.45661


























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There is a lot of information in this matrix. We see that x is

ignored. We see that v is copied into x′, and ω into θ′.

http://www.bluebit.gr/matrix-calculator/ gives the following

eigenvalue/vector pairs: (Note that the vectors are given as

columns.)
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Eigenvalue 0 with eigenvectors (1, 0, 0, 0, 0, 0) and (0, 1, 0, 0, 0, 0)

represent the fact that the behaviour of the airplane does not

depend on its position.
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Eigenvalues −0.00886± 0.1131i with eigenvectors


























−0.01916∓ 0.59494i = (0.595248, −91.8446 deg)

−0.79560 = (0.7956, 180 deg)

0.06746± 0.00311i = (0.0675316, 2.63955 deg)

0.00705∓ 0.08999i = (0.0902657, −85.5205 deg)

0.00004∓ 0.00086i = (0.00086093, −87.337 deg)

0.00010± 0.00001i = (0.000100499, 5.71059 deg)



























This eigenvector corresponds to the phugoid. It seems to have half

value time of ln( 1
2
)/0.00866 = 78s. This is much faster than

observed. The period seems to be 2π
0.113

= 55s. This is quite

consistent with the observation in the program.
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Eigenvalues −1.267793± 2.532092i with eigenvectors


























0.008594∓ 0.004301i = (0.00961017, −26.5864 deg)

−0.148693∓ 0.296977i = (0.332122, −116.597 deg)

−0.000004± 0.027212i = (0.027212, 90.0084 deg)

0.940485 = (0.940485, 0 deg)

0.000336± 0.021959i = (0.0219616, 89.1234 deg)

−0.056029∓ 0.02699i = (0.0621909, −154.279 deg)



























This eigenvector corresponds to the short term oscillation It seems

to have half value time of ln( 1
2
)/− 1.2678 = −0.54s. The period

seems to be 2π
2.53209

= 2.4814s. This is probably consistent with the

observation.
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